File: test_detector_parameters.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (357 lines) | stat: -rw-r--r-- 11,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import annotations

import random
import textwrap
from math import cos, pi, sin, sqrt

from dxtbx.model import BeamFactory, Detector, DetectorFactory, Panel
from libtbx.test_utils import approx_equal
from scitbx import matrix

from dials.algorithms.refinement.parameterisation.detector_parameters import (
    DetectorParameterisationMultiPanel,
    DetectorParameterisationSinglePanel,
)
from dials.algorithms.refinement.refinement_helpers import (
    get_fd_gradients,
    random_param_shift,
)


def random_panel(lim=(0, 50)):
    """For testing, return a square panel with a randomised position
    and orientation"""

    # start with a randomised origin vector
    o = matrix.col(
        (
            random.uniform(-200, 200),
            random.uniform(-200, 200),
            random.uniform(-200, 200),
        )
    )

    # two orthogonal unit vectors randomly oriented in the normal plane
    # of the origin vector
    u1 = o.ortho().normalize()
    u2 = o.cross(u1).normalize()
    # theta = random.uniform(0, 2. * pi)
    u1 = u1.rotate_around_origin(o, pi / 12)
    u2 = u2.rotate_around_origin(o, pi / 12)

    # offset the plane normal from the origin vector by random rotations
    # of up to 45 degrees for each direction
    u1 = u1.rotate_around_origin(u2, random.uniform(-pi / 2.0, pi / 2.0))
    u2 = u2.rotate_around_origin(u1, random.uniform(-pi / 2.0, pi / 2.0))

    return Panel(
        "PAD",
        "Panel",
        u1,
        u2,
        o,
        (lim[1] / 200, lim[1] / 200),
        (200, 200),
        (0, 2e20),
        0.0,
        "",
    )


# local function required to make a 3x3 multi-panel detector
def make_multi_panel(single_panel_detector):
    """Create a 3x3 multi-panel detector filling the same space as
    a supplied single panel detector"""

    from .setup_geometry import random_vector_close_to
    from .test_multi_panel_detector_parameterisation import make_panel_in_array

    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # apply small random shifts & rotations to each panel
    for p in multi_panel_detector:
        # perturb origin vector
        o_multiplier = random.gauss(1.0, 0.01)
        new_origin = random_vector_close_to(p.get_origin(), sd=0.1)
        new_origin *= o_multiplier

        # perturb fast direction vector
        new_dir1 = random_vector_close_to(p.get_fast_axis(), sd=0.5)

        # create vector in the plane of dir1-dir2
        dir1_dir2 = random_vector_close_to(p.get_slow_axis(), sd=0.5)

        # find normal to panel plane and thus new slow direction vector
        dn = new_dir1.cross(dir1_dir2)
        new_dir2 = dn.cross(new_dir1)

        # set panel frame
        p.set_frame(new_dir1, new_dir2, new_origin)

    return multi_panel_detector


def test():
    # set the random seed to make the test reproducible
    random.seed(1337)

    # set up a simple detector frame with directions aligned with
    # principal axes and sensor origin located on the z-axis at -110
    d1 = matrix.col((1, 0, 0))
    d2 = matrix.col((0, -1, 0))
    # lim = (0,50)
    npx_fast = 1475
    npx_slow = 1679
    pix_size_f = pix_size_s = 0.172
    detector = DetectorFactory.make_detector(
        "PAD",
        d1,
        d2,
        matrix.col((0, 0, -110)),
        (pix_size_f, pix_size_s),
        (npx_fast, npx_slow),
        (0, 2e20),
    )

    dp = DetectorParameterisationSinglePanel(detector)
    beam = BeamFactory().make_beam(
        sample_to_source=-1 * (matrix.col((0, 0, -110)) + 10 * d1 + 10 * d2),
        wavelength=1.0,
    )

    # Test change of parameters
    # =========================

    # 1. shift detector plane so that the z-axis intercepts its centre
    # at a distance of 100 along the initial normal direction. As the
    # initial normal is along -z, we expect the frame to intercept the
    # z-axis at -100.

