File: DMPClass.dart

package info (click to toggle)
diff-match-patch 20121121-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 1,668 kB
  • ctags: 739
  • sloc: objc: 3,274; python: 3,207; cpp: 2,662; cs: 2,386; java: 2,276; ansic: 422; makefile: 13; xml: 1
file content (2118 lines) | stat: -rw-r--r-- 76,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
/*
 * Diff Match and Patch
 *
 * Copyright 2011 Google Inc.
 * http://code.google.com/p/google-diff-match-patch/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Functions for diff, match and patch.
 * Computes the difference between two texts to create a patch.
 * Applies the patch onto another text, allowing for errors.
 *
 * @author fraser@google.com (Neil Fraser)
 */

part of DiffMatchPatch;

/**
 * The data structure representing a diff is a List of Diff objects:
 * {Diff(DIFF_DELETE, 'Hello'), Diff(DIFF_INSERT, 'Goodbye'),
 *  Diff(DIFF_EQUAL, ' world.')}
 * which means: delete 'Hello', add 'Goodbye' and keep ' world.'
 */
const DIFF_DELETE = -1;
const DIFF_INSERT = 1;
const DIFF_EQUAL = 0;

/**
 * Class containing the diff, match and patch methods.
 * Also contains the behaviour settings.
 */
class DiffMatchPatch {

  // Defaults.
  // Set these on your diff_match_patch instance to override the defaults.

  /**
   * Number of seconds to map a diff before giving up (0 for infinity).
   */
  double Diff_Timeout = 1.0;
  /**
   * Cost of an empty edit operation in terms of edit characters.
   */
  int Diff_EditCost = 4;
  /**
   * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
   */
  double Match_Threshold = 0.5;
  /**
   * How far to search for a match (0 = exact location, 1000+ = broad match).
   * A match this many characters away from the expected location will add
   * 1.0 to the score (0.0 is a perfect match).
   */
  int Match_Distance = 1000;
  /**
   * When deleting a large block of text (over ~64 characters), how close do
   * the contents have to be to match the expected contents. (0.0 = perfection,
   * 1.0 = very loose).  Note that Match_Threshold controls how closely the
   * end points of a delete need to match.
   */
  double Patch_DeleteThreshold = 0.5;
  /**
   * Chunk size for context length.
   */
  int Patch_Margin = 4;

  /**
   * The number of bits in an int.
   */
  int Match_MaxBits = 32;


  //  DIFF FUNCTIONS


  /**
   * Find the differences between two texts.  Simplifies the problem by
   * stripping any common prefix or suffix off the texts before diffing.
   * [text1] is the old string to be diffed.
   * [text2] is the new string to be diffed.
   * [checklines] is an optional speedup flag.  If present and false, then don't
   *     run a line-level diff first to identify the changed areas.
   *     Defaults to true, which does a faster, slightly less optimal diff.
   * [deadline] is an optional time when the diff should be complete by.  Used
   *     internally for recursive calls.  Users should set DiffTimeout instead.
   * Returns a List of Diff objects.
   */
  List<Diff> diff_main(String text1, String text2,
                       [bool checklines = true, Date deadline]) {
    // Set a deadline by which time the diff must be complete.
    if (deadline == null) {
      deadline = new Date.now();
      if (Diff_Timeout <= 0) {
        // One year should be sufficient for 'infinity'.
        deadline = deadline.add(new Duration(days: 365));
      } else {
        deadline = deadline.add(new Duration(
            milliseconds: (Diff_Timeout * 1000).toInt()));
      }
    }
    // Check for null inputs.
    if (text1 == null || text2 == null) {
      throw new ArgumentError('Null inputs. (diff_main)');
    }

    // Check for equality (speedup).
    List<Diff> diffs;
    if (text1 == text2) {
      diffs = [];
      if (!text1.isEmpty) {
        diffs.add(new Diff(DIFF_EQUAL, text1));
      }
      return diffs;
    }

    // Trim off common prefix (speedup).
    int commonlength = diff_commonPrefix(text1, text2);
    String commonprefix = text1.substring(0, commonlength);
    text1 = text1.substring(commonlength);
    text2 = text2.substring(commonlength);

    // Trim off common suffix (speedup).
    commonlength = diff_commonSuffix(text1, text2);
    String commonsuffix = text1.substring(text1.length - commonlength);
    text1 = text1.substring(0, text1.length - commonlength);
    text2 = text2.substring(0, text2.length - commonlength);

    // Compute the diff on the middle block.
    diffs = _diff_compute(text1, text2, checklines, deadline);

    // Restore the prefix and suffix.
    if (!commonprefix.isEmpty) {
      diffs.insertRange(0, 1, new Diff(DIFF_EQUAL, commonprefix));
    }
    if (!commonsuffix.isEmpty) {
      diffs.addLast(new Diff(DIFF_EQUAL, commonsuffix));
    }

    diff_cleanupMerge(diffs);
    return diffs;
  }

  /**
   * Find the differences between two texts.  Assumes that the texts do not
   * have any common prefix or suffix.
   * [text1] is the old string to be diffed.
   * [text2] is the new string to be diffed.
   * [checklines] is a speedup flag.  If false, then don't run a
   *     line-level diff first to identify the changed areas.
   *     If true, then run a faster slightly less optimal diff.
   * [deadline] is the time when the diff should be complete by.
   * Returns a List of Diff objects.
   */
  List<Diff> _diff_compute(String text1, String text2,
                           bool checklines, Date deadline) {
    List<Diff> diffs = <Diff>[];

    if (text1.length == 0) {
      // Just add some text (speedup).
      diffs.add(new Diff(DIFF_INSERT, text2));
      return diffs;
    }

    if (text2.length == 0) {
      // Just delete some text (speedup).
      diffs.add(new Diff(DIFF_DELETE, text1));
      return diffs;
    }

    String longtext = text1.length > text2.length ? text1 : text2;
    String shorttext = text1.length > text2.length ? text2 : text1;
    int i = longtext.indexOf(shorttext);
    if (i != -1) {
      // Shorter text is inside the longer text (speedup).
      int op = (text1.length > text2.length) ?
                     DIFF_DELETE : DIFF_INSERT;
      diffs.add(new Diff(op, longtext.substring(0, i)));
      diffs.add(new Diff(DIFF_EQUAL, shorttext));
      diffs.add(new Diff(op, longtext.substring(i + shorttext.length)));
      return diffs;
    }

    if (shorttext.length == 1) {
      // Single character string.
      // After the previous speedup, the character can't be an equality.
      diffs.add(new Diff(DIFF_DELETE, text1));
      diffs.add(new Diff(DIFF_INSERT, text2));
      return diffs;
    }

    // Check to see if the problem can be split in two.
    final hm = _diff_halfMatch(text1, text2);
    if (hm != null) {
      // A half-match was found, sort out the return data.
      final text1_a = hm[0];
      final text1_b = hm[1];
      final text2_a = hm[2];
      final text2_b = hm[3];
      final mid_common = hm[4];
      // Send both pairs off for separate processing.
      final diffs_a = diff_main(text1_a, text2_a, checklines, deadline);
      final diffs_b = diff_main(text1_b, text2_b, checklines, deadline);
      // Merge the results.
      diffs = diffs_a;
      diffs.add(new Diff(DIFF_EQUAL, mid_common));
      diffs.addAll(diffs_b);
      return diffs;
    }

    if (checklines && text1.length > 100 && text2.length > 100) {
      return _diff_lineMode(text1, text2, deadline);
    }

    return _diff_bisect(text1, text2, deadline);
  }

  /**
   * Do a quick line-level diff on both strings, then rediff the parts for
   * greater accuracy.
   * This speedup can produce non-minimal diffs.
   * [text1] is the old string to be diffed.
   * [text2] is the new string to be diffed.
   * [deadline] is the time when the diff should be complete by.
   * Returns a List of Diff objects.
   */
  List<Diff> _diff_lineMode(String text1, String text2, Date deadline) {
    // Scan the text on a line-by-line basis first.
    final a = _diff_linesToChars(text1, text2);
    text1 = a['chars1'];
    text2 = a['chars2'];
    final linearray = a['lineArray'];

    final diffs = diff_main(text1, text2, false, deadline);

    // Convert the diff back to original text.
    _diff_charsToLines(diffs, linearray);
    // Eliminate freak matches (e.g. blank lines)
    diff_cleanupSemantic(diffs);

