File: setup_geometry.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (187 lines) | stat: -rw-r--r-- 6,224 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Setup experimental geometry for refinement test cases"""

from __future__ import annotations

import random

from dxtbx.model import BeamFactory, Crystal, DetectorFactory, GoniometerFactory
from libtbx.phil import command_line, parse
from scitbx import matrix


# Local functions
def random_vector_close_to(vector, sd=0.5):
    return matrix.col(vector).rotate_around_origin(
        matrix.col((random.random(), random.random(), random.random())).normalize(),
        random.gauss(0, sd),
        deg=True,
    )


class Extract:
    """Parse and extract geometry model from PHIL"""

    def __init__(
        self, master_phil, local_overrides="", cmdline_args=None, verbose=False
    ):
        self._verbose = verbose

        arg_interpreter = command_line.argument_interpreter(master_phil=master_phil)

        user_phil = parse(local_overrides)
        cmdline_phils = []
        if cmdline_args:
            for arg in cmdline_args:
                cmdline_phils.append(arg_interpreter.process(arg))

        working_phil = master_phil.fetch(sources=[user_phil] + cmdline_phils)

        self._params = working_phil.extract().geometry.parameters

        self.set_seed()

        self.build_goniometer()

        self.build_crystal()

        self.build_beam()

        self.build_detector()

        # write changes back to the PHIL object
        temp = working_phil.extract()
        temp.geometry.parameters = self._params
        self.phil = master_phil.format(python_object=temp)

    def set_seed(self):
        if self._params.random_seed is not None:
            random.seed(self._params.random_seed)
            # set the flex random seed too
            from dials.array_family import flex

            flex.set_random_seed(self._params.random_seed)
            if self._verbose:
                msg = "Random seed set to %d while building models"
                print(msg % self._params.random_seed)

    def build_goniometer(self):
        self.goniometer = GoniometerFactory.known_axis(self._params.goniometer.axis)

    def build_beam(self):
        if self._params.beam.wavelength.random:
            wavelength = random.uniform(*self._params.beam.wavelength.range)
        else:
            wavelength = self._params.beam.wavelength.value

        assert self._params.beam.direction.method in [
            "inclination",
            "close_to",
            "exactly",
        ]

        if self._params.beam.direction.method == "inclination":
            if self._params.beam.direction.inclination.random:
                inclination = random.gauss(
                    0.0, self._params.beam.direction.inclination.angle
                )
            else:
                inclination = self._params.beam.direction.inclination.angle

            beam_dir = matrix.col((0, 0, 1)).rotate_around_origin(
                matrix.col((0, 1, 0)), inclination, deg=True
            )

        elif self._params.beam.direction.method == "close_to":
            temp = self._params.beam.direction.close_to.direction
            beam_dir = random_vector_close_to(
                temp, sd=self._params.beam.direction.close_to.sd
            )

        elif self._params.beam.direction.method == "exactly":
            beam_dir = matrix.col(self._params.beam.direction.exactly)

        self.beam = BeamFactory.make_beam(unit_s0=beam_dir, wavelength=wavelength)

    def build_detector(self):
        assert self._params.detector.directions.method in ["close_to", "exactly"]

        if self._params.detector.directions.method == "close_to":
            temp = self._params.detector.directions.close_to.dir1
            dir1 = random_vector_close_to(
                temp, sd=self._params.detector.directions.close_to.sd
            )

            n = random_vector_close_to(
                self._params.detector.directions.close_to.norm,
                sd=self._params.detector.directions.close_to.sd,
            )

        elif self._params.detector.directions.method == "exactly":
            temp = self._params.detector.directions.exactly.dir1
            dir1 = matrix.col(temp)

            n = matrix.col(self._params.detector.directions.exactly.norm)

        dir2 = n.cross(dir1).normalize()

        assert self._params.detector.centre.method in ["close_to", "exactly"]

        if self._params.detector.centre.method == "close_to":
            centre = random_vector_close_to(
                self._params.detector.centre.close_to.value,
                sd=self._params.detector.centre.close_to.sd,
            )

        elif self._params.detector.centre.method == "exactly":
            temp = self._params.detector.centre.exactly.value
            centre = matrix.col(temp)

        origin = centre - (
            0.5 * self._params.detector.npx_fast * self._params.detector.pix_size * dir1
            + 0.5
            * self._params.detector.npx_slow
            * self._params.detector.pix_size
            * dir2
        )
        self.detector = DetectorFactory.make_detector(
            "PAD",
            dir1,
            dir2,
            origin,
            (self._params.detector.pix_size, self._params.detector.pix_size),
            (self._params.detector.npx_fast, self._params.detector.npx_slow),
            (0, 1.0e6),
        )

    @staticmethod
    def _build_cell_vec(vec):
        if vec.length.random:
            length = random.uniform(*vec.length.range)
        else:
            length = vec.length.value

        assert vec.direction.method in ["close_to", "exactly"]

        if vec.direction.method == "close_to":
            x = random_vector_close_to(
                vec.direction.close_to.direction, sd=vec.direction.close_to.sd
            )

        elif vec.direction.method == "exactly":
            x = matrix.col(vec.direction.exactly.direction)

        return length * x

    def build_crystal(self):
        vecs = [
            self._build_cell_vec(axis)
            for axis in (
                self._params.crystal.a,
                self._params.crystal.b,
                self._params.crystal.c,
            )
        ]

        sg = self._params.crystal.space_group_symbol

        self.crystal = Crystal(*vecs, space_group_symbol=sg)