1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/* Searching in a string. -*- coding: utf-8 -*-
Copyright (C) 2005-2023 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2005.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
/* Specification. */
#include <string.h>
#include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
#include <stdlib.h>
#include "malloca.h"
#include "mbuiter.h"
/* Knuth-Morris-Pratt algorithm. */
#define UNIT unsigned char
#define CANON_ELEMENT(c) c
#include "str-kmp.h"
/* Knuth-Morris-Pratt algorithm.
See https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
Return a boolean indicating success:
Return true and set *RESULTP if the search was completed.
Return false if it was aborted because not enough memory was available. */
static bool
knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
const char **resultp)
{
size_t m = mbslen (needle);
mbchar_t *needle_mbchars;
size_t *table;
/* Allocate room for needle_mbchars and the table. */
void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
void *table_memory;
if (memory == NULL)
return false;
needle_mbchars = memory;
table_memory = needle_mbchars + m;
table = table_memory;
/* Fill needle_mbchars. */
{
mbui_iterator_t iter;
size_t j;
j = 0;
for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
mb_copy (&needle_mbchars[j], &mbui_cur (iter));
}
/* Fill the table.
For 0 < i < m:
0 < table[i] <= i is defined such that
forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
and table[i] is as large as possible with this property.
This implies:
1) For 0 < i < m:
If table[i] < i,
needle[table[i]..i-1] = needle[0..i-1-table[i]].
2) For 0 < i < m:
rhaystack[0..i-1] == needle[0..i-1]
and exists h, i <= h < m: rhaystack[h] != needle[h]
implies
forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
table[0] remains uninitialized. */
{
size_t i, j;
/* i = 1: Nothing to verify for x = 0. */
table[1] = 1;
j = 0;
for (i = 2; i < m; i++)
{
/* Here: j = i-1 - table[i-1].
The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
for x < table[i-1], by induction.
Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
mbchar_t *b = &needle_mbchars[i - 1];
for (;;)
{
/* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
is known to hold for x < i-1-j.
Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
if (mb_equal (*b, needle_mbchars[j]))
{
/* Set table[i] := i-1-j. */
table[i] = i - ++j;
break;
}
/* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
for x = i-1-j, because
needle[i-1] != needle[j] = needle[i-1-x]. */
if (j == 0)
{
/* The inequality holds for all possible x. */
table[i] = i;
break;
}
/* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
for i-1-j < x < i-1-j+table[j], because for these x:
needle[x..i-2]
= needle[x-(i-1-j)..j-1]
!= needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
= needle[0..i-2-x],
hence needle[x..i-1] != needle[0..i-1-x].
Furthermore
needle[i-1-j+table[j]..i-2]
= needle[table[j]..j-1]
= needle[0..j-1-table[j]] (by definition of table[j]). */
j = j - table[j];
}
/* Here: j = i - table[i]. */
}
}
/* Search, using the table to accelerate the processing. */
{
size_t j;
mbui_iterator_t rhaystack;
mbui_iterator_t phaystack;
*resultp = NULL;
j = 0;
mbui_init (rhaystack, haystack);
mbui_init (phaystack, haystack);
/* Invariant: phaystack = rhaystack + j. */
while (mbui_avail (phaystack))
if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
{
j++;
mbui_advance (phaystack);
if (j == m)
{
/* The entire needle has been found. */
*resultp = mbui_cur_ptr (rhaystack);
break;
}
}
else if (j > 0)
{
/* Found a match of needle[0..j-1], mismatch at needle[j]. */
size_t count = table[j];
j -= count;
for (; count > 0; count--)
{
if (!mbui_avail (rhaystack))
abort ();
mbui_advance (rhaystack);
}
}
else
{
/* Found a mismatch at needle[0] already. */
if (!mbui_avail (rhaystack))
abort ();
mbui_advance (rhaystack);
mbui_advance (phaystack);
}
}
freea (memory);
return true;
}
/* Find the first occurrence of the character string NEEDLE in the character
string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
char *
mbsstr (const char *haystack, const char *needle)
{
/* Be careful not to look at the entire extent of haystack or needle
until needed. This is useful because of these two cases:
- haystack may be very long, and a match of needle found early,
- needle may be very long, and not even a short initial segment of
needle may be found in haystack. */
if (MB_CUR_MAX > 1)
{
mbui_iterator_t iter_needle;
mbui_init (iter_needle, needle);
if (mbui_avail (iter_needle))
{
/* Minimizing the worst-case complexity:
Let n = mbslen(haystack), m = mbslen(needle).
The naïve algorithm is O(n*m) worst-case.
The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
memory allocation.