    // Rediff any replacement blocks, this time character-by-character.
    // Add a dummy entry at the end.
    diffs.add(new Diff(DIFF_EQUAL, ''));
    int pointer = 0;
    int count_delete = 0;
    int count_insert = 0;
    final text_delete = new StringBuffer();
    final text_insert = new StringBuffer();
    while (pointer < diffs.length) {
      switch (diffs[pointer].operation) {
      case DIFF_INSERT:
        count_insert++;
        text_insert.add(diffs[pointer].text);
        break;
      case DIFF_DELETE:
        count_delete++;
        text_delete.add(diffs[pointer].text);
        break;
      case DIFF_EQUAL:
        // Upon reaching an equality, check for prior redundancies.
        if (count_delete >= 1 && count_insert >= 1) {
          // Delete the offending records and add the merged ones.
          diffs.removeRange(pointer - count_delete - count_insert,
                            count_delete + count_insert);
          pointer = pointer - count_delete - count_insert;
          final a = diff_main(text_delete.toString(), text_insert.toString(),
              false, deadline);
          for (int j = a.length - 1; j >= 0; j--) {
            diffs.insertRange(pointer, 1, a[j]);
          }
          pointer = pointer + a.length;
        }
        count_insert = 0;
        count_delete = 0;
        text_delete.clear();
        text_insert.clear();
        break;
      }
      pointer++;
    }
    diffs.removeLast();  // Remove the dummy entry at the end.

    return diffs;
  }

  /**
   * Find the 'middle snake' of a diff, split the problem in two
   * and return the recursively constructed diff.
   * See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.
   * [text1] is the old string to be diffed.
   * [text2] is the new string to be diffed.
   * [deadline] is the time at which to bail if not yet complete.
   * Returns a List of Diff objects.
   */
  List<Diff> _diff_bisect(String text1, String text2, Date deadline) {
    // Cache the text lengths to prevent multiple calls.
    final text1_length = text1.length;
    final text2_length = text2.length;
    final max_d = (text1_length + text2_length + 1) ~/ 2;
    final v_offset = max_d;
    final v_length = 2 * max_d;
    final v1 = new List<int>(v_length);
    final v2 = new List<int>(v_length);
    for (int x = 0; x < v_length; x++) {
      v1[x] = -1;
      v2[x] = -1;
    }
    v1[v_offset + 1] = 0;
    v2[v_offset + 1] = 0;
    final delta = text1_length - text2_length;
    // If the total number of characters is odd, then the front path will
    // collide with the reverse path.
    final front = (delta % 2 != 0);
    // Offsets for start and end of k loop.
    // Prevents mapping of space beyond the grid.
    int k1start = 0;
    int k1end = 0;
    int k2start = 0;
    int k2end = 0;
    for (int d = 0; d < max_d; d++) {
      // Bail out if deadline is reached.
      if ((new Date.now()).compareTo(deadline) == 1) {
        break;
      }

      // Walk the front path one step.
      for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) {
        int k1_offset = v_offset + k1;
        int x1;
        if (k1 == -d || k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1]) {
          x1 = v1[k1_offset + 1];
        } else {
          x1 = v1[k1_offset - 1] + 1;
        }
        int y1 = x1 - k1;
        while (x1 < text1_length && y1 < text2_length
               && text1[x1] == text2[y1]) {
          x1++;
          y1++;
        }
        v1[k1_offset] = x1;
        if (x1 > text1_length) {
          // Ran off the right of the graph.
          k1end += 2;
        } else if (y1 > text2_length) {
          // Ran off the bottom of the graph.
          k1start += 2;
        } else if (front) {
          int k2_offset = v_offset + delta - k1;
          if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) {
            // Mirror x2 onto top-left coordinate system.
            int x2 = text1_length - v2[k2_offset];
            if (x1 >= x2) {
              // Overlap detected.
              return _diff_bisectSplit(text1, text2, x1, y1, deadline);
            }
          }
        }
      }

      // Walk the reverse path one step.
      for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) {
        int k2_offset = v_offset + k2;
        int x2;
        if (k2 == -d || k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1]) {
          x2 = v2[k2_offset + 1];
        } else {
          x2 = v2[k2_offset - 1] + 1;
        }
        int y2 = x2 - k2;
        while (x2 < text1_length && y2 < text2_length
               && text1[text1_length - x2 - 1]
               == text2[text2_length - y2 - 1]) {
          x2++;
          y2++;
        }
        v2[k2_offset] = x2;
        if (x2 > text1_length) {
          // Ran off the left of the graph.
          k2end += 2;
        } else if (y2 > text2_length) {
          // Ran off the top of the graph.
          k2start += 2;
        } else if (!front) {
          int k1_offset = v_offset + delta - k2;
          if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) {
            int x1 = v1[k1_offset];
            int y1 = v_offset + x1 - k1_offset;
            // Mirror x2 onto top-left coordinate system.
            x2 = text1_length - x2;
            if (x1 >= x2) {
              // Overlap detected.
              return _diff_bisectSplit(text1, text2, x1, y1, deadline);
            }
          }
        }
      }
    }
    // Diff took too long and hit the deadline or
    // number of diffs equals number of characters, no commonality at all.
    return [new Diff(DIFF_DELETE, text1), new Diff(DIFF_INSERT, text2)];
  }

  /**
   * Given the location of the 'middle snake', split the diff in two parts
   * and recurse.
   * [text1] is the old string to be diffed.
   * [text2] is the new string to be diffed.
   * [x] is the index of split point in text1.
   * [y] is the index of split point in text2.
   * [deadline] is the time at which to bail if not yet complete.
   * Returns a List of Diff objects.
   */
  List<Diff> _diff_bisectSplit(String text1, String text2,
                               int x, int y, Date deadline) {
    final text1a = text1.substring(0, x);
    final text2a = text2.substring(0, y);
    final text1b = text1.substring(x);
    final text2b = text2.substring(y);

    // Compute both diffs serially.
    final diffs = diff_main(text1a, text2a, false, deadline);
    final diffsb = diff_main(text1b, text2b, false, deadline);

    diffs.addAll(diffsb);
    return diffs;
  }

  /**
   * Split two texts into a list of strings.  Reduce the texts to a string of
   * hashes where each Unicode character represents one line.
   * [text1] is the first string.
   * [text2] is the second string.
   * Returns a Map containing the encoded text1, the encoded text2 and
   *     the List of unique strings.  The zeroth element of the List of
   *     unique strings is intentionally blank.
   */
  Map<String, dynamic> _diff_linesToChars(String text1, String text2) {
    final lineArray = <String>[];
    final lineHash = new HashMap<String, int>();
    // e.g. linearray[4] == 'Hello\n'
    // e.g. linehash['Hello\n'] == 4

    // '\x00' is a valid character, but various debuggers don't like it.
    // So we'll insert a junk entry to avoid generating a null character.
    lineArray.add('');

    String chars1 = _diff_linesToCharsMunge(text1, lineArray, lineHash);
    String chars2 = _diff_linesToCharsMunge(text2, lineArray, lineHash);
    return {'chars1': chars1, 'chars2': chars2, 'lineArray': lineArray};
  }

  /**
   * Split a text into a list of strings.  Reduce the texts to a string of
   * hashes where each Unicode character represents one line.
   * [text] is the string to encode.
   * [lineArray] is a List of unique strings.
   * [lineHash] is a Map of strings to indices.
   * Returns an encoded string.
   */
  String _diff_linesToCharsMunge(String text, List<String> lineArray,
                                 Map<String, int> lineHash) {
    int lineStart = 0;
    int lineEnd = -1;
    String line;
    final chars = new StringBuffer();
    // Walk the text, pulling out a substring for each line.
    // text.split('\n') would would temporarily double our memory footprint.
    // Modifying text would create many large strings to garbage collect.
    while (lineEnd < text.length - 1) {
      lineEnd = text.indexOf('\n', lineStart);
      if (lineEnd == -1) {
        lineEnd = text.length - 1;
      }
      line = text.substring(lineStart, lineEnd + 1);
      lineStart = lineEnd + 1;

      if (lineHash.containsKey(line)) {
        chars.add(new String.fromCharCodes([lineHash[line]]));
      } else {
        lineArray.add(line);
        lineHash[line] = lineArray.length - 1;
        chars.add(new String.fromCharCodes([lineArray.length - 1]));
      }
    }
    return chars.toString();
  }

  /**
   * Rehydrate the text in a diff from a string of line hashes to real lines of
   * text.
   * [diffs] is a List of Diff objects.
   * [lineArray] is a List of unique strings.
   */
  void _diff_charsToLines(List<Diff> diffs, List<String> lineArray) {
    final text = new StringBuffer();
    for (Diff diff in diffs) {
      for (int y = 0; y < diff.text.length; y++) {
        text.add(lineArray[diff.text.charCodeAt(y)]);
      }
      diff.text = text.toString();
      text.clear();
    }
  }

  /**
   * Determine the common prefix of two strings
   * [text1] is the first string.
   * [text2] is the second string.
   * Returns the number of characters common to the start of each string.
   */
  int diff_commonPrefix(String text1, String text2) {
    // TODO: Once Dart's performance stabilizes, determine if linear or binary
    // search is better.
    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
    final n = min(text1.length, text2.length);
    for (int i = 0; i < n; i++) {
      if (text1[i] != text2[i]) {
        return i;
      }
    }
    return n;
  }

  /**
   * Determine the common suffix of two strings
   * [text1] is the first string.
   * [text2] is the second string.
   * Returns the number of characters common to the end of each string.
   */
  int diff_commonSuffix(String text1, String text2) {
    // TODO: Once Dart's performance stabilizes, determine if linear or binary
    // search is better.
    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
    final text1_length = text1.length;
    final text2_length = text2.length;
    final n = min(text1_length, text2_length);
    for (int i = 1; i <= n; i++) {
      if (text1[text1_length - i] != text2[text2_length - i]) {
        return i - 1;
      }
    }
    return n;
  }

