1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
from __future__ import annotations
# Python and cctbx imports
import random
from math import pi
from os.path import join
from cctbx.sgtbx import space_group, space_group_symbols
from dxtbx.format.FormatISISSXD import FormatISISSXD
# We will set up a mock scan and a mock experiment list
from dxtbx.model import CrystalFactory, ScanFactory
from dxtbx.model.experiment_list import Experiment, ExperimentList
from libtbx.phil import parse
from libtbx.test_utils import approx_equal
from scitbx import matrix
from scitbx.array_family import flex
from dials.algorithms.refinement.parameterisation.beam_parameters import (
BeamParameterisation,
)
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
CrystalOrientationParameterisation,
CrystalUnitCellParameterisation,
)
# Model parameterisations
from dials.algorithms.refinement.parameterisation.detector_parameters import (
DetectorParameterisationHierarchical,
DetectorParameterisationSinglePanel,
)
# Parameterisation of the prediction equation
from dials.algorithms.refinement.parameterisation.prediction_parameters import (
LauePredictionParameterisation,
XYPhiPredictionParameterisation,
)
from dials.algorithms.refinement.prediction.managed_predictors import (
LaueExperimentsPredictor,
ScansExperimentsPredictor,
ScansRayPredictor,
)
from dials.algorithms.refinement.reflection_manager import (
LaueReflectionManager,
ReflectionManager,
)
# Imports for the target function
from dials.algorithms.refinement.target import (
LaueLeastSquaresResidualWithRmsdCutoff,
LeastSquaresPositionalResidualWithRmsdCutoff,
TOFLeastSquaresResidualWithRmsdCutoff,
)
# Reflection prediction
from dials.algorithms.spot_prediction import (
IndexGenerator,
LaueReflectionPredictor,
ray_intersection,
)
from . import geometry_phil
# Experimental model builder
from .setup_geometry import Extract
"""Test analytical calculation of gradients of the target function versus finite
difference calculations"""
# function for calculating finite difference gradients of the target function
def get_fd_gradients(target, pred_param, deltas):
"""Calculate centered finite difference gradients for each of the
parameters of the target function.
"deltas" must be a sequence of the same length as the parameter list, and
contains the step size for the difference calculations for each parameter.
"""
p_vals = pred_param.get_param_vals()
assert len(deltas) == len(p_vals)
fd_grad = []
fd_curvs = []
for i in range(len(deltas)):
val = p_vals[i]
p_vals[i] -= deltas[i] / 2.0
pred_param.set_param_vals(p_vals)
target.predict()
rev_state = target.compute_functional_gradients_and_curvatures()
p_vals[i] += deltas[i]
pred_param.set_param_vals(p_vals)
target.predict()
fwd_state = target.compute_functional_gradients_and_curvatures()
# finite difference estimation of first derivatives
fd_grad.append((fwd_state[0] - rev_state[0]) / deltas[i])
# finite difference estimation of curvatures, using the analytical
# first derivatives
fd_curvs.append((fwd_state[1][i] - rev_state[1][i]) / deltas[i])
# set parameter back to centred value
p_vals[i] = val
# return to the initial state
pred_param.set_param_vals(p_vals)
return fd_grad, fd_curvs
def test(args=[]):
# Local functions
def random_direction_close_to(vector, sd=0.5):
return vector.rotate_around_origin(
matrix.col((random.random(), random.random(), random.random())).normalize(),
random.gauss(0, sd),
deg=True,
)
#############################
# Setup experimental models #
#############################
# make a small cell to speed up calculations
overrides = """geometry.parameters.crystal.a.length.range = 10 15
geometry.parameters.crystal.b.length.range = 10 15
geometry.parameters.crystal.c.length.range = 10 15"""
master_phil = parse(geometry_phil)
models = Extract(master_phil, overrides, cmdline_args=args)
mydetector = models.detector
mygonio = models.goniometer
mycrystal = models.crystal
mybeam = models.beam
# Build a mock scan for a 180 degree sequence of 0.1 degree images
sf = ScanFactory()
myscan = sf.make_scan(
image_range=(1, 1800),
exposure_times=0.1,
oscillation=(0, 0.1),
epochs=list(range(1800)),
deg=True,
)
sequence_range = myscan.get_oscillation_range(deg=False)
im_width = myscan.get_oscillation(deg=False)[1]
assert sequence_range == (0.0, pi)
assert approx_equal(im_width, 0.1 * pi / 180.0)
experiments = ExperimentList()
experiments.append(
Experiment(
beam=mybeam,
detector=mydetector,
goniometer=mygonio,
scan=myscan,
crystal=mycrystal,
imageset=None,
)
)
###########################
# Parameterise the models #
###########################
