1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
from __future__ import annotations
import math
import random
import pytest
from scitbx import matrix
from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem
### Test the XDS coordinate system class
@pytest.fixture
def xdscoordinates():
"""Initialise the coordinate system"""
# Coordinate sensitive to length of vectors, so need to ensure that
# lengths of both s0 and s1 are equal
coords = {
"s0": (0.013141995425357206, 0.002199999234194632, 1.4504754950989514),
"s1": (-0.01752795848400313, -0.24786554213968193, 1.4290948735525306),
"m2": (0.999975, -0.001289, -0.006968),
"phi": 5.83575672475 * math.pi / 180,
}
coords["cs"] = CoordinateSystem(
coords["m2"], coords["s0"], coords["s1"], coords["phi"]
)
return coords
def test_coordinate_system_data(xdscoordinates):
"""Test all the input data"""
eps = 1e-7
s0 = matrix.col(xdscoordinates["s0"])
s1 = matrix.col(xdscoordinates["s1"])
m2 = matrix.col(xdscoordinates["m2"])
assert abs(matrix.col(xdscoordinates["cs"].s0()) - s0) <= eps
assert abs(matrix.col(xdscoordinates["cs"].s0()) - s0) <= eps
assert abs(matrix.col(xdscoordinates["cs"].s1()) - s1) <= eps
assert abs(matrix.col(xdscoordinates["cs"].m2()) - m2.normalize()) <= eps
assert abs(xdscoordinates["cs"].phi() - xdscoordinates["phi"]) <= eps
def test_ensure_axes_have_length_of_one(xdscoordinates):
eps = 1e-7
assert abs(matrix.col(xdscoordinates["cs"].e1_axis()).length() - 1.0) <= eps
assert abs(matrix.col(xdscoordinates["cs"].e2_axis()).length() - 1.0) <= eps
assert abs(matrix.col(xdscoordinates["cs"].e3_axis()).length() - 1.0) <= eps
def test_axis_orthogonal(xdscoordinates):
"""Ensure that the following are true:
e1.s0 = 0, e1.s1 = 0
e2.s1 = 0, e2.e1 = 0
e3.e1 = 0, e3.p* = 0
"""
# Get as matrices
e1 = matrix.col(xdscoordinates["cs"].e1_axis())
e2 = matrix.col(xdscoordinates["cs"].e2_axis())
e3 = matrix.col(xdscoordinates["cs"].e3_axis())
s0 = matrix.col(xdscoordinates["s0"])
s1 = matrix.col(xdscoordinates["s1"])
eps = 1e-7
# Check that e1 is orthogonal to s0 and s1
assert abs(e1.dot(s0) - 0.0) <= eps
assert abs(e1.dot(s1) - 0.0) <= eps
# Check that e2 is orthogonal to s1 and e1
assert abs(e2.dot(s1) - 0.0) <= eps
assert abs(e2.dot(e1) - 0.0) <= eps
# Check that e3 is orthogonal to e1 and p* = s1 - s0
assert abs(e3.dot(e1) - 0.0) <= eps
assert abs(e3.dot(s1 - s0) - 0.0) <= eps
def test_the_coordinate_system_limits(xdscoordinates):
"""Ensure limits e1/e2 == |s1| and limit e3 == |s0 - s1|"""
# Get the incident and diffracted beam vectors
eps = 1e-7
# Get the limits
lim = xdscoordinates["cs"].limits()
# Check the limits
assert lim[0] == pytest.approx(-1.0, abs=eps)
assert lim[1] == pytest.approx(1.0, abs=eps)
### Test the FromBeamVectorToXds class
@pytest.fixture
def beamvector():
"""Initialise the transform"""
bv = {
"s0": (0.013141995425357206, 0.002199999234194632, 1.4504754950989514),
"s1": (-0.01752795848400313, -0.24786554213968193, 1.4290948735525306),
"m2": (0.999975, -0.001289, -0.006968),
"phi": 5.83575672475 * math.pi / 180,
}
bv["cs"] = CoordinateSystem(bv["m2"], bv["s0"], bv["s1"], bv["phi"])
return bv
def test_beamvector_coordinate_of_s1(beamvector):
"""Ensure that the coordinate of s1 is (0, 0, 0)"""
# Get the coordinate at s1
s_dash = beamvector["s1"]
c1, c2 = beamvector["cs"].from_beam_vector(s_dash)
# Ensure that it is at the origin
assert c1 == pytest.approx(0.0)
assert c2 == pytest.approx(0.0)
def test_beamvector_limit(beamvector):
"""Calculate the coordinate at the limits.
