1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
"""
Test refinement of beam, detector and crystal orientation parameters
using generated reflection positions from ideal geometry.
Control of the experimental model and choice of minimiser is done via
PHIL, which means we can do, for example:
cctbx.python tst_orientation_refinement.py \
"random_seed=3; engine=LBFGScurvs"
"""
from __future__ import annotations
import sys
from math import pi
from os.path import join
from cctbx.sgtbx import space_group, space_group_symbols
# Symmetry constrained parameterisation for the unit cell
from cctbx.uctbx import unit_cell
from dxtbx.format.FormatISISSXD import FormatISISSXD
# We will set up a mock scan and a mock experiment list
from dxtbx.model import CrystalFactory, ScanFactory
from dxtbx.model.experiment_list import Experiment, ExperimentList
from libtbx.phil import parse
from libtbx.test_utils import approx_equal
from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
from scitbx import matrix
from scitbx.array_family import flex
from dials.algorithms.refinement.parameterisation.beam_parameters import (
BeamParameterisation,
)
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
CrystalOrientationParameterisation,
CrystalUnitCellParameterisation,
)
# Model parameterisations
from dials.algorithms.refinement.parameterisation.detector_parameters import (
DetectorParameterisationHierarchical,
DetectorParameterisationSinglePanel,
)
from dials.algorithms.refinement.parameterisation.parameter_report import (
ParameterReporter,
)
# Parameterisation of the prediction equation
from dials.algorithms.refinement.parameterisation.prediction_parameters import (
LauePredictionParameterisation,
XYPhiPredictionParameterisation,
)
from dials.algorithms.refinement.prediction.managed_predictors import (
LaueExperimentsPredictor,
ScansExperimentsPredictor,
ScansRayPredictor,
)
from dials.algorithms.refinement.refiner import Refiner, RefinerFactory
from dials.algorithms.refinement.reflection_manager import (
LaueReflectionManager,
ReflectionManager,
)
# Imports for the target function
from dials.algorithms.refinement.target import (
LaueLeastSquaresResidualWithRmsdCutoff,
LeastSquaresPositionalResidualWithRmsdCutoff,
)
# Reflection prediction
from dials.algorithms.spot_prediction import (
IndexGenerator,
LaueReflectionPredictor,
ray_intersection,
)
from dials.command_line.refine import phil_scope
# Get modules to build models and minimiser using PHIL
from . import geometry_phil, minimiser_phil, setup_geometry, setup_minimiser
def test(args=[]):
#############################
# Setup experimental models #
#############################
master_phil = parse(f"{geometry_phil}\n{minimiser_phil}")
models = setup_geometry.Extract(master_phil, cmdline_args=args)
mydetector = models.detector
mygonio = models.goniometer
mycrystal = models.crystal
mybeam = models.beam
# Build a mock scan for a 180 degree sequence
sf = ScanFactory()
myscan = sf.make_scan(
image_range=(1, 1800),
exposure_times=0.1,
oscillation=(0, 0.1),
epochs=list(range(1800)),
deg=True,
)
sequence_range = myscan.get_oscillation_range(deg=False)
im_width = myscan.get_oscillation(deg=False)[1]
assert sequence_range == (0.0, pi)
assert approx_equal(im_width, 0.1 * pi / 180.0)
# Build an experiment list
experiments = ExperimentList()
experiments.append(
Experiment(
beam=mybeam,
detector=mydetector,
goniometer=mygonio,
scan=myscan,
crystal=mycrystal,
imageset=None,
)
)
###########################
# Parameterise the models #
###########################
det_param = DetectorParameterisationSinglePanel(mydetector)
s0_param = BeamParameterisation(mybeam, mygonio)
xlo_param = CrystalOrientationParameterisation(mycrystal)
xluc_param = CrystalUnitCellParameterisation(mycrystal)
# Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
s0_param.set_fixed([True, False, True])
# Fix crystal parameters
# xluc_param.set_fixed([True, True, True, True, True, True])
########################################################################
# Link model parameterisations together into a parameterisation of the #
# prediction equation #
########################################################################
pred_param = XYPhiPredictionParameterisation(
experiments, [det_param], [s0_param], [xlo_param], [xluc_param]
)
################################
# Apply known parameter shifts #
################################