det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xlo_param = CrystalOrientationParameterisation(mycrystal)
xluc_param = CrystalUnitCellParameterisation(mycrystal)
########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation #
########################################################################
pred_param = XYPhiPredictionParameterisation(
experiments, [det_param], [s0_param], [xlo_param], [xluc_param]
)
################################
# Apply known parameter shifts #
################################
# shift detector by 0.2 mm each translation and 2 mrad each rotation
det_p_vals = det_param.get_param_vals()
p_vals = [a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])]
det_param.set_param_vals(p_vals)
# shift beam by 2 mrad in one axis
s0_p_vals = s0_param.get_param_vals()
p_vals = list(s0_p_vals)
p_vals[1] += 2.0
s0_param.set_param_vals(p_vals)
# rotate crystal a bit (=2 mrad each rotation)
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
xlo_param.set_param_vals(p_vals)
#############################
# Generate some reflections #
#############################
# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(
mycrystal.get_unit_cell(),
space_group(space_group_symbols(1).hall()).type(),
resolution,
)
indices = index_generator.to_array()
# Predict rays within the sequence range
ray_predictor = ScansRayPredictor(experiments, sequence_range)
obs_refs = ray_predictor(indices)
# Take only those rays that intersect the detector
intersects = ray_intersection(mydetector, obs_refs)
obs_refs = obs_refs.select(intersects)
# Make a reflection predictor and re-predict for all these reflections. The
# result is the same, but we gain also the flags and xyzcal.px columns
ref_predictor = ScansExperimentsPredictor(experiments)
obs_refs["id"] = flex.int(len(obs_refs), 0)
obs_refs = ref_predictor(obs_refs)
# Set 'observed' centroids from the predicted ones
obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.0
px_size = mydetector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
###############################
# Undo known parameter shifts #
###############################
s0_param.set_param_vals(s0_p_vals)
det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
#####################################
# Select reflections for refinement #
#####################################
refman = ReflectionManager(obs_refs, experiments)
##############################
# Set up the target function #
##############################
# Redefine the reflection predictor to use the type expected by the Target class
ref_predictor = ScansExperimentsPredictor(experiments)
mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
)
# get the functional and gradients
mytarget.predict()
L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()
####################################
# Do FD calculation for comparison #
####################################
# test normalised differences between FD and analytical calculations
fdgrads = get_fd_gradients(mytarget, pred_param, [1.0e-7] * len(pred_param))
diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
for e in norm_diffs:
assert abs(e) < 0.001 # check differences less than 0.1%
# test normalised differences between FD curvatures and analytical least
# squares approximation. We don't expect this to be especially close
if curvs:
diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
for e in norm_diffs:
assert abs(e) < 0.1 # check differences less than 10%
def test_laue_target_function(dials_data):
fmt = FormatISISSXD(
join(dials_data("isis_sxd_example_data", pathlib=True), "sxd_nacl_run.nxs")
)
beam = fmt.get_beam()
detector = fmt.get_detector()
goniometer = fmt.get_goniometer()
scan = fmt.get_scan()
crystal = CrystalFactory.from_dict(
{
"__id__": "crystal",
"real_space_a": (
0.5681647125795644,
-2.9735716012061135,
-2.707784412005687,
),
"real_space_b": (
-2.4994848902125884,
-2.3900344014694066,
2.091613643314567,
),
"real_space_c": (
-1.2771711635863638,
3.676428861690809,
-1.226011051463438,
),
"space_group_hall_symbol": " P 1",
"B_covariance": (
2.618491627225783e-13,
-2.4190170785778272e-30,
2.7961382012436816e-30,
1.4283218313839273e-13,
8.110824693143866e-15,
2.7961382012436816e-30,
-1.922218398881239e-13,
-1.1641948761717081e-14,
2.2832201114561855e-14,
-2.419017078577827e-30,
1.3543505986455804e-44,
-8.081590630292518e-46,
-4.202632560757537e-29,
-5.437640708903305e-29,
-8.081590630292518e-46,
3.330706229067803e-30,
5.621471188408899e-29,
-6.599119546892406e-30,
2.7961382012436816e-30,
-8.08159063029252e-46,
9.550033948814972e-46,
5.487666450546843e-30,
2.7096475027184553e-30,
9.550033948814972e-46,
-3.935814660390771e-30,
-3.889472044173952e-30,
