1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
from __future__ import annotations
import math
import random
from dxtbx.serialize import load
from scitbx import matrix
from scitbx.array_family import flex
from dials.algorithms.profile_model.gaussian_rs import (
BBoxCalculator3D,
CoordinateSystem,
)
from dials.algorithms.profile_model.gaussian_rs.transform import (
MapFramesForward,
MapFramesReverse,
)
def test_map_frames_forward(dials_data):
sequence = load.imageset(
dials_data("centroid_test_data", pathlib=True) / "sweep.json"
)
# Get the models
beam = sequence.get_beam()
detector = sequence.get_detector()
gonio = sequence.get_goniometer()
scan = sequence.get_scan()
# Set the delta_divergence/mosaicity
n_sigma = 3
sigma_divergence = 0.060 * math.pi / 180
mosaicity = 0.154 * math.pi / 180
delta_divergence = n_sigma * sigma_divergence
delta_mosaicity = n_sigma * mosaicity
# Set the grid size
grid_size = (4, 4, 4)
# Create the E3 fraction object
transform = MapFramesForward(
scan.get_array_range()[0],
scan.get_oscillation(deg=False)[0],
scan.get_oscillation(deg=False)[1],
mosaicity,
n_sigma,
grid_size[2],
)
# Create the bounding box calculator
calculate_bbox = BBoxCalculator3D(
beam, detector, gonio, scan, delta_divergence, delta_mosaicity
)
assert len(detector) == 1
s0 = beam.get_s0()
m2 = gonio.get_rotation_axis()
s0_length = matrix.col(beam.get_s0()).length()
for i in range(100):
# Get random x, y, z
x = random.uniform(0, 2000)
y = random.uniform(0, 2000)
z = random.uniform(0, 9)
# Get random s1, phi, panel
s1 = matrix.col(detector[0].get_pixel_lab_coord((x, y))).normalize() * s0_length
phi = scan.get_angle_from_array_index(z, deg=False)
panel = 0
# Calculate the bounding box
bbox = calculate_bbox(s1, z, panel)
# Create the XDS coordinate system
xcs = CoordinateSystem(m2, s0, s1, phi)
# Calculate the transform fraction
fraction = transform(bbox[4:], phi, xcs.zeta())
# Ensure the minimum and maximum are 0 < 1
fmax = flex.max(fraction)
fmin = flex.min(fraction)
assert fmax <= (1.0 + 5e-15) and fmax > 0.0, f"{fmax:.16f} not between 0 and 1"
assert fmin >= 0.0 and fmin <= 1.0
# Ensure the fraction for each image frame adds up to 1.0 for
# all those frames completely within the grid
for j in range(1, fraction.all()[0] - 1):
tot = flex.sum(fraction[j : j + 1, :])
assert abs(tot - 1.0) < 1e-7
# Ensure the frames follow a progression through the grid. I.e,
# check that values increase then decrease and don't jump around
for j in range(fraction.all()[0]):
f = fraction[j : j + 1, :]
last = f[0]
rev = False
for i in range(1, len(f)):
curr = f[1]
if rev is False:
if curr < last:
rev = True
else:
assert curr <= last
last = curr
def test_map_frames_reverse(dials_data):
sequence = load.imageset(
dials_data("centroid_test_data", pathlib=True) / "sweep.json"
)
# Get the models
beam = sequence.get_beam()
detector = sequence.get_detector()
gonio = sequence.get_goniometer()
scan = sequence.get_scan()
# Set the delta_divergence/mosaicity
n_sigma = 3
sigma_divergence = 0.060 * math.pi / 180
mosaicity = 0.154 * math.pi / 180
delta_divergence = n_sigma * sigma_divergence
delta_mosaicity = n_sigma * mosaicity
# Set the grid size
grid_size = (4, 4, 4)
# Create the E3 fraction object
transform = MapFramesReverse(
scan.get_array_range()[0],
scan.get_oscillation(deg=False)[0],
scan.get_oscillation(deg=False)[1],
mosaicity,
n_sigma,
grid_size[2],
)
# Create the bounding box calculator
calculate_bbox = BBoxCalculator3D(
beam, detector, gonio, scan, delta_divergence, delta_mosaicity
)