# shift detector by 1.0 mm each translation and 2 mrad each rotation
det_p_vals = det_param.get_param_vals()
p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
det_param.set_param_vals(p_vals)
# shift beam by 2 mrad in free axis
s0_p_vals = s0_param.get_param_vals()
p_vals = list(s0_p_vals)
p_vals[0] += 2.0
s0_param.set_param_vals(p_vals)
# rotate crystal a bit (=2 mrad each rotation)
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
xlo_param.set_param_vals(p_vals)
# change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
# gamma angle)
xluc_p_vals = xluc_param.get_param_vals()
cell_params = mycrystal.get_unit_cell().parameters()
cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
new_uc = unit_cell(cell_params)
newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
S.set_orientation(orientation=newB)
X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
xluc_param.set_param_vals(X)
#############################
# Generate some reflections #
#############################
print("Reflections will be generated with the following geometry:")
print(mybeam)
print(mydetector)
print(mycrystal)
print("Target values of parameters are")
msg = "Parameters: " + "%.5f " * len(pred_param)
print(msg % tuple(pred_param.get_param_vals()))
print()
# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(
mycrystal.get_unit_cell(),
space_group(space_group_symbols(1).hall()).type(),
resolution,
)
indices = index_generator.to_array()
# Predict rays within the sequence range
ray_predictor = ScansRayPredictor(experiments, sequence_range)
obs_refs = ray_predictor(indices)
print("Total number of reflections excited", len(obs_refs))
# Take only those rays that intersect the detector
intersects = ray_intersection(mydetector, obs_refs)
obs_refs = obs_refs.select(intersects)
# Make a reflection predictor and re-predict for all these reflections. The
# result is the same, but we gain also the flags and xyzcal.px columns
ref_predictor = ScansExperimentsPredictor(experiments)
obs_refs["id"] = flex.int(len(obs_refs), 0)
obs_refs = ref_predictor(obs_refs)
# Set 'observed' centroids from the predicted ones
obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.0
px_size = mydetector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
print("Total number of observations made", len(obs_refs))
###############################
# Undo known parameter shifts #
###############################
s0_param.set_param_vals(s0_p_vals)
det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
xluc_param.set_param_vals(xluc_p_vals)
print("Initial values of parameters are")
msg = "Parameters: " + "%.5f " * len(pred_param)
print(msg % tuple(pred_param.get_param_vals()))
print()
#####################################
# Select reflections for refinement #
#####################################
refman = ReflectionManager(obs_refs, experiments)
##############################
# Set up the target function #
##############################
# The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
# 1/3 the image width in radians. For the simulated data, these are just made up
mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
)
################################
# Set up the refinement engine #
################################
refiner = setup_minimiser.Extract(
master_phil, mytarget, pred_param, cmdline_args=args
).refiner
print("Prior to refinement the experimental model is:")
print(mybeam)
print(mydetector)
print(mycrystal)
refiner.run()
print()
print("Refinement has completed with the following geometry:")
print(mybeam)
print(mydetector)
print(mycrystal)
def test_laue_refinement(dials_data):
fmt = FormatISISSXD(
join(dials_data("isis_sxd_example_data", pathlib=True), "sxd_nacl_run.nxs")
)
beam = fmt.get_beam()
detector = fmt.get_detector()
goniometer = fmt.get_goniometer()
scan = fmt.get_scan()
crystal = CrystalFactory.from_dict(
{
"__id__": "crystal",
"real_space_a": (
0.5681647125795644,
-2.9735716012061135,
-2.707784412005687,
),
"real_space_b": (
-2.4994848902125884,
-2.3900344014694066,
2.091613643314567,
),
"real_space_c": (
-1.2771711635863638,
3.676428861690809,
-1.226011051463438,
),
"space_group_hall_symbol": " P 1",
"B_covariance": (
2.618491627225783e-13,
-2.4190170785778272e-30,
2.7961382012436816e-30,
1.4283218313839273e-13,
8.110824693143866e-15,
2.7961382012436816e-30,
-1.922218398881239e-13,
-1.1641948761717081e-14,