7.798194512461942e-30,
1.428321831383927e-13,
-4.2026325607575364e-29,
5.487666450546843e-30,
7.789867544667339e-13,
1.4101250207277487e-13,
5.487666450546843e-30,
-2.0005409484272627e-13,
-2.021584892435437e-13,
4.481019714719027e-14,
8.110824693143867e-15,
-5.437640708903304e-29,
2.7096475027184553e-30,
1.4101250207277487e-13,
2.5553690436147e-13,
2.7096475027184553e-30,
-1.1167612085554417e-14,
-1.8848015530742402e-13,
2.2125950964841596e-14,
2.7961382012436816e-30,
-8.08159063029252e-46,
9.550033948814972e-46,
5.487666450546843e-30,
2.7096475027184553e-30,
9.550033948814972e-46,
-3.935814660390771e-30,
-3.889472044173952e-30,
7.798194512461942e-30,
-1.922218398881239e-13,
3.330706229067804e-30,
-3.93581466039077e-30,
-2.000540948427263e-13,
-1.1167612085554417e-14,
-3.93581466039077e-30,
2.7092227778026175e-13,
1.6029668235488112e-14,
-3.2138365634328507e-14,
-1.1641948761717081e-14,
5.621471188408898e-29,
-3.889472044173952e-30,
-2.021584892435437e-13,
-1.88480155307424e-13,
-3.889472044173952e-30,
1.6029668235488112e-14,
2.7054780216756276e-13,
-3.175994945548343e-14,
2.2832201114561858e-14,
-6.599119546892407e-30,
7.79819451246194e-30,
4.4810197147190265e-14,
2.2125950964841592e-14,
7.79819451246194e-30,
-3.2138365634328507e-14,
-3.175994945548343e-14,
6.36770905528953e-14,
),
}
)
experiments = ExperimentList()
experiments.append(
Experiment(
beam=beam,
detector=detector,
goniometer=goniometer,
scan=scan,
crystal=crystal,
imageset=None,
)
)
det_param = DetectorParameterisationHierarchical(detector)
xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)
pred_param = LauePredictionParameterisation(
experiments,
detector_parameterisations=[det_param],
beam_parameterisations=[],
xl_orientation_parameterisations=[xlo_param],
xl_unit_cell_parameterisations=[xluc_param],
)
# shift detector by 0.2 mm each translation and 2 mrad each rotation
det_p_vals = det_param.get_param_vals()
p_vals = [a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])]
det_param.set_param_vals(p_vals)
# rotate crystal a bit (=2 mrad each rotation)
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
xlo_param.set_param_vals(p_vals)
reflection_predictor = LaueReflectionPredictor(experiments[0], 1.0)
obs_refs = reflection_predictor.all_reflections_for_asu(0.0)
# Set 'observed' centroids from the predicted ones
obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
obs_refs["s0"] = obs_refs["s0_cal"]
obs_refs["wavelength"] = obs_refs["wavelength_cal"]
obs_refs["id"] = flex.int(len(obs_refs), 0)
# Invent some variances for the centroid positions of the simulated data
px_size = detector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
var_z = flex.double(len(obs_refs), 0.0)
obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_z)
# Undo known parameter shifts
det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
refman = LaueReflectionManager(obs_refs, experiments, outlier_detector=None)
refman.finalise()
# Redefine the reflection predictor to use the type expected by the Target class
ref_predictor = LaueExperimentsPredictor(experiments)
mytarget = LaueLeastSquaresResidualWithRmsdCutoff(
experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
)
# get the functional and gradients
mytarget.predict()
L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()
# test normalised differences between FD and analytical calculations
fdgrads = get_fd_gradients(mytarget, pred_param, [1.0e-7] * len(pred_param))
diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
for e in norm_diffs:
assert abs(e) < 0.002 # check differences less than 0.2%
# test normalised differences between FD curvatures and analytical least
# squares approximation. We don't expect this to be especially close
if curvs:
diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
for e in norm_diffs:
assert abs(e) < 0.1 # check differences less than 10%
mytarget = TOFLeastSquaresResidualWithRmsdCutoff(
experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
)
# get the functional and gradients
mytarget.predict()
L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()
# test normalised differences between FD and analytical calculations
fdgrads = get_fd_gradients(mytarget, pred_param, [1.0e-7] * len(pred_param))
diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
for e in norm_diffs:
assert abs(e) < 0.002 # check differences less than 0.2%
# test normalised differences between FD curvatures and analytical least
# squares approximation. We don't expect this to be especially close
if curvs:
diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
for e in norm_diffs:
assert abs(e) < 0.1 # check differences less than 10%
|