    p_vals = dp.get_param_vals()
    p_vals[0:3] = [100.0, 0.0, 0.0]
    dp.set_param_vals(p_vals)
    detector = dp._model
    assert len(detector) == 1
    panel = detector[0]
    v1 = matrix.col(panel.get_origin())
    v2 = matrix.col((0.0, 0.0, 1.0))
    assert approx_equal(v1.dot(v2), -100.0)

    # 2. rotate frame around its initial normal by +90 degrees. Only d1
    # and d2 should change. As we rotate clockwise around the initial
    # normal (-z direction) then d1 should rotate onto the original
    # direction d2, and d2 should rotate to negative of the original
    # direction d1

    p_vals[3] = 1000.0 * pi / 2  # set tau1 value
    dp.set_param_vals(p_vals)

    detector = dp._model
    assert len(detector) == 1
    panel = detector[0]
    assert approx_equal(
        matrix.col(panel.get_fast_axis()).dot(dp._initial_state["d1"]), 0.0
    )
    assert approx_equal(
        matrix.col(panel.get_slow_axis()).dot(dp._initial_state["d2"]), 0.0
    )
    assert approx_equal(
        matrix.col(panel.get_normal()).dot(dp._initial_state["dn"]), 1.0
    )

    # 3. no rotation around initial normal, +10 degrees around initial
    # d1 direction and +10 degrees around initial d2. Check d1 and d2
    # match paper calculation

    p_vals[3] = 0.0  # tau1
    p_vals[4] = 1000.0 * pi / 18  # tau2
    p_vals[5] = 1000.0 * pi / 18  # tau3
    dp.set_param_vals(p_vals)

    # paper calculation values
    v1 = matrix.col((cos(pi / 18), 0, sin(pi / 18)))
    v2 = matrix.col(
        (
            sin(pi / 18) ** 2,
            -cos(pi / 18),
            sqrt((2 * sin(pi / 36) * sin(pi / 18)) ** 2 - sin(pi / 18) ** 4)
            - sin(pi / 18),
        )
    )

    detector = dp._model
    assert len(detector) == 1
    panel = detector[0]
    assert approx_equal(matrix.col(panel.get_fast_axis()).dot(v1), 1.0)
    assert approx_equal(matrix.col(panel.get_slow_axis()).dot(v2), 1.0)

    # 4. Test fixing and unfixing of parameters
    p_vals = [100.0, 0.0, 0.0, 1000.0 * pi / 18, 1000.0 * pi / 18, 1000.0 * pi / 18]
    dp.set_param_vals(p_vals)
    f = dp.get_fixed()
    f[0:3] = [True] * 3
    dp.set_fixed(f)
    p_vals2 = [0.0, 0.0, 0.0]
    dp.set_param_vals(p_vals2)
    assert dp.get_param_vals(only_free=False) == [100.0, 0.0, 0.0, 0.0, 0.0, 0.0]

    an_ds_dp = dp.get_ds_dp()
    assert len(an_ds_dp) == 3

    f[0:3] = [False] * 3
    dp.set_fixed(f)
    p_vals = dp.get_param_vals()
    p_vals2 = [a + b for a, b in zip(p_vals, [-10.0, 1.0, 1.0, 0.0, 0.0, 0.0])]
    dp.set_param_vals(p_vals2)
    assert dp.get_param_vals() == [90.0, 1.0, 1.0, 0.0, 0.0, 0.0]

    # 5. Tests of the calculation of derivatives

    # Now using parameterisation in mrad

    # random initial orientations with a random parameter shift at each
    attempts = 100
    for i in range(attempts):
        # create random initial position
        det = Detector(random_panel())
        dp = DetectorParameterisationSinglePanel(det)

        # apply a random parameter shift
        p_vals = dp.get_param_vals()
        p_vals = random_param_shift(
            p_vals, [10, 10, 10, 1000.0 * pi / 18, 1000.0 * pi / 18, 1000.0 * pi / 18]
        )
        dp.set_param_vals(p_vals)

