1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
"""
Test refinement of a crystal unit cell using a two theta target.
"""
from __future__ import annotations
from copy import deepcopy
from math import pi
from dxtbx.model.experiment_list import Experiment, ExperimentList
from libtbx.test_utils import approx_equal
from dials.algorithms.refinement.two_theta_refiner import (
TwoThetaExperimentsPredictor,
TwoThetaPredictionParameterisation,
TwoThetaReflectionManager,
TwoThetaTarget,
)
def generate_reflections(experiments):
from cctbx.sgtbx import space_group, space_group_symbols
from scitbx.array_family import flex
from dials.algorithms.refinement.prediction.managed_predictors import (
ScansExperimentsPredictor,
ScansRayPredictor,
)
from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
detector = experiments[0].detector
crystal = experiments[0].crystal
# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(
crystal.get_unit_cell(),
space_group(space_group_symbols(1).hall()).type(),
resolution,
)
indices = index_generator.to_array()
# Predict rays within the sequence range
scan = experiments[0].scan
sequence_range = scan.get_oscillation_range(deg=False)
ray_predictor = ScansRayPredictor(experiments, sequence_range)
obs_refs = ray_predictor(indices)
# Take only those rays that intersect the detector
intersects = ray_intersection(detector, obs_refs)
obs_refs = obs_refs.select(intersects)
# Make a reflection predictor and re-predict for all these reflections. The
# result is the same, but we gain also the flags and xyzcal.px columns
ref_predictor = ScansExperimentsPredictor(experiments)
obs_refs["id"] = flex.int(len(obs_refs), 0)
obs_refs = ref_predictor(obs_refs)
# Set 'observed' centroids from the predicted ones
obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.0
px_size = detector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
return obs_refs, ref_predictor
def test_fd_derivatives():
"""Test derivatives of the prediction equation"""
from libtbx.phil import parse
from . import geometry_phil
# Import model builder
from .setup_geometry import Extract
# Create models
overrides = """geometry.parameters.crystal.a.length.range = 10 50
geometry.parameters.crystal.b.length.range = 10 50
geometry.parameters.crystal.c.length.range = 10 50"""
master_phil = parse(geometry_phil)
models = Extract(master_phil, overrides)
mydetector = models.detector
mygonio = models.goniometer
mycrystal = models.crystal
mybeam = models.beam
# Build a mock scan for a 72 degree sequence
from dxtbx.model import ScanFactory
sf = ScanFactory()
myscan = sf.make_scan(
image_range=(1, 720),
exposure_times=0.1,
oscillation=(0, 0.1),
epochs=list(range(720)),
deg=True,
)
# Create a parameterisation of the crystal unit cell
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
CrystalUnitCellParameterisation,
)
xluc_param = CrystalUnitCellParameterisation(mycrystal)
# Create an ExperimentList
experiments = ExperimentList()
experiments.append(
Experiment(
beam=mybeam,
detector=mydetector,
goniometer=mygonio,
scan=myscan,
crystal=mycrystal,
imageset=None,
)
)
# Build a prediction parameterisation for two theta prediction
pred_param = TwoThetaPredictionParameterisation(
experiments,
detector_parameterisations=None,
beam_parameterisations=None,
xl_orientation_parameterisations=None,
xl_unit_cell_parameterisations=[xluc_param],
)
# Generate some reflections
obs_refs, ref_predictor = generate_reflections(experiments)
# Build a ReflectionManager with overloads for handling 2theta residuals
refman = TwoThetaReflectionManager(obs_refs, experiments, outlier_detector=None)
# Build a TwoThetaExperimentsPredictor
ref_predictor = TwoThetaExperimentsPredictor(experiments)
# Make a target for the least squares 2theta residual
target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)
# Keep only reflections that pass inclusion criteria and have predictions
reflections = refman.get_matches()
# Get analytical gradients
an_grads = pred_param.get_gradients(reflections)
# Get finite difference gradients
p_vals = pred_param.get_param_vals()
deltas = [1.0e-7] * len(p_vals)
for i in range(len(deltas)):
val = p_vals[i]
p_vals[i] -= deltas[i] / 2.0
pred_param.set_param_vals(p_vals)
target.predict()
reflections = refman.get_matches()
