1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
"""
Test refinement of beam, detector and crystal orientation parameters using
generated reflection positions from ideal geometry, repeating tests with both a
single panel detector, and a geometrically identical 3x3 panel detector,
ensuring the results are the same.
"""
from __future__ import annotations
from collections import namedtuple
from math import pi
import pytest
from cctbx.sgtbx import space_group, space_group_symbols
from cctbx.uctbx import unit_cell
from dxtbx.model import Detector, Panel, ScanFactory
from dxtbx.model.experiment_list import Experiment, ExperimentList
from libtbx.phil import parse
from libtbx.test_utils import approx_equal
from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
from scitbx import matrix
from dials.algorithms.refinement.parameterisation.beam_parameters import (
BeamParameterisation,
)
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
CrystalOrientationParameterisation,
CrystalUnitCellParameterisation,
)
from dials.algorithms.refinement.parameterisation.detector_parameters import (
DetectorParameterisationMultiPanel,
DetectorParameterisationSinglePanel,
PyDetectorParameterisationMultiPanel,
)
from dials.algorithms.refinement.parameterisation.prediction_parameters import (
XYPhiPredictionParameterisation,
)
from dials.algorithms.refinement.prediction.managed_predictors import (
ScansExperimentsPredictor,
ScansRayPredictor,
)
from dials.algorithms.refinement.reflection_manager import ReflectionManager
from dials.algorithms.refinement.target import (
LeastSquaresPositionalResidualWithRmsdCutoff,
)
from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
from dials.array_family import flex
from . import geometry_phil, minimiser_phil, setup_geometry, setup_minimiser
def make_panel_in_array(array_elt, reference_panel):
"""Helper function to make a panel in a coplanar array with each panel size
1/3 that of a reference panel"""
px_size = tuple((e / 3.0) for e in reference_panel.get_pixel_size())
ref_panel_size = reference_panel.get_image_size_mm()
x_shift = array_elt[0] * ref_panel_size[0] / 3.0
y_shift = array_elt[1] * ref_panel_size[1] / 3.0
origin = (
matrix.col(reference_panel.get_origin())
+ x_shift * matrix.col(reference_panel.get_fast_axis())
+ y_shift * matrix.col(reference_panel.get_slow_axis())
)
return Panel(
type="PAD",
name="Panel",
fast_axis=reference_panel.get_fast_axis(),
slow_axis=reference_panel.get_slow_axis(),
origin=origin,
pixel_size=px_size,
image_size=reference_panel.get_image_size(),
trusted_range=(0, 1.0e6),
thickness=0.0,
material="",
)
# Setup experimental models
master_phil = parse(
f"""
{geometry_phil}
{minimiser_phil}
"""
)
@pytest.fixture(scope="session")
def init_test():
models = setup_geometry.Extract(master_phil)
single_panel_detector = models.detector
gonio = models.goniometer
crystal = models.crystal
beam = models.beam
# Make a 3x3 multi panel detector filling the same space as the existing
# single panel detector. Each panel of the multi-panel detector has pixels
# with 1/3 the length dimensions of the single panel.
multi_panel_detector = Detector()
for x in range(3):
for y in range(3):
new_panel = make_panel_in_array((x, y), single_panel_detector[0])
multi_panel_detector.add_panel(new_panel)
# Build a mock scan for a 180 degree sequence
sf = ScanFactory()
scan = sf.make_scan(
image_range=(1, 1800),
exposure_times=0.1,
oscillation=(0, 0.1),
epochs=list(range(1800)),
deg=True,
)
sequence_range = scan.get_oscillation_range(deg=False)
im_width = scan.get_oscillation(deg=False)[1]
assert sequence_range == (0.0, pi)
assert approx_equal(im_width, 0.1 * pi / 180.0)
# Build ExperimentLists
experiments_single_panel = ExperimentList()
experiments_multi_panel = ExperimentList()
experiments_single_panel.append(
Experiment(
beam=beam,
detector=single_panel_detector,
goniometer=gonio,
scan=scan,
crystal=crystal,
imageset=None,
)
)
experiments_multi_panel.append(
Experiment(
beam=beam,
detector=multi_panel_detector,
goniometer=gonio,
scan=scan,
crystal=crystal,
imageset=None,
)
)
# Generate some reflections
# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(
crystal.get_unit_cell(),
space_group(space_group_symbols(1).hall()).type(),
resolution,
)
indices = index_generator.to_array()
# for the reflection predictor, it doesn't matter which experiment list is
# passed, as the detector is not used
ref_predictor = ScansRayPredictor(
experiments_single_panel, scan.get_oscillation_range(deg=False)
)
# get two sets of identical reflections
obs_refs_single = ref_predictor(indices)
obs_refs_multi = ref_predictor(indices)
for r1, r2 in zip(obs_refs_single.rows(), obs_refs_multi.rows()):
assert r1["s1"] == r2["s1"]
# get the panel intersections
sel = ray_intersection(single_panel_detector, obs_refs_single)
obs_refs_single = obs_refs_single.select(sel)
sel = ray_intersection(multi_panel_detector, obs_refs_multi)
obs_refs_multi = obs_refs_multi.select(sel)
assert len(obs_refs_single) == len(obs_refs_multi)
# Set 'observed' centroids from the predicted ones
obs_refs_single["xyzobs.mm.value"] = obs_refs_single["xyzcal.mm"]
obs_refs_multi["xyzobs.mm.value"] = obs_refs_multi["xyzcal.mm"]
# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.0
px_size = single_panel_detector[0].get_pixel_size()
var_x = flex.double(len(obs_refs_single), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs_single), (px_size[1] / 2.0) ** 2)
var_phi = flex.double(len(obs_refs_single), (im_width / 2.0) ** 2)
# set the variances and frame numbers
obs_refs_single["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
obs_refs_multi["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