        # compare analytical and finite difference derivatives.
        an_ds_dp = dp.get_ds_dp(multi_state_elt=0)
        fd_ds_dp = get_fd_gradients(dp, [1.0e-6] * 3 + [1.0e-4 * pi / 180] * 3)

        for j in range(6):
            assert approx_equal(
                (fd_ds_dp[j] - an_ds_dp[j]),
                matrix.sqr((0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)),
                eps=1.0e-6,
            ), textwrap.dedent(
                """\
        Failure comparing analytical with finite difference derivatives.
        Failure in try {i}
        failure for parameter number {j}
        of the orientation parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """
            ).format(
                i=i, j=j, fd=fd_ds_dp[j], an=an_ds_dp[j], diff=fd_ds_dp[j] - an_ds_dp[j]
            )

    # 5. Test a multi-panel detector with non-coplanar panels.

    # place a beam at the centre of the single panel detector (need a
    # beam to initialise the multi-panel detector parameterisation)
    lim = det[0].get_image_size_mm()
    shift1 = lim[0] / 2.0
    shift2 = lim[1] / 2.0
    beam_centre = (
        matrix.col(det[0].get_origin())
        + shift1 * matrix.col(det[0].get_fast_axis())
        + shift2 * matrix.col(det[0].get_slow_axis())
    )
    beam = BeamFactory().make_beam(sample_to_source=-1.0 * beam_centre, wavelength=1.0)

    multi_panel_detector = make_multi_panel(det)

    # parameterise this detector
    dp = DetectorParameterisationMultiPanel(multi_panel_detector, beam)

    # ensure the beam still intersects the central panel
    intersection = multi_panel_detector.get_ray_intersection(beam.get_s0())
    assert intersection[0] == 4

    # record the offsets and dir1s, dir2s
    offsets_before_shift = dp._offsets
    dir1s_before_shift = dp._dir1s
    dir2s_before_shift = dp._dir2s

    # apply a random parameter shift (~10 mm distances, ~50 mrad angles)
    p_vals = dp.get_param_vals()
    p_vals = random_param_shift(p_vals, [10, 10, 10, 50, 50, 50])

    # reparameterise the detector
    dp = DetectorParameterisationMultiPanel(multi_panel_detector, beam)

    # record the offsets and dir1s, dir2s
    offsets_after_shift = dp._offsets
    dir1s_after_shift = dp._dir1s
    dir2s_after_shift = dp._dir2s

    # ensure the offsets, dir1s and dir2s are the same. This means that
    # each panel in the detector moved with the others as a rigid body
    for a, b in zip(offsets_before_shift, offsets_after_shift):
        assert approx_equal(a, b, eps=1.0e-10)

    for a, b in zip(dir1s_before_shift, dir1s_after_shift):
        assert approx_equal(a, b, eps=1.0e-10)

    for a, b in zip(dir2s_before_shift, dir2s_after_shift):
        assert approx_equal(a, b, eps=1.0e-10)

    attempts = 5
    for i in range(attempts):
        multi_panel_detector = make_multi_panel(det)

        # parameterise this detector
        dp = DetectorParameterisationMultiPanel(multi_panel_detector, beam)
        p_vals = dp.get_param_vals()

        # apply a random parameter shift
        p_vals = random_param_shift(
            p_vals, [10, 10, 10, 1000.0 * pi / 18, 1000.0 * pi / 18, 1000.0 * pi / 18]
        )
        dp.set_param_vals(p_vals)

        # compare analytical and finite difference derivatives
        # get_fd_gradients will implicitly only get gradients for the
        # 1st panel in the detector, so explicitly get the same for the
        # analytical gradients

        for j in range(9):
            an_ds_dp = dp.get_ds_dp(multi_state_elt=j)
            fd_ds_dp = get_fd_gradients(dp, [1.0e-7] * dp.num_free(), multi_state_elt=j)

            for k in range(6):
                assert approx_equal(
                    (fd_ds_dp[k] - matrix.sqr(an_ds_dp[k])),
                    matrix.sqr((0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)),
                    eps=1.0e-5,
                    out=None,
                ), textwrap.dedent(
                    """\
        Failure comparing analytical with finite difference derivatives.
        Failure in try {i}
        for panel number {j]
        failure for parameter number {k}
        of the orientation parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """
                ).format(
                    i=i,
                    j=j,
                    k=k,
                    fd=fd_ds_dp[k],
                    an=an_ds_dp[k],
                    diff=fd_ds_dp[k] - matrix.sqr(an_ds_dp[k]),
                )