s0 = beam.get_s0()
m2 = gonio.get_rotation_axis()
s0_length = matrix.col(beam.get_s0()).length()
for i in range(100):
# Get random x, y, z
x = random.uniform(0, 2000)
y = random.uniform(0, 2000)
z = random.uniform(0, 9)
# Get random s1, phi, panel
s1 = matrix.col(detector[0].get_pixel_lab_coord((x, y))).normalize() * s0_length
phi = scan.get_angle_from_array_index(z, deg=False)
panel = 0
# Calculate the bounding box
bbox = calculate_bbox(s1, phi, panel)
x1, x2 = bbox[0], bbox[1]
y1, y2 = bbox[2], bbox[3]
z1, z2 = bbox[4], bbox[5]
if x1 == 0 or y1 == 0 or z1 == 0:
continue
if x2 == 2000 or y2 == 2000 or z2 == 9:
continue
# Create the XDS coordinate system
xcs = CoordinateSystem(m2, s0, s1, phi)
# Calculate the transform fraction
fraction = transform(bbox[4:], phi, xcs.zeta())
# Ensure the minimum and maximum are 0 < 1
fmax = flex.max(fraction)
fmin = flex.min(fraction)
assert fmax <= 1.0 and fmax > 0.0
assert fmin >= 0.0 and fmin <= 1.0
# Ensure the fraction for image adds up to 1.0 for
# all those images completely within the image
for v3 in range(fraction.all()[0]):
tot = flex.sum(fraction[v3 : v3 + 1, :])
assert abs(tot - 1.0) < 1e-7
# Ensure the frames follow a progression through the grid. I.e,
# check that values increase then decrease and don't jump around
for v3 in range(fraction.all()[0]):
f = fraction[v3 : v3 + 1, :]
last = f[0]
rev = False
for i in range(1, len(f)):
curr = f[1]
if rev is False:
if curr < last:
rev = True
else:
assert curr <= last
last = curr
def test_map_forward_reverse(dials_data):
sequence = load.imageset(
dials_data("centroid_test_data", pathlib=True) / "sweep.json"
)
# Get the models
beam = sequence.get_beam()
detector = sequence.get_detector()
gonio = sequence.get_goniometer()
scan = sequence.get_scan()
# Set the delta_divergence/mosaicity
n_sigma = 3
sigma_divergence = 0.060 * math.pi / 180
mosaicity = 0.154 * math.pi / 180
delta_divergence = n_sigma * sigma_divergence
delta_mosaicity = n_sigma * mosaicity
# Set the grid size
grid_size = (4, 4, 4)
# Create the E3 fraction object
transform_forward = MapFramesForward(
scan.get_array_range()[0],
scan.get_oscillation(deg=False)[0],
scan.get_oscillation(deg=False)[1],
mosaicity,
n_sigma,
grid_size[2],
)
# Create the E3 fraction object
transform_reverse = MapFramesReverse(
scan.get_array_range()[0],
scan.get_oscillation(deg=False)[0],
scan.get_oscillation(deg=False)[1],
mosaicity,
n_sigma,
grid_size[2],
)
# Create the bounding box calculator
calculate_bbox = BBoxCalculator3D(
beam, detector, gonio, scan, delta_divergence, delta_mosaicity
)
s0 = beam.get_s0()
m2 = gonio.get_rotation_axis()
s0_length = matrix.col(beam.get_s0()).length()
for i in range(100):
# Get random x, y, z
x = random.uniform(0, 2000)
y = random.uniform(0, 2000)
z = random.uniform(0, 9)
# Get random s1, phi, panel
s1 = matrix.col(detector[0].get_pixel_lab_coord((x, y))).normalize() * s0_length
phi = scan.get_angle_from_array_index(z, deg=False)
panel = 0
# Calculate the bounding box
bbox = calculate_bbox(s1, phi, panel)
# Create the XDS coordinate system
xcs = CoordinateSystem(m2, s0, s1, phi)
# Calculate the transform fraction
forward_fraction = transform_forward(bbox[4:], phi, xcs.zeta())
# Calculate the transform fraction
reverse_fraction = transform_reverse(bbox[4:], phi, xcs.zeta())
# Check the same points are non-zero
eps = 1e-7
for j in range(forward_fraction.all()[0]):
for i in range(forward_fraction.all()[1]):
if forward_fraction[j, i] > 0.0:
assert reverse_fraction[i, j] > 0.0
else:
assert reverse_fraction[i, j] < eps
|