# Add in flags and ID columns by copying into standard reflection tables
tmp = flex.reflection_table.empty_standard(len(obs_refs_single))
tmp.update(obs_refs_single)
obs_refs_single = tmp
tmp = flex.reflection_table.empty_standard(len(obs_refs_multi))
tmp.update(obs_refs_multi)
obs_refs_multi = tmp
test_data = namedtuple(
"test_data",
[
"experiments_single_panel",
"experiments_multi_panel",
"observations_single_panel",
"observations_multi_panel",
],
)
return test_data(
experiments_single_panel,
experiments_multi_panel,
obs_refs_single,
obs_refs_multi,
)
def test(init_test):
single_panel_detector = init_test.experiments_single_panel.detectors()[0]
multi_panel_detector = init_test.experiments_multi_panel.detectors()[0]
beam = init_test.experiments_single_panel.beams()[0]
gonio = init_test.experiments_single_panel.goniometers()[0]
crystal = init_test.experiments_single_panel.crystals()[0]
# Parameterise the models
det_param = DetectorParameterisationSinglePanel(single_panel_detector)
s0_param = BeamParameterisation(beam, gonio)
xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)
multi_det_param = DetectorParameterisationMultiPanel(multi_panel_detector, beam)
# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])
# Link model parameterisations together into a parameterisation of the
# prediction equation, first for the single panel detector
pred_param = XYPhiPredictionParameterisation(
init_test.experiments_single_panel,
[det_param],
[s0_param],
[xlo_param],
[xluc_param],
)
# ... and now for the multi-panel detector
pred_param2 = XYPhiPredictionParameterisation(
init_test.experiments_multi_panel,
[multi_det_param],
[s0_param],
[xlo_param],
[xluc_param],
)
################################
# Apply known parameter shifts #
################################
# shift detectors by 1.0 mm each translation and 2 mrad each rotation
det_p_vals = det_param.get_param_vals()
p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
det_param.set_param_vals(p_vals)
multi_det_p_vals = multi_det_param.get_param_vals()
p_vals = [a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
multi_det_param.set_param_vals(p_vals)
# shift beam by 2 mrad in free axis
s0_p_vals = s0_param.get_param_vals()
p_vals = list(s0_p_vals)
p_vals[0] += 2.0
s0_param.set_param_vals(p_vals)
# rotate crystal a bit (=2 mrad each rotation)
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
xlo_param.set_param_vals(p_vals)
# change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
# gamma angle)
xluc_p_vals = xluc_param.get_param_vals()
cell_params = crystal.get_unit_cell().parameters()
cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
new_uc = unit_cell(cell_params)
newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
S = symmetrize_reduce_enlarge(crystal.get_space_group())
S.set_orientation(orientation=newB)
X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
xluc_param.set_param_vals(X)
###############################
# Undo known parameter shifts #
###############################
s0_param.set_param_vals(s0_p_vals)
det_param.set_param_vals(det_p_vals)
multi_det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
xluc_param.set_param_vals(xluc_p_vals)
#####################################
# Select reflections for refinement #
#####################################
refman = ReflectionManager(
init_test.observations_single_panel, init_test.experiments_single_panel
)
refman2 = ReflectionManager(
init_test.observations_multi_panel, init_test.experiments_multi_panel
)
###############################
# Set up the target functions #
###############################
target = LeastSquaresPositionalResidualWithRmsdCutoff(
init_test.experiments_single_panel,
ScansExperimentsPredictor(init_test.experiments_single_panel),
refman,
pred_param,
restraints_parameterisation=None,
)
target2 = LeastSquaresPositionalResidualWithRmsdCutoff(
init_test.experiments_multi_panel,
ScansExperimentsPredictor(init_test.experiments_multi_panel),
refman2,
pred_param2,
restraints_parameterisation=None,
)
#################################
# Set up the refinement engines #
#################################
refiner = setup_minimiser.Extract(master_phil, target, pred_param).refiner
refiner2 = setup_minimiser.Extract(master_phil, target2, pred_param2).refiner
refiner.run()
# reset parameters and run refinement with the multi panel detector
s0_param.set_param_vals(s0_p_vals)
multi_det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
xluc_param.set_param_vals(xluc_p_vals)
refiner2.run()
# same number of steps
assert refiner.get_num_steps() == refiner2.get_num_steps()
# same rmsds
for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
assert approx_equal(rmsd, rmsd2)
# same parameter values each step
for params, params2 in zip(
refiner.history["parameter_vector"], refiner.history["parameter_vector"]
):
assert approx_equal(params, params2)
def test_equivalence_of_python_and_cpp_multipanel_algorithms(init_test):
multi_panel_detector = init_test.experiments_multi_panel.detectors()[0]
beam = init_test.experiments_single_panel.beams()[0]
# Parameterise the models
det_param1 = DetectorParameterisationMultiPanel(multi_panel_detector, beam)
det_param2 = PyDetectorParameterisationMultiPanel(multi_panel_detector, beam)
# shift detectors by 1.0 mm each translation and 2 mrad each rotation
for dp in [det_param1, det_param2]:
p_vals = dp.get_param_vals()
p_vals = [a + b for a, b in zip(p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
dp.set_param_vals(p_vals)
dp.compose()
for pnl in range(3):
derivatives1 = det_param1.get_ds_dp(multi_state_elt=pnl)
derivatives2 = det_param2.get_ds_dp(multi_state_elt=pnl)
for a, b in zip(derivatives1, derivatives2):
for i, j in zip(a, b):
assert i == pytest.approx(j)
|