2.2832201114561855e-14,
-2.419017078577827e-30,
1.3543505986455804e-44,
-8.081590630292518e-46,
-4.202632560757537e-29,
-5.437640708903305e-29,
-8.081590630292518e-46,
3.330706229067803e-30,
5.621471188408899e-29,
-6.599119546892406e-30,
2.7961382012436816e-30,
-8.08159063029252e-46,
9.550033948814972e-46,
5.487666450546843e-30,
2.7096475027184553e-30,
9.550033948814972e-46,
-3.935814660390771e-30,
-3.889472044173952e-30,
7.798194512461942e-30,
1.428321831383927e-13,
-4.2026325607575364e-29,
5.487666450546843e-30,
7.789867544667339e-13,
1.4101250207277487e-13,
5.487666450546843e-30,
-2.0005409484272627e-13,
-2.021584892435437e-13,
4.481019714719027e-14,
8.110824693143867e-15,
-5.437640708903304e-29,
2.7096475027184553e-30,
1.4101250207277487e-13,
2.5553690436147e-13,
2.7096475027184553e-30,
-1.1167612085554417e-14,
-1.8848015530742402e-13,
2.2125950964841596e-14,
2.7961382012436816e-30,
-8.08159063029252e-46,
9.550033948814972e-46,
5.487666450546843e-30,
2.7096475027184553e-30,
9.550033948814972e-46,
-3.935814660390771e-30,
-3.889472044173952e-30,
7.798194512461942e-30,
-1.922218398881239e-13,
3.330706229067804e-30,
-3.93581466039077e-30,
-2.000540948427263e-13,
-1.1167612085554417e-14,
-3.93581466039077e-30,
2.7092227778026175e-13,
1.6029668235488112e-14,
-3.2138365634328507e-14,
-1.1641948761717081e-14,
5.621471188408898e-29,
-3.889472044173952e-30,
-2.021584892435437e-13,
-1.88480155307424e-13,
-3.889472044173952e-30,
1.6029668235488112e-14,
2.7054780216756276e-13,
-3.175994945548343e-14,
2.2832201114561858e-14,
-6.599119546892407e-30,
7.79819451246194e-30,
4.4810197147190265e-14,
2.2125950964841592e-14,
7.79819451246194e-30,
-3.2138365634328507e-14,
-3.175994945548343e-14,
6.36770905528953e-14,
),
}
)
experiments = ExperimentList()
experiments.append(
Experiment(
beam=beam,
detector=detector,
goniometer=goniometer,
scan=scan,
crystal=crystal,
imageset=None,
)
)
det_param = DetectorParameterisationHierarchical(detector)
xlo_param = CrystalOrientationParameterisation(crystal)
xluc_param = CrystalUnitCellParameterisation(crystal)
pred_param = LauePredictionParameterisation(
experiments,
detector_parameterisations=[det_param],
beam_parameterisations=[],
xl_orientation_parameterisations=[xlo_param],
xl_unit_cell_parameterisations=[xluc_param],
)
# shift detector by 0.2 mm each translation and 2 mrad each rotation
det_p_vals = det_param.get_param_vals()
p_vals = [a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])]
det_param.set_param_vals(p_vals)
# rotate crystal a bit (=2 mrad each rotation)
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
xlo_param.set_param_vals(p_vals)
reflection_predictor = LaueReflectionPredictor(experiments[0], 1.0)
obs_refs = reflection_predictor.all_reflections_for_asu(0.0)
# Set 'observed' centroids from the predicted ones
obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
obs_refs["s0"] = obs_refs["s0_cal"]
obs_refs["wavelength"] = obs_refs["wavelength_cal"]
obs_refs["id"] = flex.int(len(obs_refs), 0)
# Invent some variances for the centroid positions of the simulated data
px_size = detector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
var_z = flex.double(len(obs_refs), 0.0)
obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_z)
# Undo known parameter shifts
det_param.set_param_vals(det_p_vals)
xlo_param.set_param_vals(xlo_p_vals)
refman = LaueReflectionManager(obs_refs, experiments, outlier_detector=None)
# Redefine the reflection predictor to use the type expected by the Target class
ref_predictor = LaueExperimentsPredictor(experiments)
target = LaueLeastSquaresResidualWithRmsdCutoff(
experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
)
params = phil_scope.extract()
param_reporter = ParameterReporter(
pred_param.get_detector_parameterisations(),
pred_param.get_beam_parameterisations(),
pred_param.get_crystal_orientation_parameterisations(),
pred_param.get_crystal_unit_cell_parameterisations(),
pred_param.get_goniometer_parameterisations(),
)
refinery = RefinerFactory.config_refinery(params, target, pred_param, None)
refiner = Refiner(experiments, pred_param, param_reporter, refman, target, refinery)
print("Prior to refinement the experimental model is:")
print(detector)
print(crystal)
refiner.run()
print()
print("Refinement has completed with the following geometry:")
print(detector)
print(crystal)
if __name__ == "__main__":
test(sys.argv[1:])
|