  /**
   * Determine if the suffix of one string is the prefix of another.
   * [text1] is the first string.
   * [text2] is the second string.
   * Returns the number of characters common to the end of the first
   *     string and the start of the second string.
   */
   int _diff_commonOverlap(String text1, String text2) {
    // Eliminate the null case.
    if (text1.isEmpty || text2.isEmpty) {
      return 0;
    }
    // Cache the text lengths to prevent multiple calls.
    final text1_length = text1.length;
    final text2_length = text2.length;
    // Truncate the longer string.
    if (text1_length > text2_length) {
      text1 = text1.substring(text1_length - text2_length);
    } else if (text1_length < text2_length) {
      text2 = text2.substring(0, text1_length);
    }
    final text_length = min(text1_length, text2_length);
    // Quick check for the worst case.
    if (text1 == text2) {
      return text_length;
    }

    // Start by looking for a single character match
    // and increase length until no match is found.
    // Performance analysis: http://neil.fraser.name/news/2010/11/04/
    int best = 0;
    int length = 1;
    while (true) {
      String pattern = text1.substring(text_length - length);
      int found = text2.indexOf(pattern);
      if (found == -1) {
        return best;
      }
      length += found;
      if (found == 0 || text1.substring(text_length - length) ==
          text2.substring(0, length)) {
        best = length;
        length++;
      }
    }
  }

  /**
   * Do the two texts share a substring which is at least half the length of
   * the longer text?
   * This speedup can produce non-minimal diffs.
   * [text1] is the first string.
   * [text2] is the second string.
   * Returns a five element List of Strings, containing the prefix of text1,
   *     the suffix of text1, the prefix of text2, the suffix of text2 and the
   *     common middle.  Or null if there was no match.
   */
  List<String> _diff_halfMatch(String text1, String text2) {
    if (Diff_Timeout <= 0) {
      // Don't risk returning a non-optimal diff if we have unlimited time.
      return null;
    }
    final longtext = text1.length > text2.length ? text1 : text2;
    final shorttext = text1.length > text2.length ? text2 : text1;
    if (longtext.length < 4 || shorttext.length * 2 < longtext.length) {
      return null;  // Pointless.
    }

    // First check if the second quarter is the seed for a half-match.
    final hm1 = _diff_halfMatchI(longtext, shorttext,
        ((longtext.length + 3) / 4).ceil().toInt());
    // Check again based on the third quarter.
    final hm2 = _diff_halfMatchI(longtext, shorttext,
        ((longtext.length + 1) / 2).ceil().toInt());
    List<String> hm;
    if (hm1 == null && hm2 == null) {
      return null;
    } else if (hm2 == null) {
      hm = hm1;
    } else if (hm1 == null) {
      hm = hm2;
    } else {
      // Both matched.  Select the longest.
      hm = hm1[4].length > hm2[4].length ? hm1 : hm2;
    }

    // A half-match was found, sort out the return data.
    if (text1.length > text2.length) {
      return hm;
      //return [hm[0], hm[1], hm[2], hm[3], hm[4]];
    } else {
      return [hm[2], hm[3], hm[0], hm[1], hm[4]];
    }
  }

  /**
   * Does a substring of shorttext exist within longtext such that the
   * substring is at least half the length of longtext?
   * [longtext] is the longer string.
   * [shorttext is the shorter string.
   * [i] Start index of quarter length substring within longtext.
   * Returns a five element String array, containing the prefix of longtext,
   *     the suffix of longtext, the prefix of shorttext, the suffix of
   *     shorttext and the common middle.  Or null if there was no match.
   */
  List<String> _diff_halfMatchI(String longtext, String shorttext, int i) {
    // Start with a 1/4 length substring at position i as a seed.
    final seed = longtext.substring(i,
        i + (longtext.length / 4).floor().toInt());
    int j = -1;
    String best_common = '';
    String best_longtext_a = '', best_longtext_b = '';
    String best_shorttext_a = '', best_shorttext_b = '';
    while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
      int prefixLength = diff_commonPrefix(longtext.substring(i),
                                           shorttext.substring(j));
      int suffixLength = diff_commonSuffix(longtext.substring(0, i),
                                           shorttext.substring(0, j));
      if (best_common.length < suffixLength + prefixLength) {
        best_common = '${shorttext.substring(j - suffixLength, j)}'
                      '${shorttext.substring(j, j + prefixLength)}';
        best_longtext_a = longtext.substring(0, i - suffixLength);
        best_longtext_b = longtext.substring(i + prefixLength);
        best_shorttext_a = shorttext.substring(0, j - suffixLength);
        best_shorttext_b = shorttext.substring(j + prefixLength);
      }
    }
    if (best_common.length * 2 >= longtext.length) {
      return [best_longtext_a, best_longtext_b,
              best_shorttext_a, best_shorttext_b, best_common];
    } else {
      return null;
    }
  }

  /**
   * Reduce the number of edits by eliminating semantically trivial equalities.
   * [diffs] is a List of Diff objects.
   */
  void diff_cleanupSemantic(List<Diff> diffs) {
    bool changes = false;
    // Stack of indices where equalities are found.
    final equalities = <int>[];
    // Always equal to diffs[equalities.last()].text
    String lastequality = null;
    int pointer = 0;  // Index of current position.
    // Number of characters that changed prior to the equality.
    int length_insertions1 = 0;
    int length_deletions1 = 0;
    // Number of characters that changed after the equality.
    int length_insertions2 = 0;
    int length_deletions2 = 0;
    while (pointer < diffs.length) {
      if (diffs[pointer].operation == DIFF_EQUAL) {  // Equality found.
        equalities.addLast(pointer);
        length_insertions1 = length_insertions2;
        length_deletions1 = length_deletions2;
        length_insertions2 = 0;
        length_deletions2 = 0;
        lastequality = diffs[pointer].text;
      } else {  // An insertion or deletion.
        if (diffs[pointer].operation == DIFF_INSERT) {
          length_insertions2 += diffs[pointer].text.length;
        } else {
          length_deletions2 += diffs[pointer].text.length;
        }
        // Eliminate an equality that is smaller or equal to the edits on both
        // sides of it.
        if (lastequality != null && (lastequality.length
            <= max(length_insertions1, length_deletions1))
            && (lastequality.length <= max(length_insertions2,
                                                length_deletions2))) {
          // Duplicate record.
          diffs.insertRange(equalities.last, 1,
                            new Diff(DIFF_DELETE, lastequality));
          // Change second copy to insert.
          diffs[equalities.last + 1].operation = DIFF_INSERT;
          // Throw away the equality we just deleted.
          equalities.removeLast();
          // Throw away the previous equality (it needs to be reevaluated).
          if (!equalities.isEmpty) {
            equalities.removeLast();
          }
          pointer = equalities.isEmpty ? -1 : equalities.last;
          length_insertions1 = 0;  // Reset the counters.
          length_deletions1 = 0;
          length_insertions2 = 0;
          length_deletions2 = 0;
          lastequality = null;
          changes = true;
        }
      }
      pointer++;
    }

    // Normalize the diff.
    if (changes) {
      diff_cleanupMerge(diffs);
    }
    _diff_cleanupSemanticLossless(diffs);

    // Find any overlaps between deletions and insertions.
    // e.g: <del>abcxxx</del><ins>xxxdef</ins>
    //   -> <del>abc</del>xxx<ins>def</ins>
    // e.g: <del>xxxabc</del><ins>defxxx</ins>
    //   -> <ins>def</ins>xxx<del>abc</del>
    // Only extract an overlap if it is as big as the edit ahead or behind it.
    pointer = 1;
    while (pointer < diffs.length) {
      if (diffs[pointer - 1].operation == DIFF_DELETE
          && diffs[pointer].operation == DIFF_INSERT) {
        String deletion = diffs[pointer - 1].text;
        String insertion = diffs[pointer].text;
        int overlap_length1 = _diff_commonOverlap(deletion, insertion);
        int overlap_length2 = _diff_commonOverlap(insertion, deletion);
        if (overlap_length1 >= overlap_length2) {
          if (overlap_length1 >= deletion.length / 2 ||
              overlap_length1 >= insertion.length / 2) {
            // Overlap found.
            // Insert an equality and trim the surrounding edits.
            diffs.insertRange(pointer, 1,
                new Diff(DIFF_EQUAL, insertion.substring(0, overlap_length1)));
            diffs[pointer - 1].text =
                deletion.substring(0, deletion.length - overlap_length1);
            diffs[pointer + 1].text = insertion.substring(overlap_length1);
            pointer++;
          }
        } else {
          if (overlap_length2 >= deletion.length / 2 ||
              overlap_length2 >= insertion.length / 2) {
            // Reverse overlap found.
            // Insert an equality and swap and trim the surrounding edits.
            diffs.insertRange(pointer, 1,
                new Diff(DIFF_EQUAL, deletion.substring(0, overlap_length2)));
            diffs[pointer - 1] = new Diff(DIFF_INSERT,
                insertion.substring(0, insertion.length - overlap_length2));
            diffs[pointer + 1] = new Diff(DIFF_DELETE,
                deletion.substring(overlap_length2));
            pointer++;
          }
        }
        pointer++;
      }
      pointer++;
    }
  }