Ensure that coordinate where s1' is orthogonal to s1 is at limit.
"""
# Get the limit of s1'
s_dash = matrix.col(beamvector["s1"]).cross(matrix.col(beamvector["s0"]))
s_dash = s_dash.normalize() * matrix.col(beamvector["s1"]).length()
# Rotate arbitrarily
s_dash = s_dash.rotate_around_origin(
matrix.col(beamvector["s1"]), random.uniform(0, 360), deg=True
)
# Get the c1, c2 coordinate
c1, c2 = beamvector["cs"].from_beam_vector(s_dash)
# Check the point is equal to the limit in rs
assert math.sqrt(c1**2 + c2**2) == pytest.approx(abs(beamvector["cs"].limits()[0]))
### Test the TestFromRotationAngle class
@pytest.fixture
def rotationangle():
"""Initialise the transform"""
ra = {
"s0": (0.013141995425357206, 0.002199999234194632, 1.4504754950989514),
"s1": (-0.01752795848400313, -0.24786554213968193, 1.4290948735525306),
"m2": (0.999975, -0.001289, -0.006968),
"phi": 5.83575672475 * math.pi / 180,
}
ra["cs"] = CoordinateSystem(ra["m2"], ra["s0"], ra["s1"], ra["phi"])
return ra
def test_from_rotation_angle_coordinate_of_phi(rotationangle):
"""Ensure that the coordinate of s1 is (0, 0, 0)"""
# Get the coordinate at phi
phi_dash = rotationangle["phi"]
c3 = rotationangle["cs"].from_rotation_angle(phi_dash)
# Ensure that it is at the origin
assert c3 == pytest.approx(0.0)
def test_from_rotation_angle_e3_coordinate_approximation(rotationangle):
# Select a random rotation from phi
phi_dash = rotationangle["phi"] + (2.0 * random.random() - 1.0) * math.pi / 180
# Calculate the XDS coordinate, this class uses an approximation
# for c3 = zeta * (phi' - phi)
c3 = rotationangle["cs"].from_rotation_angle(phi_dash)
c3_2 = rotationangle["cs"].from_rotation_angle_fast(phi_dash)
# Check the true and approximate value are almost equal to 4dp
assert c3 == pytest.approx(c3_2, abs=1e-4)
### Test the ToBeamVector class
def test_to_beamvector_xds_origin(beamvector):
"""Test the beam vector at the XDS origin is equal to s1."""
eps = 1e-7
s_dash = beamvector["cs"].to_beam_vector((0, 0))
assert abs(matrix.col(s_dash) - matrix.col(beamvector["s1"])) <= eps
def test_to_beamvector_far_out_coordinates(beamvector):
"""Test some large coordinates, 1 valid and the other invalid. (i.e.
a coordinate that cannot be mapped onto the ewald sphere)."""
