File: test_prediction_parameters.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (400 lines) | stat: -rw-r--r-- 13,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
from __future__ import annotations

import math
from os.path import join

import pytest

from cctbx.sgtbx import space_group, space_group_symbols
from dxtbx.format.FormatISISSXD import FormatISISSXD
from dxtbx.model import CrystalFactory
from dxtbx.model.experiment_list import Experiment, ExperimentList
from libtbx.phil import parse
from scitbx.array_family import flex

from dials.algorithms.refinement.parameterisation.beam_parameters import (
    BeamParameterisation,
)
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
    CrystalOrientationParameterisation,
    CrystalUnitCellParameterisation,
)
from dials.algorithms.refinement.parameterisation.detector_parameters import (
    DetectorParameterisationHierarchical,
    DetectorParameterisationSinglePanel,
)
from dials.algorithms.refinement.parameterisation.goniometer_parameters import (
    GoniometerParameterisation,
)
from dials.algorithms.refinement.parameterisation.prediction_parameters import (
    LauePredictionParameterisation,
    XYPhiPredictionParameterisation,
)
from dials.algorithms.refinement.prediction.managed_predictors import (
    LaueExperimentsPredictor,
    ScansExperimentsPredictor,
    ScansRayPredictor,
)
from dials.algorithms.refinement.reflection_manager import LaueReflectionManager
from dials.algorithms.spot_prediction import (
    IndexGenerator,
    LaueReflectionPredictor,
    ray_intersection,
)

from . import geometry_phil
from .setup_geometry import Extract


def test():
    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(geometry_phil)

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    sequence_range = (0.0, math.pi / 5.0)
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    #### Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)
    gon_param = GoniometerParameterisation(mygonio, mybeam)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        )
    )

    #### Unit tests

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
        goniometer_parameterisations=[gon_param],
    )

    # Generate reflections
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * math.pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # use a ReflectionManager to exclude reflections too close to the spindle
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    refman = ReflectionManager(obs_refs, experiments, outlier_detector=None)
    refman.finalise()

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = ScansExperimentsPredictor(experiments)

    # keep only those reflections that pass inclusion criteria and have predictions
    reflections = refman.get_matches()

    # get analytical gradients
    an_grads = pred_param.get_gradients(reflections)

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        rev_state = reflections["xyzcal.mm"].deep_copy()

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        fwd_state = reflections["xyzcal.mm"].deep_copy()
        p_vals[i] = val

        fd = fwd_state - rev_state
        x_grads, y_grads, phi_grads = fd.parts()
        x_grads /= delta
        y_grads /= delta
        phi_grads /= delta

        # compare with analytical calculation
        assert x_grads == pytest.approx(an_grads[i]["dX_dp"], abs=5.0e-6)
        assert y_grads == pytest.approx(an_grads[i]["dY_dp"], abs=5.5e-6)
        assert phi_grads == pytest.approx(an_grads[i]["dphi_dp"], abs=5.0e-6)