  /**
   * Look for single edits surrounded on both sides by equalities
   * which can be shifted sideways to align the edit to a word boundary.
   * e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.
   * [diffs] is a List of Diff objects.
   */
  void _diff_cleanupSemanticLossless(List<Diff> diffs) {
    /**
     * Given two strings, compute a score representing whether the internal
     * boundary falls on logical boundaries.
     * Scores range from 6 (best) to 0 (worst).
     * Closure, but does not reference any external variables.
     * [one] the first string.
     * [two] the second string.
     * Returns the score.
     */
    int _diff_cleanupSemanticScore(String one, String two) {
      if (one.isEmpty || two.isEmpty) {
        // Edges are the best.
        return 6;
      }

      // Each port of this function behaves slightly differently due to
      // subtle differences in each language's definition of things like
      // 'whitespace'.  Since this function's purpose is largely cosmetic,
      // the choice has been made to use each language's native features
      // rather than force total conformity.
      String char1 = one[one.length - 1];
      String char2 = two[0];
      bool nonAlphaNumeric1 = char1.contains(nonAlphaNumericRegex_);
      bool nonAlphaNumeric2 = char2.contains(nonAlphaNumericRegex_);
      bool whitespace1 = nonAlphaNumeric1 && char1.contains(whitespaceRegex_);
      bool whitespace2 = nonAlphaNumeric2 && char2.contains(whitespaceRegex_);
      bool lineBreak1 = whitespace1 && char1.contains(linebreakRegex_);
      bool lineBreak2 = whitespace2 && char2.contains(linebreakRegex_);
      bool blankLine1 = lineBreak1 && one.contains(blanklineEndRegex_);
      bool blankLine2 = lineBreak2 && two.contains(blanklineStartRegex_);

      if (blankLine1 || blankLine2) {
        // Five points for blank lines.
        return 5;
      } else if (lineBreak1 || lineBreak2) {
        // Four points for line breaks.
        return 4;
      } else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
        // Three points for end of sentences.
        return 3;
      } else if (whitespace1 || whitespace2) {
        // Two points for whitespace.
        return 2;
      } else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
        // One point for non-alphanumeric.
        return 1;
      }
      return 0;
    }

    int pointer = 1;
    // Intentionally ignore the first and last element (don't need checking).
    while (pointer < diffs.length - 1) {
      if (diffs[pointer - 1].operation == DIFF_EQUAL
          && diffs[pointer + 1].operation == DIFF_EQUAL) {
        // This is a single edit surrounded by equalities.
        String equality1 = diffs[pointer - 1].text;
        String edit = diffs[pointer].text;
        String equality2 = diffs[pointer + 1].text;

        // First, shift the edit as far left as possible.
        int commonOffset = diff_commonSuffix(equality1, edit);
        if (commonOffset != 0) {
          String commonString = edit.substring(edit.length - commonOffset);
          equality1 = equality1.substring(0, equality1.length - commonOffset);
          edit =
              '$commonString${edit.substring(0, edit.length - commonOffset)}';
          equality2 = '$commonString$equality2';
        }

        // Second, step character by character right, looking for the best fit.
        String bestEquality1 = equality1;
        String bestEdit = edit;
        String bestEquality2 = equality2;
        int bestScore = _diff_cleanupSemanticScore(equality1, edit)
            + _diff_cleanupSemanticScore(edit, equality2);
        while (!edit.isEmpty && !equality2.isEmpty
            && edit[0] == equality2[0]) {
          equality1 = '$equality1${edit[0]}';
          edit = '${edit.substring(1)}${equality2[0]}';
          equality2 = equality2.substring(1);
          int score = _diff_cleanupSemanticScore(equality1, edit)
              + _diff_cleanupSemanticScore(edit, equality2);
          // The >= encourages trailing rather than leading whitespace on edits.
          if (score >= bestScore) {
            bestScore = score;
            bestEquality1 = equality1;
            bestEdit = edit;
            bestEquality2 = equality2;
          }
        }

        if (diffs[pointer - 1].text != bestEquality1) {
          // We have an improvement, save it back to the diff.
          if (!bestEquality1.isEmpty) {
            diffs[pointer - 1].text = bestEquality1;
          } else {
            diffs.removeRange(pointer - 1, 1);
            pointer--;
          }
          diffs[pointer].text = bestEdit;
          if (!bestEquality2.isEmpty) {
            diffs[pointer + 1].text = bestEquality2;
          } else {
            diffs.removeRange(pointer + 1, 1);
            pointer--;
          }
        }
      }
      pointer++;
    }
  }

  // Define some regex patterns for matching boundaries.
  RegExp nonAlphaNumericRegex_ = new RegExp(r'[^a-zA-Z0-9]');
  RegExp whitespaceRegex_ = new RegExp(r'\s');
  RegExp linebreakRegex_ = new RegExp(r'[\r\n]');
  RegExp blanklineEndRegex_ = new RegExp(r'\n\r?\n$');
  RegExp blanklineStartRegex_ = new RegExp(r'^\r?\n\r?\n');

  /**
   * Reduce the number of edits by eliminating operationally trivial equalities.
   * [diffs] is a List of Diff objects.
   */
  void diff_cleanupEfficiency(List<Diff> diffs) {
    bool changes = false;
    // Stack of indices where equalities are found.
    final equalities = <int>[];
    // Always equal to diffs[equalities.last()].text
    String lastequality = null;
    int pointer = 0;  // Index of current position.
    // Is there an insertion operation before the last equality.
    bool pre_ins = false;
    // Is there a deletion operation before the last equality.
    bool pre_del = false;
    // Is there an insertion operation after the last equality.
    bool post_ins = false;
    // Is there a deletion operation after the last equality.
    bool post_del = false;
    while (pointer < diffs.length) {
      if (diffs[pointer].operation == DIFF_EQUAL) {  // Equality found.
        if (diffs[pointer].text.length < Diff_EditCost
            && (post_ins || post_del)) {
          // Candidate found.
          equalities.addLast(pointer);
          pre_ins = post_ins;
          pre_del = post_del;
          lastequality = diffs[pointer].text;
        } else {
          // Not a candidate, and can never become one.
          equalities.clear();
          lastequality = null;
        }
        post_ins = post_del = false;
      } else {  // An insertion or deletion.
        if (diffs[pointer].operation == DIFF_DELETE) {
          post_del = true;
        } else {
          post_ins = true;
        }
        /*
         * Five types to be split:
         * <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del>
         * <ins>A</ins>X<ins>C</ins><del>D</del>
         * <ins>A</ins><del>B</del>X<ins>C</ins>
         * <ins>A</del>X<ins>C</ins><del>D</del>
         * <ins>A</ins><del>B</del>X<del>C</del>
         */
        if (lastequality != null
            && ((pre_ins && pre_del && post_ins && post_del)
            || ((lastequality.length < Diff_EditCost / 2)
            && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0) + (post_ins ? 1 : 0)
                + (post_del ? 1 : 0)) == 3))) {
          // Duplicate record.
          diffs.insertRange(equalities.last, 1,
                            new Diff(DIFF_DELETE, lastequality));
          // Change second copy to insert.
          diffs[equalities.last + 1].operation = DIFF_INSERT;
          equalities.removeLast();  // Throw away the equality we just deleted.
          lastequality = null;
          if (pre_ins && pre_del) {
            // No changes made which could affect previous entry, keep going.
            post_ins = post_del = true;
            equalities.clear();
          } else {
            if (!equalities.isEmpty) {
              equalities.removeLast();
            }
            pointer = equalities.isEmpty ? -1 : equalities.last;
            post_ins = post_del = false;
          }
          changes = true;
        }
      }
      pointer++;
    }

