1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
from __future__ import annotations
import pickle
import random
def test_pickle():
from scitbx.array_family import flex
from dials.model.data import PixelList
size = (100, 100)
sf = 10
image = flex.double(flex.grid(size))
mask = flex.bool(flex.grid(size))
for i in range(len(image)):
image[i] = random.randint(0, 100)
mask[i] = bool(random.randint(0, 1))
pl = PixelList(sf, image, mask)
assert pl.size() == size
assert pl.frame() == sf
obj = pickle.dumps(pl)
pl2 = pickle.loads(obj)
assert pl2.size() == size
assert pl2.frame() == sf
assert len(pl2) == len(pl)
assert pl2.index().all_eq(pl.index())
assert pl2.value().all_eq(pl.value())
def test_add_image():
from scitbx.array_family import flex
from dials.model.data import PixelList, PixelListLabeller
size = (2000, 2000)
sf = 10
labeller = PixelListLabeller()
count = 0
for i in range(3):
image = flex.random_int_gaussian_distribution(size[0] * size[1], 100, 5)
mask = flex.random_bool(size[0] * size[1], 0.5)
image.reshape(flex.grid(size))
mask.reshape(flex.grid(size))
pl = PixelList(sf + i, image, mask)
count += len(mask.as_1d().select(mask.as_1d()))
labeller.add(pl)
assert len(labeller.values()) == count
def test_labels_3d():
from scitbx.array_family import flex
from dials.model.data import PixelList, PixelListLabeller
size = (500, 500)
sf = 0
labeller = PixelListLabeller()
count = 0
mask_list = []
for i in range(3):
image = flex.random_int_gaussian_distribution(size[0] * size[1], 100, 5)
mask = flex.random_bool(size[0] * size[1], 0.5)
image.reshape(flex.grid(size))
mask.reshape(flex.grid(size))
pl = PixelList(sf + i, image, mask)
count += len(mask.as_1d().select(mask.as_1d()))
labeller.add(pl)
mask_list.append(mask)
coords = labeller.coords()
labels = labeller.labels_3d()
# Create a map of labels
label_map = flex.int(flex.grid(3, size[0], size[1]))
for c, l in zip(coords, labels):
label_map[c] = l
# Ensure all labels are correct
vi = 0
for k in range(3):
for j in range(size[0]):
for i in range(size[1]):
if mask_list[k][j, i]:
l1 = labels[vi]
if k > 0 and mask_list[k - 1][j, i]:
l2 = label_map[k - 1, j, i]
assert l2 == l1
if j > 0 and mask_list[k][j - 1, i]:
l2 = label_map[k, j - 1, i]
assert l2 == l1
if i > 0 and mask_list[k][j, i - 1]:
l2 = label_map[k, j, i - 1]
assert l2 == l1
vi += 1
def test_labels_2d():
from scitbx.array_family import flex
from dials.model.data import PixelList, PixelListLabeller
size = (500, 500)
sf = 0
labeller = PixelListLabeller()
count = 0
mask_list = []
for i in range(3):
image = flex.random_int_gaussian_distribution(size[0] * size[1], 100, 5)
mask = flex.random_bool(size[0] * size[1], 0.5)
image.reshape(flex.grid(size))
mask.reshape(flex.grid(size))
pl = PixelList(sf + i, image, mask)
count += len(mask.as_1d().select(mask.as_1d()))
labeller.add(pl)
mask_list.append(mask)
coords = labeller.coords()
labels = labeller.labels_2d()
# Create a map of labels
label_map = flex.int(flex.grid(3, size[0], size[1]))
for c, l in zip(coords, labels):
label_map[c] = l
# Ensure all labels are correct
vi = 0
for k in range(3):
for j in range(size[0]):
for i in range(size[1]):
if mask_list[k][j, i]:
l1 = labels[vi]
if k > 0 and mask_list[k - 1][j, i]:
l2 = label_map[k - 1, j, i]
assert l2 != l1
if j > 0 and mask_list[k][j - 1, i]:
l2 = label_map[k, j - 1, i]
assert l2 == l1
if i > 0 and mask_list[k][j, i - 1]:
l2 = label_map[k, j, i - 1]
assert l2 == l1
vi += 1
def test_with_no_points():
from scitbx.array_family import flex
from dials.model.data import PixelList, PixelListLabeller
size = (500, 500)
sf = 0
labeller = PixelListLabeller()
count = 0
mask_list = []
for i in range(3):
image = flex.random_int_gaussian_distribution(size[0] * size[1], 100, 5)
mask = flex.bool(size[0] * size[0], False)
image.reshape(flex.grid(size))
mask.reshape(flex.grid(size))
pl = PixelList(sf + i, image, mask)
count += len(mask.as_1d().select(mask.as_1d()))
labeller.add(pl)
mask_list.append(mask)
coords = labeller.coords()
labels1 = labeller.labels_2d()
labels2 = labeller.labels_2d()
assert len(coords) == 0
assert len(labels1) == 0
assert len(labels2) == 0
|