    # return to the initial state
    pred_param.set_param_vals(p_vals)


def test_laue_prediction_parameters(dials_data):
    fmt = FormatISISSXD(
        join(dials_data("isis_sxd_example_data", pathlib=True), "sxd_nacl_run.nxs")
    )
    beam = fmt.get_beam()
    detector = fmt.get_detector()
    goniometer = fmt.get_goniometer()
    scan = fmt.get_scan()
    crystal = CrystalFactory.from_dict(
        {
            "__id__": "crystal",
            "real_space_a": (
                0.5681647125795644,
                -2.9735716012061135,
                -2.707784412005687,
            ),
            "real_space_b": (
                -2.4994848902125884,
                -2.3900344014694066,
                2.091613643314567,
            ),
            "real_space_c": (
                -1.2771711635863638,
                3.676428861690809,
                -1.226011051463438,
            ),
            "space_group_hall_symbol": " P 1",
            "B_covariance": (
                2.618491627225783e-13,
                -2.4190170785778272e-30,
                2.7961382012436816e-30,
                1.4283218313839273e-13,
                8.110824693143866e-15,
                2.7961382012436816e-30,
                -1.922218398881239e-13,
                -1.1641948761717081e-14,
                2.2832201114561855e-14,
                -2.419017078577827e-30,
                1.3543505986455804e-44,
                -8.081590630292518e-46,
                -4.202632560757537e-29,
                -5.437640708903305e-29,
                -8.081590630292518e-46,
                3.330706229067803e-30,
                5.621471188408899e-29,
                -6.599119546892406e-30,
                2.7961382012436816e-30,
                -8.08159063029252e-46,
                9.550033948814972e-46,
                5.487666450546843e-30,
                2.7096475027184553e-30,
                9.550033948814972e-46,
                -3.935814660390771e-30,
                -3.889472044173952e-30,
                7.798194512461942e-30,
                1.428321831383927e-13,
                -4.2026325607575364e-29,
                5.487666450546843e-30,
                7.789867544667339e-13,
                1.4101250207277487e-13,
                5.487666450546843e-30,
                -2.0005409484272627e-13,
                -2.021584892435437e-13,
                4.481019714719027e-14,
                8.110824693143867e-15,
                -5.437640708903304e-29,
                2.7096475027184553e-30,
                1.4101250207277487e-13,
                2.5553690436147e-13,
                2.7096475027184553e-30,
                -1.1167612085554417e-14,
                -1.8848015530742402e-13,
                2.2125950964841596e-14,
                2.7961382012436816e-30,
                -8.08159063029252e-46,
                9.550033948814972e-46,
                5.487666450546843e-30,
                2.7096475027184553e-30,
                9.550033948814972e-46,
                -3.935814660390771e-30,
                -3.889472044173952e-30,
                7.798194512461942e-30,
                -1.922218398881239e-13,
                3.330706229067804e-30,
                -3.93581466039077e-30,
                -2.000540948427263e-13,
                -1.1167612085554417e-14,
                -3.93581466039077e-30,
                2.7092227778026175e-13,
                1.6029668235488112e-14,
                -3.2138365634328507e-14,
                -1.1641948761717081e-14,
                5.621471188408898e-29,
                -3.889472044173952e-30,
                -2.021584892435437e-13,
                -1.88480155307424e-13,
                -3.889472044173952e-30,
                1.6029668235488112e-14,
                2.7054780216756276e-13,
                -3.175994945548343e-14,
                2.2832201114561858e-14,
                -6.599119546892407e-30,
                7.79819451246194e-30,
                4.4810197147190265e-14,
                2.2125950964841592e-14,
                7.79819451246194e-30,
                -3.2138365634328507e-14,
                -3.175994945548343e-14,
                6.36770905528953e-14,
            ),
        }
    )

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )

    det_param = DetectorParameterisationHierarchical(detector)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    pred_param = LauePredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    reflection_predictor = LaueReflectionPredictor(experiments[0], 1.0)
    obs_refs = reflection_predictor.all_reflections_for_asu(0.0)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
    obs_refs["s0"] = obs_refs["s0_cal"]
    obs_refs["wavelength"] = obs_refs["wavelength_cal"]
    obs_refs["id"] = flex.int(len(obs_refs), 0)

    # Invent some variances for the centroid positions of the simulated data
    px_size = detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
    var_z = flex.double(len(obs_refs), 0.0)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_z)

    # use a ReflectionManager to exclude reflections too close to the spindle

    refman = LaueReflectionManager(obs_refs, experiments, outlier_detector=None)
    refman.finalise()

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = LaueExperimentsPredictor(experiments)

    # keep only those reflections that pass inclusion criteria and have predictions
    reflections = refman.get_matches()

    # get analytical gradients
    an_grads = pred_param.get_gradients(reflections)

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        rev_state = reflections["xyzcal.mm"].deep_copy()
        rev_wavelengths = reflections["wavelength_cal"].deep_copy()

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        fwd_state = reflections["xyzcal.mm"].deep_copy()
        fwd_wavelengths = reflections["wavelength_cal"].deep_copy()
        p_vals[i] = val

        fd = fwd_state - rev_state
        wavelength_grads = fwd_wavelengths - rev_wavelengths
        x_grads, y_grads, _ = fd.parts()
        x_grads /= delta
        y_grads /= delta
        wavelength_grads /= delta

        # compare with analytical calculation
        assert x_grads == pytest.approx(an_grads[i]["dX_dp"], abs=5.0e-5)
        assert y_grads == pytest.approx(an_grads[i]["dY_dp"], abs=5.0e-5)
        assert wavelength_grads == pytest.approx(
            an_grads[i]["dwavelength_dp"], abs=5.0e-7
        )

    # return to the initial state
    pred_param.set_param_vals(p_vals)