    if (changes) {
      diff_cleanupMerge(diffs);
    }
  }


  /**
   * Reorder and merge like edit sections.  Merge equalities.
   * Any edit section can move as long as it doesn't cross an equality.
   * [diffs] is a List of Diff objects.
   */
  void diff_cleanupMerge(List<Diff> diffs) {
    diffs.addLast(new Diff(DIFF_EQUAL, ''));  // Add a dummy entry at the end.
    int pointer = 0;
    int count_delete = 0;
    int count_insert = 0;
    String text_delete = '';
    String text_insert = '';
    int commonlength;
    while (pointer < diffs.length) {
      switch (diffs[pointer].operation) {
        case DIFF_INSERT:
          count_insert++;
          text_insert = '$text_insert${diffs[pointer].text}';
          pointer++;
          break;
        case DIFF_DELETE:
          count_delete++;
          text_delete = '$text_delete${diffs[pointer].text}';
          pointer++;
          break;
        case DIFF_EQUAL:
          // Upon reaching an equality, check for prior redundancies.
          if (count_delete + count_insert > 1) {
            if (count_delete != 0 && count_insert != 0) {
              // Factor out any common prefixies.
              commonlength = diff_commonPrefix(text_insert, text_delete);
              if (commonlength != 0) {
                if ((pointer - count_delete - count_insert) > 0
                    && diffs[pointer - count_delete - count_insert - 1]
                    .operation == DIFF_EQUAL) {
                  final i = pointer - count_delete - count_insert - 1;
                  diffs[i].text = '${diffs[i].text}'
                      '${text_insert.substring(0, commonlength)}';
                } else {
                  diffs.insertRange(0, 1, new Diff(DIFF_EQUAL,
                                    text_insert.substring(0, commonlength)));
                  pointer++;
                }
                text_insert = text_insert.substring(commonlength);
                text_delete = text_delete.substring(commonlength);
              }
              // Factor out any common suffixies.
              commonlength = diff_commonSuffix(text_insert, text_delete);
              if (commonlength != 0) {
                diffs[pointer].text =
                    '${text_insert.substring(text_insert.length
                    - commonlength)}${diffs[pointer].text}';
                text_insert = text_insert.substring(0, text_insert.length
                    - commonlength);
                text_delete = text_delete.substring(0, text_delete.length
                    - commonlength);
              }
            }
            // Delete the offending records and add the merged ones.
            if (count_delete == 0) {
              diffs.removeRange(pointer - count_insert, count_insert);
              diffs.insertRange(pointer - count_insert, 1,
                  new Diff(DIFF_INSERT, text_insert));
            } else if (count_insert == 0) {
              diffs.removeRange(pointer - count_delete, count_delete);
              diffs.insertRange(pointer - count_delete, 1,
                  new Diff(DIFF_DELETE, text_delete));
            } else {
              diffs.removeRange(pointer - count_delete - count_insert,
                  count_delete + count_insert);
              diffs.insertRange(pointer - count_delete - count_insert, 1,
                  new Diff(DIFF_INSERT, text_insert));
              diffs.insertRange(pointer - count_delete - count_insert, 1,
                  new Diff(DIFF_DELETE, text_delete));
            }
            pointer = pointer - count_delete - count_insert
                      + (count_delete == 0 ? 0 : 1)
                      + (count_insert == 0 ? 0 : 1) + 1;
          } else if (pointer != 0 && diffs[pointer - 1].operation
              == DIFF_EQUAL) {
            // Merge this equality with the previous one.
            diffs[pointer - 1].text =
                '${diffs[pointer - 1].text}${diffs[pointer].text}';
            diffs.removeRange(pointer, 1);
          } else {
            pointer++;
          }
          count_insert = 0;
          count_delete = 0;
          text_delete = '';
          text_insert = '';
          break;
      }
    }
    if (diffs.last.text.isEmpty) {
      diffs.removeLast();  // Remove the dummy entry at the end.
    }

    // Second pass: look for single edits surrounded on both sides by equalities
    // which can be shifted sideways to eliminate an equality.
    // e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC
    bool changes = false;
    pointer = 1;
    // Intentionally ignore the first and last element (don't need checking).
    while (pointer < diffs.length - 1) {
      if (diffs[pointer - 1].operation == DIFF_EQUAL
          && diffs[pointer + 1].operation == DIFF_EQUAL) {
        // This is a single edit surrounded by equalities.
        if (diffs[pointer].text.endsWith(diffs[pointer - 1].text)) {
          // Shift the edit over the previous equality.
          diffs[pointer].text = '${diffs[pointer - 1].text}'
              '${diffs[pointer].text.substring(0,
              diffs[pointer].text.length - diffs[pointer - 1].text.length)}';
          diffs[pointer + 1].text =
              '${diffs[pointer - 1].text}${diffs[pointer + 1].text}';
          diffs.removeRange(pointer - 1, 1);
          changes = true;
        } else if (diffs[pointer].text.startsWith(diffs[pointer + 1].text)) {
          // Shift the edit over the next equality.
          diffs[pointer - 1].text =
              '${diffs[pointer - 1].text}${diffs[pointer + 1].text}';
          diffs[pointer].text =
              '${diffs[pointer].text.substring(diffs[pointer + 1].text.length)}'
              '${diffs[pointer + 1].text}';
          diffs.removeRange(pointer + 1, 1);
          changes = true;
        }
      }
      pointer++;
    }
    // If shifts were made, the diff needs reordering and another shift sweep.
    if (changes) {
      diff_cleanupMerge(diffs);
    }
  }

  /**
   * loc is a location in text1, compute and return the equivalent location in
   * text2.
   * e.g. "The cat" vs "The big cat", 1->1, 5->8
   * [diffs] is a List of Diff objects.
   * [loc] is the location within text1.
   * Returns the location within text2.
   */
  int diff_xIndex(List<Diff> diffs, int loc) {
    int chars1 = 0;
    int chars2 = 0;
    int last_chars1 = 0;
    int last_chars2 = 0;
    Diff lastDiff = null;
    for (Diff aDiff in diffs) {
      if (aDiff.operation != DIFF_INSERT) {
        // Equality or deletion.
        chars1 += aDiff.text.length;
      }
      if (aDiff.operation != DIFF_DELETE) {
        // Equality or insertion.
        chars2 += aDiff.text.length;
      }
      if (chars1 > loc) {
        // Overshot the location.
        lastDiff = aDiff;
        break;
      }
      last_chars1 = chars1;
      last_chars2 = chars2;
    }
    if (lastDiff != null && lastDiff.operation == DIFF_DELETE) {
      // The location was deleted.
      return last_chars2;
    }
    // Add the remaining character length.
    return last_chars2 + (loc - last_chars1);
  }

  /**
   * Convert a Diff list into a pretty HTML report.
   * [diffs] is a List of Diff objects.
   * Returns an HTML representation.
   */
  String diff_prettyHtml(List<Diff> diffs) {
    final html = new StringBuffer();
    for (Diff aDiff in diffs) {
      String text = aDiff.text.replaceAll('&', '&amp;').replaceAll('<', '&lt;')
          .replaceAll('>', '&gt;').replaceAll('\n', '&para;<br>');
      switch (aDiff.operation) {
      case DIFF_INSERT:
        html.add('<ins style="background:#e6ffe6;">').add(text)
            .add('</ins>');
        break;
      case DIFF_DELETE:
        html.add('<del style="background:#ffe6e6;">').add(text)
            .add('</del>');
        break;
      case DIFF_EQUAL:
        html.add('<span>').add(text).add('</span>');
        break;
      }
    }
    return html.toString();
  }

  /**
   * Compute and return the source text (all equalities and deletions).
   * [diffs] is a List of Diff objects.
   * Returns the source text.
   */
  String diff_text1(List<Diff> diffs) {
    final text = new StringBuffer();
    for (Diff aDiff in diffs) {
      if (aDiff.operation != DIFF_INSERT) {
        text.add(aDiff.text);
      }
    }
    return text.toString();
  }

  /**
   * Compute and return the destination text (all equalities and insertions).
   * [diffs] is a List of Diff objects.
   * Returns the destination text.
   */
  String diff_text2(List<Diff> diffs) {
    final text = new StringBuffer();
    for (Diff aDiff in diffs) {
      if (aDiff.operation != DIFF_DELETE) {
        text.add(aDiff.text);
      }
    }
    return text.toString();
  }

  /**
   * Compute the Levenshtein distance; the number of inserted, deleted or
   * substituted characters.
   * [diffs] is a List of Diff objects.
   * Returns the number of changes.
   */
  int diff_levenshtein(List<Diff> diffs) {
    int levenshtein = 0;
    int insertions = 0;
    int deletions = 0;
    for (Diff aDiff in diffs) {
      switch (aDiff.operation) {
      case DIFF_INSERT:
        insertions += aDiff.text.length;
        break;
      case DIFF_DELETE:
        deletions += aDiff.text.length;
        break;
      case DIFF_EQUAL:
        // A deletion and an insertion is one substitution.
        levenshtein += max(insertions, deletions);
        insertions = 0;
        deletions = 0;
        break;
      }
    }
    levenshtein += max(insertions, deletions);
    return levenshtein;
  }

  /**
   * Crush the diff into an encoded string which describes the operations
   * required to transform text1 into text2.
   * E.g. =3\t-2\t+ing  -> Keep 3 chars, delete 2 chars, insert 'ing'.
   * Operations are tab-separated.  Inserted text is escaped using %xx notation.
   * [diffs] is a List of Diff objects.
   * Returns the delta text.
   */
  String diff_toDelta(List<Diff> diffs) {
    final text = new StringBuffer();
    for (Diff aDiff in diffs) {
      switch (aDiff.operation) {
      case DIFF_INSERT:
        text.add('+').add(encodeUri(aDiff.text)).add('\t');
        break;
      case DIFF_DELETE:
        text.add('-').add(aDiff.text.length).add('\t');
        break;
      case DIFF_EQUAL:
        text.add('=').add(aDiff.text.length).add('\t');
        break;
      }
    }
    String delta = text.toString();
    if (!delta.isEmpty) {
      // Strip off trailing tab character.
      delta = delta.substring(0, delta.length - 1);
    }
    return delta.replaceAll('%20', ' ');
  }

