File: test_stills_refinement.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (219 lines) | stat: -rw-r--r-- 7,575 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
A simple test of stills refinement using fake data.
Only the crystal is perturbed while the beam and detector are known.
"""

from __future__ import annotations


def test(args=[]):
    # Python and cctbx imports
    from math import pi

    from cctbx.sgtbx import space_group, space_group_symbols

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import Experiment, ExperimentList
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
    from scitbx import matrix

    # Crystal parameterisations
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        StillsExperimentsPredictor,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

    # Import for surgery on reflection_tables
    from dials.array_family import flex

    # Get module to build models using PHIL
    from . import geometry_phil, minimiser_phil, setup_geometry

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(f"{geometry_phil}\n{minimiser_phil}")

    # build models, with a larger crystal than default in order to get enough
    # reflections on the 'still' image
    param = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""
    models = setup_geometry.Extract(
        master_phil, cmdline_args=args, local_overrides=param
    )

    crystal = models.crystal
    mydetector = models.detector
    mygonio = models.goniometer
    mybeam = models.beam

    # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
    # the Ewald sphere
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 1.5),
        epochs=list(range(1)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert approx_equal(im_width, 1.5 * pi / 180.0)

    # Build experiment lists
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam, detector=mydetector, crystal=crystal, imageset=None)
    )
    scans_experiments = ExperimentList()
    scans_experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            crystal=crystal,
            goniometer=mygonio,
            scan=myscan,
            imageset=None,
        )
    )

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    ################################
    # Apply known parameter shifts #
    ################################

    # rotate crystal (=5 mrad each rotation)
    xlo_p_vals = []
    p_vals = xlo_param.get_param_vals()
    xlo_p_vals.append(p_vals)
    new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])]
    xlo_param.set_param_vals(new_p_vals)

    # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
    # gamma angle)
    xluc_p_vals = []
    p_vals = xluc_param.get_param_vals()
    xluc_p_vals.append(p_vals)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5])]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # keep track of the target crystal model to compare with refined
    from copy import deepcopy

    target_crystal = deepcopy(crystal)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere for crystal
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a ray predictor and predict rays close to the Ewald sphere by using
    # the narrow rotation scan
    ref_predictor = ScansRayPredictor(scans_experiments, sequence_range)
    obs_refs = ref_predictor(indices, experiment_id=0)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Add in flags and ID columns by copying into standard reflection table
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Re-predict using the stills reflection predictor
    stills_ref_predictor = StillsExperimentsPredictor(stills_experiments)
    obs_refs_stills = stills_ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"]

    ###############################
    # Undo known parameter shifts #
    ###############################

    xlo_param.set_param_vals(xlo_p_vals[0])
    xluc_param.set_param_vals(xluc_p_vals[0])

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope

    params = phil_scope.fetch(source=parse("")).extract()

    # Change this to get a plot
    do_plot = False
    if do_plot:
        params.refinement.refinery.journal.track_parameter_correlation = True

    from dials.algorithms.refinement.refiner import RefinerFactory

    # decrease bin_size_fraction to terminate on RMSD convergence
    params.refinement.target.bin_size_fraction = 0.01
    params.refinement.parameterisation.beam.fix = "all"
    params.refinement.parameterisation.detector.fix = "all"
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs_stills, stills_experiments
    )

    # run refinement
    history = refiner.run()

    # regression tests
    assert len(history["rmsd"]) == 9

    refined_crystal = refiner.get_experiments()[0].crystal
    uc1 = refined_crystal.get_unit_cell()
    uc2 = target_crystal.get_unit_cell()
    assert uc1.is_similar_to(uc2)

    if do_plot:
        plt = refiner.parameter_correlation_plot(
            len(history["parameter_correlation"]) - 1
        )
        plt.show()