To achieve linear complexity and yet amortize the cost of the
memory allocation, we activate the Knuth-Morris-Pratt algorithm
only once the naïve algorithm has already run for some time; more
precisely, when
- the outer loop count is >= 10,
- the average number of comparisons per outer loop is >= 5,
- the total number of comparisons is >= m.
But we try it only once. If the memory allocation attempt failed,
we don't retry it. */
bool try_kmp = true;
size_t outer_loop_count = 0;
size_t comparison_count = 0;
size_t last_ccount = 0; /* last comparison count */
mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
mbui_iterator_t iter_haystack;
mbui_init (iter_needle_last_ccount, needle);
mbui_init (iter_haystack, haystack);
for (;; mbui_advance (iter_haystack))
{
if (!mbui_avail (iter_haystack))
/* No match. */
return NULL;
/* See whether it's advisable to use an asymptotically faster
algorithm. */
if (try_kmp
&& outer_loop_count >= 10
&& comparison_count >= 5 * outer_loop_count)
{
/* See if needle + comparison_count now reaches the end of
needle. */
size_t count = comparison_count - last_ccount;
for (;
count > 0 && mbui_avail (iter_needle_last_ccount);
count--)
mbui_advance (iter_needle_last_ccount);
last_ccount = comparison_count;
if (!mbui_avail (iter_needle_last_ccount))
{
/* Try the Knuth-Morris-Pratt algorithm. */
const char *result;
bool success =
knuth_morris_pratt_multibyte (haystack, needle,
&result);
if (success)
return (char *) result;
try_kmp = false;
}
}
outer_loop_count++;
comparison_count++;
if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
/* The first character matches. */
{
mbui_iterator_t rhaystack;
mbui_iterator_t rneedle;
memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
mbui_advance (rhaystack);
mbui_init (rneedle, needle);
if (!mbui_avail (rneedle))
abort ();
mbui_advance (rneedle);
for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
{
if (!mbui_avail (rneedle))
/* Found a match. */
return (char *) mbui_cur_ptr (iter_haystack);
if (!mbui_avail (rhaystack))
/* No match. */
return NULL;
comparison_count++;
if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
/* Nothing in this round. */
break;
}
}
}
}
else
return (char *) haystack;
}
else
{
if (*needle != '\0')
{
/* Minimizing the worst-case complexity:
Let n = strlen(haystack), m = strlen(needle).
The naïve algorithm is O(n*m) worst-case.
The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
memory allocation.
To achieve linear complexity and yet amortize the cost of the
memory allocation, we activate the Knuth-Morris-Pratt algorithm
only once the naïve algorithm has already run for some time; more
precisely, when
- the outer loop count is >= 10,
- the average number of comparisons per outer loop is >= 5,
- the total number of comparisons is >= m.
But we try it only once. If the memory allocation attempt failed,
we don't retry it. */
bool try_kmp = true;
size_t outer_loop_count = 0;
size_t comparison_count = 0;
size_t last_ccount = 0; /* last comparison count */
const char *needle_last_ccount = needle; /* = needle + last_ccount */
/* Speed up the following searches of needle by caching its first
character. */
char b = *needle++;
for (;; haystack++)
{
if (*haystack == '\0')
/* No match. */
return NULL;
/* See whether it's advisable to use an asymptotically faster
algorithm. */
if (try_kmp
&& outer_loop_count >= 10
&& comparison_count >= 5 * outer_loop_count)
{
/* See if needle + comparison_count now reaches the end of
needle. */
if (needle_last_ccount != NULL)
{
needle_last_ccount +=
strnlen (needle_last_ccount,
comparison_count - last_ccount);
if (*needle_last_ccount == '\0')
needle_last_ccount = NULL;
last_ccount = comparison_count;
}
if (needle_last_ccount == NULL)
{
/* Try the Knuth-Morris-Pratt algorithm. */
const unsigned char *result;
bool success =
knuth_morris_pratt ((const unsigned char *) haystack,
(const unsigned char *) (needle - 1),
strlen (needle - 1),
&result);
if (success)
return (char *) result;
try_kmp = false;
}
}
outer_loop_count++;
comparison_count++;
if (*haystack == b)
/* The first character matches. */
{
const char *rhaystack = haystack + 1;
const char *rneedle = needle;
for (;; rhaystack++, rneedle++)
{
if (*rneedle == '\0')
/* Found a match. */
return (char *) haystack;
if (*rhaystack == '\0')
/* No match. */
return NULL;
comparison_count++;
if (*rhaystack != *rneedle)
/* Nothing in this round. */
break;
}
}
}
}
else
return (char *) haystack;
}
}
|