  /**
   * Given the original text1, and an encoded string which describes the
   * operations required to transform text1 into text2, compute the full diff.
   * [text1] is the source string for the diff.
   * [delta] is the delta text.
   * Returns a List of Diff objects or null if invalid.
   * Throws ArgumentError if invalid input.
   */
  List<Diff> diff_fromDelta(String text1, String delta) {
    final diffs = <Diff>[];
    int pointer = 0;  // Cursor in text1
    final tokens = delta.split('\t');
    for (String token in tokens) {
      if (token.length == 0) {
        // Blank tokens are ok (from a trailing \t).
        continue;
      }
      // Each token begins with a one character parameter which specifies the
      // operation of this token (delete, insert, equality).
      String param = token.substring(1);
      switch (token[0]) {
      case '+':
        // decode would change all "+" to " "
        param = param.replaceAll('+', '%2B');
        try {
          param = decodeUri(param);
        } on ArgumentError catch (e) {
          // Malformed URI sequence.
          throw new ArgumentError(
              'Illegal escape in diff_fromDelta: $param');
        }
        diffs.add(new Diff(DIFF_INSERT, param));
        break;
      case '-':
        // Fall through.
      case '=':
        int n;
        try {
          n = int.parse(param);
        } on FormatException catch (e) {
          throw new ArgumentError(
              'Invalid number in diff_fromDelta: $param');
        }
        if (n < 0) {
          throw new ArgumentError(
              'Negative number in diff_fromDelta: $param');
        }
        String text;
        try {
          text = text1.substring(pointer, pointer += n);
        } on RangeError catch (e) {
          throw new ArgumentError('Delta length ($pointer)'
              ' larger than source text length (${text1.length}).');
        }
        if (token[0] == '=') {
          diffs.add(new Diff(DIFF_EQUAL, text));
        } else {
          diffs.add(new Diff(DIFF_DELETE, text));
        }
        break;
      default:
        // Anything else is an error.
        throw new ArgumentError(
            'Invalid diff operation in diff_fromDelta: ${token[0]}');
      }
    }
    if (pointer != text1.length) {
      throw new ArgumentError('Delta length ($pointer)'
          ' smaller than source text length (${text1.length}).');
    }
    return diffs;
  }


  //  MATCH FUNCTIONS


  /**
   * Locate the best instance of 'pattern' in 'text' near 'loc'.
   * Returns -1 if no match found.
   * [text] is the text to search.
   * [pattern] is the pattern to search for.
   * [loc] is the location to search around.
   * Returns the best match index or -1.
   */
  int match_main(String text, String pattern, int loc) {
    // Check for null inputs.
    if (text == null || pattern == null) {
      throw new ArgumentError('Null inputs. (match_main)');
    }

    loc = max(0, min(loc, text.length));
    if (text == pattern) {
      // Shortcut (potentially not guaranteed by the algorithm)
      return 0;
    } else if (text.length == 0) {
      // Nothing to match.
      return -1;
    } else if (loc + pattern.length <= text.length
        && text.substring(loc, loc + pattern.length) == pattern) {
      // Perfect match at the perfect spot!  (Includes case of null pattern)
      return loc;
    } else {
      // Do a fuzzy compare.
      return _match_bitap(text, pattern, loc);
    }
  }

  /**
   * Locate the best instance of 'pattern' in 'text' near 'loc' using the
   * Bitap algorithm.  Returns -1 if no match found.
   * [text] is the the text to search.
   * [pattern] is the pattern to search for.
   * [loc] is the location to search around.
   * Returns the best match index or -1.
   */
  int _match_bitap(String text, String pattern, int loc) {
    Expect.isTrue(Match_MaxBits == 0 || pattern.length <= Match_MaxBits,
        'Pattern too long for this application.');

    // Initialise the alphabet.
    Map<String, int> s = _match_alphabet(pattern);

    // Highest score beyond which we give up.
    double score_threshold = Match_Threshold;
    // Is there a nearby exact match? (speedup)
    int best_loc = text.indexOf(pattern, loc);
    if (best_loc != -1) {
      score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern),
          score_threshold);
      // What about in the other direction? (speedup)
      best_loc = text.lastIndexOf(pattern, loc + pattern.length);
      if (best_loc != -1) {
        score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern),
            score_threshold);
      }
    }

    // Initialise the bit arrays.
    final matchmask = 1 << (pattern.length - 1);
    best_loc = -1;

    int bin_min, bin_mid;
    int bin_max = pattern.length + text.length;
    List<int> last_rd;
    for (int d = 0; d < pattern.length; d++) {
      // Scan for the best match; each iteration allows for one more error.
      // Run a binary search to determine how far from 'loc' we can stray at
      // this error level.
      bin_min = 0;
      bin_mid = bin_max;
      while (bin_min < bin_mid) {
        if (_match_bitapScore(d, loc + bin_mid, loc, pattern)
            <= score_threshold) {
          bin_min = bin_mid;
        } else {
          bin_max = bin_mid;
        }
        bin_mid = ((bin_max - bin_min) / 2 + bin_min).toInt();
      }
      // Use the result from this iteration as the maximum for the next.
      bin_max = bin_mid;
      int start = max(1, loc - bin_mid + 1);
      int finish = min(loc + bin_mid, text.length) + pattern.length;

      final rd = new List<int>(finish + 2);
      rd[finish + 1] = (1 << d) - 1;
      for (int j = finish; j >= start; j--) {
        int charMatch;
        if (text.length <= j - 1 || !s.containsKey(text[j - 1])) {
          // Out of range.
          charMatch = 0;
        } else {
          charMatch = s[text[j - 1]];
        }
        if (d == 0) {
          // First pass: exact match.
          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch;
        } else {
          // Subsequent passes: fuzzy match.
          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch
              | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1];
        }
        if ((rd[j] & matchmask) != 0) {
          double score = _match_bitapScore(d, j - 1, loc, pattern);
          // This match will almost certainly be better than any existing
          // match.  But check anyway.
          if (score <= score_threshold) {
            // Told you so.
            score_threshold = score;
            best_loc = j - 1;
            if (best_loc > loc) {
              // When passing loc, don't exceed our current distance from loc.
              start = max(1, 2 * loc - best_loc);
            } else {
              // Already passed loc, downhill from here on in.
              break;
            }
          }
        }
      }
      if (_match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) {
        // No hope for a (better) match at greater error levels.
        break;
      }
      last_rd = rd;
    }
    return best_loc;
  }

  /**
   * Compute and return the score for a match with e errors and x location.
   * [e] is the number of errors in match.
   * [x] is the location of match.
   * [loc] is the expected location of match.
   * [pattern] is the pattern being sought.
   * Returns the overall score for match (0.0 = good, 1.0 = bad).
   */
  double _match_bitapScore(int e, int x, int loc, String pattern) {
    final accuracy = e / pattern.length;
    final proximity = (loc - x).abs();
    if (Match_Distance == 0) {
      // Dodge divide by zero error.
      return proximity == 0 ? accuracy : 1.0;
    }
    return accuracy + proximity / Match_Distance;
  }

  /**
   * Initialise the alphabet for the Bitap algorithm.
   * [pattern] is the the text to encode.
   * Returns a Map of character locations.
   */
  Map<String, int> _match_alphabet(String pattern) {
    final s = new HashMap<String, int>();
    for (int i = 0; i < pattern.length; i++) {
      s[pattern[i]] = 0;
    }
    for (int i = 0; i < pattern.length; i++) {
      s[pattern[i]] = s[pattern[i]] | (1 << (pattern.length - i - 1));
    }
    return s;
  }


  //  PATCH FUNCTIONS


  /**
   * Increase the context until it is unique,
   * but don't let the pattern expand beyond Match_MaxBits.
   * [patch] is the phe patch to grow.
   * [text] is the source text.
   */
  void _patch_addContext(Patch patch, String text) {
    if (text.isEmpty) {
      return;
    }
    String pattern = text.substring(patch.start2, patch.start2 + patch.length1);
    int padding = 0;

    // Look for the first and last matches of pattern in text.  If two different
    // matches are found, increase the pattern length.
    while (text.indexOf(pattern) != text.lastIndexOf(pattern)
        && pattern.length < Match_MaxBits - Patch_Margin - Patch_Margin) {
      padding += Patch_Margin;
      pattern = text.substring(max(0, patch.start2 - padding),
          min(text.length, patch.start2 + patch.length1 + padding));
    }
    // Add one chunk for good luck.
    padding += Patch_Margin;

    // Add the prefix.
    final prefix = text.substring(max(0, patch.start2 - padding),
        patch.start2);
    if (!prefix.isEmpty) {
      patch.diffs.insertRange(0, 1, new Diff(DIFF_EQUAL, prefix));
    }
    // Add the suffix.
    final suffix = text.substring(patch.start2 + patch.length1,
        min(text.length, patch.start2 + patch.length1 + padding));
    if (!suffix.isEmpty) {
      patch.diffs.addLast(new Diff(DIFF_EQUAL, suffix));
    }

