File: test_restraints_parameterisation.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (485 lines) | stat: -rw-r--r-- 14,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""Tests for RestraintsParameterisation and associated classes used in refinement"""

from __future__ import annotations

import random

import pytest

from dxtbx.model.experiment_list import ExperimentListFactory
from libtbx.phil import parse

from dials.algorithms.refinement import RefinerFactory
from dials.algorithms.refinement.restraints import RestraintsParameterisation
from dials.array_family import flex


def test_single_crystal_restraints_gradients():
    """Simple test with a single triclinic crystal restrained to a target unit cell"""

    from dxtbx.model.experiment_list import Experiment, ExperimentList

    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel,
    )
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation,
    )

    from . import geometry_phil
    from .setup_geometry import Extract

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(geometry_phil)

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        )
    )

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Build a restraints parameterisation
    rp = RestraintsParameterisation(
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # make a unit cell target
    sigma = 1.0
    uc = mycrystal.get_unit_cell().parameters()
    target_uc = [random.gauss(e, sigma) for e in uc]

    rp.add_restraints_to_target_xl_unit_cell(
        experiment_id=0, values=target_uc, sigma=[sigma] * 6
    )

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to a column of the sparse matrix grads.
    for i, fd in enumerate(fd_grad):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()

        assert an == pytest.approx(fd, abs=1e-5)


def test_two_triclinic_crystals():
    """Simple test with two triclinic crystals restrained to a target unit cell"""

    from dxtbx.model.experiment_list import Experiment, ExperimentList

    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel,
    )

    #### Import model parameterisations
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation,
    )

    from . import geometry_phil
    from .setup_geometry import Extract

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(geometry_phil)

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    # duplicate the crystal
    from copy import deepcopy

    mycrystal2 = deepcopy(mycrystal)
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)
    xluc_param2 = CrystalUnitCellParameterisation(mycrystal2, experiment_ids=[1])

    # Create an ExperimentList with the crystal duplicated
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        )
    )
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal2,
            imageset=None,
        )
    )

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param, xluc_param2],
    )

    # Build a restraints parameterisation
    rp = RestraintsParameterisation(
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param, xluc_param2],
    )

    # make a unit cell target
    sigma = 1.0
    uc = mycrystal.get_unit_cell().parameters()
    target_uc = [random.gauss(e, sigma) for e in uc]

    rp.add_restraints_to_target_xl_unit_cell(
        experiment_id=0, values=target_uc, sigma=[sigma] * 6
    )
    rp.add_restraints_to_target_xl_unit_cell(
        experiment_id=1, values=target_uc, sigma=[sigma] * 6
    )

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to a column of the sparse matrix grads.
    for i, fd in enumerate(fd_grad):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()
        assert an == pytest.approx(fd, abs=1e-5)


def test_10_crystals_with_stills_parameterisation(dials_data):
    """Test with multiple crystals, and a stills refiner"""

    # The phil scope
    from dials.algorithms.refinement.refiner import phil_scope

    user_phil = parse(
        """
  refinement
  {
    parameterisation
    {
      crystal
      {
        unit_cell
        {
          restraints
          {
            tie_to_target
            {
              values=95,95,132,90,90,120
              sigmas=1,1,1,0,0,0
              id=0,1,2,3,4,5,6,7,8,9
            }
          }
        }
      }
    }
  }
  """
    )

    working_phil = phil_scope.fetch(source=user_phil)
    working_params = working_phil.extract()

    # use the multi stills test data
    data_dir = dials_data("refinement_test_data", pathlib=True)
    experiments_path = data_dir / "multi_stills_combined.json"
    pickle_path = data_dir / "multi_stills_combined.pickle"

    experiments = ExperimentListFactory.from_json_file(
        experiments_path, check_format=False
    )
    reflections = flex.reflection_table.from_file(pickle_path)

    refiner = RefinerFactory.from_parameters_data_experiments(
        working_params, reflections, experiments
    )

    # hack to extract the objects needed from the Refiner
    rp = refiner._target._restraints_parameterisation
    pred_param = refiner._pred_param

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to a column of the sparse matrix grads.
    pnames = pred_param.get_param_names()
    for i, (pname, fd) in enumerate(zip(pnames, fd_grad)):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()

        # print pname
        # print list(an.round(6))
        # print list(fd.round(6))
        # print
        assert an == pytest.approx(fd, abs=1e-5)


def test_group_restraint_with_multiple_crystals_and_a_stills_refiner(dials_data):
    # The phil scope
    from dials.algorithms.refinement.refiner import phil_scope

    user_phil = parse(
        """
  refinement
  {
    parameterisation
    {
      crystal
      {
        unit_cell
        {
          restraints
          {
            tie_to_group
            {
              sigmas=1,0,2,0,0,0
            }
          }
        }
      }
    }
  }
  """
    )

    working_phil = phil_scope.fetch(source=user_phil)
    working_params = working_phil.extract()

    # use the multi stills test data
    data_dir = dials_data("refinement_test_data", pathlib=True)
    experiments_path = data_dir / "multi_stills_combined.json"
    pickle_path = data_dir / "multi_stills_combined.pickle"

    experiments = ExperimentListFactory.from_json_file(
        experiments_path, check_format=False
    )
    reflections = flex.reflection_table.from_file(pickle_path)

    refiner = RefinerFactory.from_parameters_data_experiments(
        working_params, reflections, experiments
    )

    # hack to extract the objects needed from the Refiner
    rp = refiner._target._restraints_parameterisation
    pred_param = refiner._pred_param

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to the gradients of the residuals wrt to a single parameter.
    pnames = pred_param.get_param_names()
    for i, (pname, fd) in enumerate(zip(pnames, fd_grad)):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()

        # print pname
        # print list(an.round(6))
        # print list(fd.round(6))
        # print
        assert an == pytest.approx(fd, abs=1e-5)