eps = 1e-7
c2 = 0
# A large value which is still valid
c1 = 1.0 - eps
assert beamvector["cs"].to_beam_vector((c1, c2))
# A large value which is raises an exception
with pytest.raises(RuntimeError):
c1 = 1.0 + eps
assert beamvector["cs"].to_beam_vector((c1, c2))
c1 = 0
# A large value which is still valid
c2 = 1.0 - eps
assert beamvector["cs"].to_beam_vector((c1, c2))
# A large value which is raises an exception
with pytest.raises(RuntimeError):
c2 = 1.0 + eps
assert beamvector["cs"].to_beam_vector((c1, c2))
def test_to_beamvector_forward_and_reverse_transform(beamvector):
"""Test the forward and reverse Beam Vector -> XDS transforms Create
a beam vector, transform it to XDS and then transform back. The new
value should be equal to the original value."""
eps = 1e-7
# Set the parameters
min_shift = -0.5
max_shift = +0.5
range_shift = max_shift - min_shift
def random_shift():
return min_shift + random.random() * range_shift
# Loop a number of times
num = 1000
for i in range(num):
# Create a beam vector
s_dash = matrix.col(beamvector["s1"]) + matrix.col(
(random_shift(), random_shift(), random_shift())
)
s_dash = s_dash.normalize() * matrix.col(beamvector["s1"]).length()
# Calculate the XDS coordinate of the vector
c1, c2 = beamvector["cs"].from_beam_vector(s_dash)
# Calculate the beam vector from the XDS coordinate
s_dash_2 = beamvector["cs"].to_beam_vector((c1, c2))
# Check the vectors are almost equal
assert abs(matrix.col(s_dash) - matrix.col(s_dash_2)) <= eps
### Test the TestToRotationAngle class
def test_forward_and_backward(rotationangle):
# Set the parameters
min_shift = -20.0 * math.pi / 180.0
max_shift = +20.0 * math.pi / 180.0
range_shift = max_shift - min_shift
def random_shift():
return min_shift + random.random() * range_shift
# Loop a number of times
num = 1000
for i in range(num):
# Create a rotation angle
phi_dash = rotationangle["phi"] + random_shift()
# Calculate the XDS coordinate of the vector
c3 = rotationangle["cs"].from_rotation_angle(phi_dash)
# Calculate the beam vector from the XDS coordinate
phi_dash_2 = rotationangle["cs"].to_rotation_angle(c3)
# Check the vectors are almost equal
assert phi_dash_2 == pytest.approx(phi_dash)
def test_origin(rotationangle):
phi_dash = rotationangle["cs"].to_rotation_angle(0.0)
assert phi_dash == pytest.approx(rotationangle["phi"])
def test_far_out_coordinates(rotationangle):
"""Test some large coordinates, 1 valid and the other invalid. (i.e.
a coordinate that cannot be mapped onto the ewald sphere)."""
eps = 1e-7
# Get the limits
lim = rotationangle["cs"].limits()[2:]
lim0 = max(lim)
lim1 = min(lim)
# Setting c2 and c3 to zero
c3 = lim0 - eps
# A large value which is still valid
phi_dash = rotationangle["cs"].to_rotation_angle(c3)
# Setting c2 and c3 to zero
c3 = lim1 + eps
# A large value which is still valid
phi_dash = rotationangle["cs"].to_rotation_angle(c3)
# A large value which is raises an exception
with pytest.raises(RuntimeError):
c3 = lim0 + eps
phi_dash = rotationangle["cs"].to_rotation_angle(c3)
print(phi_dash)
with pytest.raises(RuntimeError):
c3 = lim1 - eps
phi_dash = rotationangle["cs"].to_rotation_angle(c3)
def test_e3_coordinate_approximation(rotationangle):
# Select a random rotation from phi
phi_dash = rotationangle["phi"] + (2.0 * random.random() - 1.0) * math.pi / 180
# Calculate the XDS coordinate, this class uses an approximation
# for c3 = zeta * (phi' - phi)
c3 = rotationangle["cs"].from_rotation_angle(phi_dash)
phi_dash_2 = rotationangle["cs"].to_rotation_angle_fast(c3)
# Check the true and approximate value are almost equal to 4dp
assert phi_dash == pytest.approx(phi_dash_2, abs=1e-4)
|