    // Roll back the start points.
    patch.start1 -= prefix.length;
    patch.start2 -= prefix.length;
    // Extend the lengths.
    patch.length1 += prefix.length + suffix.length;
    patch.length2 += prefix.length + suffix.length;
  }

  /**
   * Compute a list of patches to turn text1 into text2.
   * Use diffs if provided, otherwise compute it ourselves.
   * There are four ways to call this function, depending on what data is
   * available to the caller:
   * Method 1:
   * [a] = text1, [opt_b] = text2
   * Method 2:
   * [a] = diffs
   * Method 3 (optimal):
   * [a] = text1, [opt_b] = diffs
   * Method 4 (deprecated, use method 3):
   * [a] = text1, [opt_b] = text2, [opt_c] = diffs
   * Returns a List of Patch objects.
   */
  List<Patch> patch_make(a, [opt_b, opt_c]) {
    String text1;
    List<Diff> diffs;
    if (a is String && opt_b is String && opt_c == null) {
      // Method 1: text1, text2
      // Compute diffs from text1 and text2.
      text1 = a;
      diffs = diff_main(text1, opt_b, true);
      if (diffs.length > 2) {
        diff_cleanupSemantic(diffs);
        diff_cleanupEfficiency(diffs);
      }
    } else if (a is List && opt_b == null && opt_c == null) {
      // Method 2: diffs
      // Compute text1 from diffs.
      diffs = a;
      text1 = diff_text1(diffs);
    } else if (a is String && opt_b is List && opt_c == null) {
      // Method 3: text1, diffs
      text1 = a;
      diffs = opt_b;
    } else if (a is String && opt_b is String && opt_c is List) {
      // Method 4: text1, text2, diffs
      // text2 is not used.
      text1 = a;
      diffs = opt_c;
    } else {
      throw new ArgumentError('Unknown call format to patch_make.');
    }

    final patches = <Patch>[];
    if (diffs.isEmpty) {
      return patches;  // Get rid of the null case.
    }
    Patch patch = new Patch();
    final postpatch_buffer = new StringBuffer();
    int char_count1 = 0;  // Number of characters into the text1 string.
    int char_count2 = 0;  // Number of characters into the text2 string.
    // Start with text1 (prepatch_text) and apply the diffs until we arrive at
    // text2 (postpatch_text). We recreate the patches one by one to determine
    // context info.
    String prepatch_text = text1;
    String postpatch_text = text1;
    for (Diff aDiff in diffs) {
      if (patch.diffs.isEmpty && aDiff.operation != DIFF_EQUAL) {
        // A new patch starts here.
        patch.start1 = char_count1;
        patch.start2 = char_count2;
      }

      switch (aDiff.operation) {
      case DIFF_INSERT:
        patch.diffs.add(aDiff);
        patch.length2 += aDiff.text.length;
        postpatch_buffer.clear();
        postpatch_text =
            postpatch_buffer.add(postpatch_text.substring(0, char_count2))
            .add(aDiff.text).add(postpatch_text.substring(char_count2))
            .toString();
        break;
      case DIFF_DELETE:
        patch.length1 += aDiff.text.length;
        patch.diffs.add(aDiff);
        postpatch_buffer.clear();
        postpatch_text =
            postpatch_buffer.add(postpatch_text.substring(0, char_count2))
            .add(postpatch_text.substring(char_count2 + aDiff.text.length))
            .toString();
        break;
      case DIFF_EQUAL:
        if (aDiff.text.length <= 2 * Patch_Margin
            && !patch.diffs.isEmpty && aDiff != diffs.last) {
          // Small equality inside a patch.
          patch.diffs.add(aDiff);
          patch.length1 += aDiff.text.length;
          patch.length2 += aDiff.text.length;
        }

        if (aDiff.text.length >= 2 * Patch_Margin) {
          // Time for a new patch.
          if (!patch.diffs.isEmpty) {
            _patch_addContext(patch, prepatch_text);
            patches.add(patch);
            patch = new Patch();
            // Unlike Unidiff, our patch lists have a rolling context.
            // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff
            // Update prepatch text & pos to reflect the application of the
            // just completed patch.
            prepatch_text = postpatch_text;
            char_count1 = char_count2;
          }
        }
        break;
      }

      // Update the current character count.
      if (aDiff.operation != DIFF_INSERT) {
        char_count1 += aDiff.text.length;
      }
      if (aDiff.operation != DIFF_DELETE) {
        char_count2 += aDiff.text.length;
      }
    }
    // Pick up the leftover patch if not empty.
    if (!patch.diffs.isEmpty) {
      _patch_addContext(patch, prepatch_text);
      patches.add(patch);
    }

    return patches;
  }

  /**
   * Given an array of patches, return another array that is identical.
   * [patches] is a List of Patch objects.
   * Returns a List of Patch objects.
   */
  List<Patch> patch_deepCopy(List<Patch> patches) {
    final patchesCopy = <Patch>[];
    for (Patch aPatch in patches) {
      final patchCopy = new Patch();
      for (Diff aDiff in aPatch.diffs) {
        patchCopy.diffs.add(new Diff(aDiff.operation, aDiff.text));
      }
      patchCopy.start1 = aPatch.start1;
      patchCopy.start2 = aPatch.start2;
      patchCopy.length1 = aPatch.length1;
      patchCopy.length2 = aPatch.length2;
      patchesCopy.add(patchCopy);
    }
    return patchesCopy;
  }

  /**
   * Merge a set of patches onto the text.  Return a patched text, as well
   * as an array of true/false values indicating which patches were applied.
   * [patches] is a List of Patch objects
   * [text] is the old text.
   * Returns a two element List, containing the new text and a List of
   *      bool values.
   */
  List patch_apply(List<Patch> patches, String text) {
    if (patches.isEmpty) {
      return [text, []];
    }

    // Deep copy the patches so that no changes are made to originals.
    patches = patch_deepCopy(patches);

    final nullPadding = patch_addPadding(patches);
    text = '$nullPadding$text$nullPadding';
    patch_splitMax(patches);

    final text_buffer = new StringBuffer();
    int x = 0;
    // delta keeps track of the offset between the expected and actual location
    // of the previous patch.  If there are patches expected at positions 10 and
    // 20, but the first patch was found at 12, delta is 2 and the second patch
    // has an effective expected position of 22.
    int delta = 0;
    final results = new List<bool>(patches.length);
    for (Patch aPatch in patches) {
      int expected_loc = aPatch.start2 + delta;
      String text1 = diff_text1(aPatch.diffs);
      int start_loc;
      int end_loc = -1;
      if (text1.length > Match_MaxBits) {
        // patch_splitMax will only provide an oversized pattern in the case of
        // a monster delete.
        start_loc = match_main(text,
            text1.substring(0, Match_MaxBits), expected_loc);
        if (start_loc != -1) {
          end_loc = match_main(text,
              text1.substring(text1.length - Match_MaxBits),
              expected_loc + text1.length - Match_MaxBits);
          if (end_loc == -1 || start_loc >= end_loc) {
            // Can't find valid trailing context.  Drop this patch.
            start_loc = -1;
          }
        }
      } else {
        start_loc = match_main(text, text1, expected_loc);
      }
      if (start_loc == -1) {
        // No match found.  :(
        results[x] = false;
        // Subtract the delta for this failed patch from subsequent patches.
        delta -= aPatch.length2 - aPatch.length1;
      } else {
        // Found a match.  :)
        results[x] = true;
        delta = start_loc - expected_loc;
        String text2;
        if (end_loc == -1) {
          text2 = text.substring(start_loc,
              min(start_loc + text1.length, text.length));
        } else {
          text2 = text.substring(start_loc,
              min(end_loc + Match_MaxBits, text.length));
        }
        if (text1 == text2) {
          // Perfect match, just shove the replacement text in.
          text_buffer.clear();
          text = text_buffer.add(text.substring(0, start_loc))
              .add(diff_text2(aPatch.diffs))
              .add(text.substring(start_loc + text1.length)).toString();
        } else {
          // Imperfect match.  Run a diff to get a framework of equivalent
          // indices.
          final diffs = diff_main(text1, text2, false);
          if (text1.length > Match_MaxBits
              && diff_levenshtein(diffs) / text1.length
              > Patch_DeleteThreshold) {
            // The end points match, but the content is unacceptably bad.
            results[x] = false;
          } else {
            _diff_cleanupSemanticLossless(diffs);
            int index1 = 0;
            for (Diff aDiff in aPatch.diffs) {
              if (aDiff.operation != DIFF_EQUAL) {
                int index2 = diff_xIndex(diffs, index1);
                if (aDiff.operation == DIFF_INSERT) {
                  // Insertion
                  text_buffer.clear();
                  text = text_buffer.add(text.substring(0, start_loc + index2))
                      .add(aDiff.text)
                      .add(text.substring(start_loc + index2)).toString();
                } else if (aDiff.operation == DIFF_DELETE) {
                  // Deletion
                  text_buffer.clear();
                  text = text_buffer.add(text.substring(0, start_loc + index2))
                      .add(text.substring(start_loc + diff_xIndex(diffs,
                      index1 + aDiff.text.length))).toString();
                }
              }
              if (aDiff.operation != DIFF_DELETE) {
                index1 += aDiff.text.length;
              }
            }
          }
        }
      }
      x++;
    }
    // Strip the padding off.
    text = text.substring(nullPadding.length, text.length - nullPadding.length);
    return [text, results];
  }