rev_state = reflections["2theta_resid"].deep_copy()
p_vals[i] += deltas[i]
pred_param.set_param_vals(p_vals)
target.predict()
reflections = refman.get_matches()
fwd_state = reflections["2theta_resid"].deep_copy()
p_vals[i] = val
fd = fwd_state - rev_state
fd /= deltas[i]
# compare with analytical calculation
assert approx_equal(fd, an_grads[i]["d2theta_dp"], eps=1.0e-6)
# return to the initial state
pred_param.set_param_vals(p_vals)
def test_refinement(dials_data):
"""Test a refinement run"""
# Get a beam and detector from a experiments. This one has a CS-PAD, but that
# is irrelevant
data_dir = dials_data("refinement_test_data", pathlib=True)
experiments_path = data_dir / "cspad-single-image.expt"
# load models
from dxtbx.model.experiment_list import ExperimentListFactory
experiments = ExperimentListFactory.from_serialized_format(
experiments_path, check_format=False
)
im_set = experiments.imagesets()[0]
detector = deepcopy(im_set.get_detector())
beam = im_set.get_beam()
# Invent a crystal, goniometer and scan for this test
from dxtbx.model import Crystal
crystal = Crystal(
(40.0, 0.0, 0.0), (0.0, 40.0, 0.0), (0.0, 0.0, 40.0), space_group_symbol="P1"
)
orig_xl = deepcopy(crystal)
from dxtbx.model import GoniometerFactory
goniometer = GoniometerFactory.known_axis((1.0, 0.0, 0.0))
# Build a mock scan for a 180 degree sequence
from dxtbx.model import ScanFactory
sf = ScanFactory()
scan = sf.make_scan(
image_range=(1, 1800),
exposure_times=0.1,
oscillation=(0, 0.1),
epochs=list(range(1800)),
deg=True,
)
sequence_range = scan.get_oscillation_range(deg=False)
im_width = scan.get_oscillation(deg=False)[1]
assert sequence_range == (0.0, pi)
assert approx_equal(im_width, 0.1 * pi / 180.0)
# Build an experiment list
experiments = ExperimentList()
experiments.append(
Experiment(
beam=beam,
detector=detector,
goniometer=goniometer,
scan=scan,
crystal=crystal,
imageset=None,
)
)
# simulate some reflections
refs, _ = generate_reflections(experiments)
# change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
# alpha and beta angles)
from dials.algorithms.refinement.parameterisation.crystal_parameters import (
CrystalUnitCellParameterisation,
)
xluc_param = CrystalUnitCellParameterisation(crystal)
cell_params = crystal.get_unit_cell().parameters()
cell_params = [a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])]
from cctbx.uctbx import unit_cell
from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
from scitbx import matrix
new_uc = unit_cell(cell_params)
newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
S = symmetrize_reduce_enlarge(crystal.get_space_group())
S.set_orientation(orientation=newB)
X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
xluc_param.set_param_vals(X)
# reparameterise the crystal at the perturbed geometry
xluc_param = CrystalUnitCellParameterisation(crystal)
# Dummy parameterisations for other models
beam_param = None
xlo_param = None
det_param = None
# parameterisation of the prediction equation
from dials.algorithms.refinement.parameterisation.parameter_report import (
ParameterReporter,
)
pred_param = TwoThetaPredictionParameterisation(
experiments, det_param, beam_param, xlo_param, [xluc_param]
)
param_reporter = ParameterReporter(det_param, beam_param, xlo_param, [xluc_param])
# reflection manager
refman = TwoThetaReflectionManager(refs, experiments, nref_per_degree=20)
# reflection predictor
ref_predictor = TwoThetaExperimentsPredictor(experiments)
# target function
target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)
# minimisation engine
from dials.algorithms.refinement.engine import (
LevenbergMarquardtIterations as Refinery,
)
refinery = Refinery(
target=target,
prediction_parameterisation=pred_param,
log=None,
max_iterations=20,
)
# Refiner
from dials.algorithms.refinement.refiner import Refiner
refiner = Refiner(
experiments=experiments,
pred_param=pred_param,
param_reporter=param_reporter,
refman=refman,
target=target,
refinery=refinery,
)
refiner.run()
# compare crystal with original crystal
refined_xl = refiner.get_experiments()[0].crystal
# print refined_xl
assert refined_xl.is_similar_to(
orig_xl, uc_rel_length_tolerance=0.001, uc_abs_angle_tolerance=0.01
)
# print "Unit cell esds:"
# print refined_xl.get_cell_parameter_sd()
|