  /**
   * Add some padding on text start and end so that edges can match something.
   * Intended to be called only from within patch_apply.
   * [patches] is a List of Patch objects.
   * Returns the padding string added to each side.
   */
  String patch_addPadding(List<Patch> patches) {
    final paddingLength = Patch_Margin;
    final paddingCodes = <int>[];
    for (int x = 1; x <= paddingLength; x++) {
      paddingCodes.add(x);
    }
    String nullPadding = new String.fromCharCodes(paddingCodes);

    // Bump all the patches forward.
    for (Patch aPatch in patches) {
      aPatch.start1 += paddingLength;
      aPatch.start2 += paddingLength;
    }

    // Add some padding on start of first diff.
    Patch patch = patches[0];
    List<Diff> diffs = patch.diffs;
    if (diffs.isEmpty || diffs[0].operation != DIFF_EQUAL) {
      // Add nullPadding equality.
      diffs.insertRange(0, 1, new Diff(DIFF_EQUAL, nullPadding));
      patch.start1 -= paddingLength;  // Should be 0.
      patch.start2 -= paddingLength;  // Should be 0.
      patch.length1 += paddingLength;
      patch.length2 += paddingLength;
    } else if (paddingLength > diffs[0].text.length) {
      // Grow first equality.
      Diff firstDiff = diffs[0];
      int extraLength = paddingLength - firstDiff.text.length;
      firstDiff.text =
          '${nullPadding.substring(firstDiff.text.length)}${firstDiff.text}';
      patch.start1 -= extraLength;
      patch.start2 -= extraLength;
      patch.length1 += extraLength;
      patch.length2 += extraLength;
    }

    // Add some padding on end of last diff.
    patch = patches.last;
    diffs = patch.diffs;
    if (diffs.isEmpty || diffs.last.operation != DIFF_EQUAL) {
      // Add nullPadding equality.
      diffs.addLast(new Diff(DIFF_EQUAL, nullPadding));
      patch.length1 += paddingLength;
      patch.length2 += paddingLength;
    } else if (paddingLength > diffs.last.text.length) {
      // Grow last equality.
      Diff lastDiff = diffs.last;
      int extraLength = paddingLength - lastDiff.text.length;
      lastDiff.text =
          '${lastDiff.text}${nullPadding.substring(0, extraLength)}';
      patch.length1 += extraLength;
      patch.length2 += extraLength;
    }

    return nullPadding;
  }

  /**
   * Look through the patches and break up any which are longer than the
   * maximum limit of the match algorithm.
   * Intended to be called only from within patch_apply.
   * [patches] is a List of Patch objects.
   */
  patch_splitMax(List<Patch> patches) {
    final patch_size = Match_MaxBits;
    for (var x = 0; x < patches.length; x++) {
      if (patches[x].length1 <= patch_size) {
        continue;
      }
      Patch bigpatch = patches[x];
      // Remove the big old patch.
      patches.removeRange(x--, 1);
      int start1 = bigpatch.start1;
      int start2 = bigpatch.start2;
      String precontext = '';
      while (!bigpatch.diffs.isEmpty) {
        // Create one of several smaller patches.
        final patch = new Patch();
        bool empty = true;
        patch.start1 = start1 - precontext.length;
        patch.start2 = start2 - precontext.length;
        if (!precontext.isEmpty) {
          patch.length1 = patch.length2 = precontext.length;
          patch.diffs.add(new Diff(DIFF_EQUAL, precontext));
        }
        while (!bigpatch.diffs.isEmpty
            && patch.length1 < patch_size - Patch_Margin) {
          int diff_type = bigpatch.diffs[0].operation;
          String diff_text = bigpatch.diffs[0].text;
          if (diff_type == DIFF_INSERT) {
            // Insertions are harmless.
            patch.length2 += diff_text.length;
            start2 += diff_text.length;
            patch.diffs.addLast(bigpatch.diffs[0]);
            bigpatch.diffs.removeRange(0, 1);
            empty = false;
          } else if (diff_type == DIFF_DELETE && patch.diffs.length == 1
              && patch.diffs[0].operation == DIFF_EQUAL
              && diff_text.length > 2 * patch_size) {
            // This is a large deletion.  Let it pass in one chunk.
            patch.length1 += diff_text.length;
            start1 += diff_text.length;
            empty = false;
            patch.diffs.add(new Diff(diff_type, diff_text));
            bigpatch.diffs.removeRange(0, 1);
          } else {
            // Deletion or equality.  Only take as much as we can stomach.
            diff_text = diff_text.substring(0, min(diff_text.length,
                patch_size - patch.length1 - Patch_Margin));
            patch.length1 += diff_text.length;
            start1 += diff_text.length;
            if (diff_type == DIFF_EQUAL) {
              patch.length2 += diff_text.length;
              start2 += diff_text.length;
            } else {
              empty = false;
            }
            patch.diffs.add(new Diff(diff_type, diff_text));
            if (diff_text == bigpatch.diffs[0].text) {
              bigpatch.diffs.removeRange(0, 1);
            } else {
              bigpatch.diffs[0].text = bigpatch.diffs[0].text
                  .substring(diff_text.length);
            }
          }
        }
        // Compute the head context for the next patch.
        precontext = diff_text2(patch.diffs);
        precontext = precontext.substring(max(0, precontext.length
            - Patch_Margin));
        // Append the end context for this patch.
        String postcontext;
        if (diff_text1(bigpatch.diffs).length > Patch_Margin) {
          postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin);
        } else {
          postcontext = diff_text1(bigpatch.diffs);
        }
        if (!postcontext.isEmpty) {
          patch.length1 += postcontext.length;
          patch.length2 += postcontext.length;
          if (!patch.diffs.isEmpty
              && patch.diffs.last.operation == DIFF_EQUAL) {
            patch.diffs.last.text = '${patch.diffs.last.text}$postcontext';
          } else {
            patch.diffs.add(new Diff(DIFF_EQUAL, postcontext));
          }
        }
        if (!empty) {
          patches.insertRange(++x, 1, patch);
        }
      }
    }
  }

  /**
   * Take a list of patches and return a textual representation.
   * [patches] is a List of Patch objects.
   * Returns a text representation of patches.
   */
  String patch_toText(List<Patch> patches) {
    final text = new StringBuffer();
    for (Patch aPatch in patches) {
      text.add(aPatch);
    }
    return text.toString();
  }

  /**
   * Parse a textual representation of patches and return a List of Patch
   * objects.
   * [textline] is a text representation of patches.
   * Returns a List of Patch objects.
   * Throws ArgumentError if invalid input.
   */
  List<Patch> patch_fromText(String textline) {
    final patches = <Patch>[];
    if (textline.isEmpty) {
      return patches;
    }
    final text = textline.split('\n');
    int textPointer = 0;
    final patchHeader
        = new RegExp('^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@\$');
    while (textPointer < text.length) {
      Match m = patchHeader.firstMatch(text[textPointer]);
      if (m == null) {
        throw new ArgumentError(
            'Invalid patch string: ${text[textPointer]}');
      }
      final patch = new Patch();
      patches.add(patch);
      patch.start1 = int.parse(m.group(1));
      if (m.group(2).isEmpty) {
        patch.start1--;
        patch.length1 = 1;
      } else if (m.group(2) == '0') {
        patch.length1 = 0;
      } else {
        patch.start1--;
        patch.length1 = int.parse(m.group(2));
      }

      patch.start2 = int.parse(m.group(3));
      if (m.group(4).isEmpty) {
        patch.start2--;
        patch.length2 = 1;
      } else if (m.group(4) == '0') {
        patch.length2 = 0;
      } else {
        patch.start2--;
        patch.length2 = int.parse(m.group(4));
      }
      textPointer++;

      while (textPointer < text.length) {
        if (!text[textPointer].isEmpty) {
          final sign = text[textPointer][0];
          String line;
          try {
            line = decodeUri(text[textPointer].substring(1));
          } on ArgumentError catch (e) {
            // Malformed URI sequence.
            throw new ArgumentError(
                'Illegal escape in patch_fromText: $line');
          }
          if (sign == '-') {
            // Deletion.
            patch.diffs.add(new Diff(DIFF_DELETE, line));
          } else if (sign == '+') {
            // Insertion.
            patch.diffs.add(new Diff(DIFF_INSERT, line));
          } else if (sign == ' ') {
            // Minor equality.
            patch.diffs.add(new Diff(DIFF_EQUAL, line));
          } else if (sign == '@') {
            // Start of next patch.
            break;
          } else {
            // WTF?
            throw new ArgumentError(
                'Invalid patch mode "$sign" in: $line');
          }
        }
        textPointer++;
      }
    }
    return patches;
  }
}