File: Faster.cpp

package info (click to toggle)
dindel 1.01%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 940 kB
  • ctags: 1,130
  • sloc: cpp: 15,773; makefile: 40
file content (785 lines) | stat: -rw-r--r-- 20,354 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/*    
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
/*
 * Fast.cpp
 *
 *  Created on: Feb 25, 2009
 *      Author: caa
 */

#include <string>
#include <assert.h>
#include <iostream>
#include <stdint.h>
#include <vector>
#include <list>
#include <set>
#include <string>
#include <map>
#include <cmath>
#include <sstream>
#include <algorithm>
#include "bam.h"
#include "Haplotype.hpp"
#include "Faster.hpp"
#include "Utils.hpp"
#include <boost/foreach.hpp>
using namespace std;
const int DEBUGS=0;

ObservationModelS::ObservationModelS(const Haplotype & _hap, const Read & r, uint32_t hapStart, const ObservationModelParameters & _params) : params(_params)
{

	hap_ptr = &_hap;
	read_ptr = &r;
	if (params.maxLengthIndel>(int) hap_ptr->size()) throw string("hapSize error.");
	hlen=(int) hap_ptr->seq.size();
	rlen=(int) read_ptr->size();

	this->hapStart=hapStart;

	likelihoodComputed=false;
	bMidError=true;
	computeBMid();
	setupReadLikelihoods();

}

void ObservationModelS::computeBMid()
{
	const Read & read = *read_ptr;
	const Haplotype & hap = *hap_ptr;
	uint32_t hapEnd=hapStart+hap.size();
	uint32_t mReadStart=uint32_t(read.posStat.first);
	uint32_t readEnd=mReadStart+uint32_t(read.size())-1;
	uint32_t olStart, olEnd;
	int mid;

	bMidError=true;
	if (mReadStart>hapEnd) {
		bMid=0;
	} else if (readEnd<hapStart) {
		bMid=int(read.size())-1;
	} else {
		olStart=(hapStart>mReadStart)?hapStart:mReadStart;
		olEnd=(hapEnd>readEnd)?readEnd:hapEnd;
		mid=(int(olEnd)-int(olStart))/2+int(olStart);
		bMid=mid-int(mReadStart);
		bMidError=false;
	}

	if (bMid<0) { bMid=0; };
	if (bMid>=int(read.size())) { bMid=int(read.size())-1; };

	if (DEBUGS) cout << "bMid: " << bMid << endl;

}


void ObservationModelS::setupReadLikelihoods()
{
	const Read & read = *read_ptr;

	logMatch.resize(read.size());
	logMismatch.resize(read.size());
	cumLogMatch.resize(read.size());
	// initialize with prior
	llMatch=0.0;
	if (params.modelType=="probabilistic") {
		for (size_t r=0;r<read.size();r++) {
			double rq=read.qual[r];
			double pr=rq*(1.0-params.pMut);
			double eq=log(.25+.75*pr);
			double uq=log(.75+1e-10-.75*pr);
			logMatch[r]=eq;
			logMismatch[r]=uq;
			llMatch+=eq;
			cumLogMatch[r]=llMatch;
		}
	} else {
		throw string("Model not implemented.");
	}


	double mq=1.0-read.mapQual;
	if (-10.0*log10(mq)>params.capMapQualFast) {
		mq=pow(10.0,-params.capMapQualFast/10.0);
	}

	pOffFirst=mq;
	pOffFirstHMQ=1e-10;

	llOff=log(pOffFirst)+llMatch+double(rlen)*log(1.0-params.pError);
	llOffHMQ=log(pOffFirstHMQ)+llMatch+double(rlen)*log(1.0-params.pError);

}



void ObservationModelS::AlignHash(const HapHash & hash)
{

	const Read & read = *read_ptr;
	hash_map<int,int> hposFreq; // will keep track of frequencies of relative positions of read wrt haplotype
	hash_map<int,int>::iterator it;

	unsigned int kmer = hash.getKmer();

	size_t x=0, xl=read.size()-kmer;

	unsigned int key=hash.convert(read.seq.seq,x);
	for (;x<xl+1;x++) {
		//const set<int> & hpSet=hash.lookup(read.seq.seq,x);
		const set<int> & hpSet = hash.lookup(key);
		if (DEBUGS) cout << "hash: " << x << " :";
		BOOST_FOREACH(int hp, hpSet) {

			int rpfb=hp-x; // relative position of first base wrt haplotype
			if (DEBUGS) cout << " " << rpfb;
			it=hposFreq.find(rpfb);
			// todo weight according to bMid?
			if (it==hposFreq.end()) hposFreq[rpfb]=1; else it->second++;
		}
		if (DEBUGS) cout << endl;
		if (x!=xl) key = hash.pushBack(key, read.seq.seq[x+kmer]);
	}

	// sort according to frequency
	map<int, set<int> > freqToPos;
	for (it=hposFreq.begin();it!=hposFreq.end();it++) {

		if (DEBUGS) cout << "il : " << it->first << " " << it->second << endl;
		freqToPos[it->second].insert(it->first);
	}
	// do alignment with top 15 frequency hash lookups

	const int maxRelPos=15;

	vector<int> relPos; relPos.reserve(maxRelPos);

	int tot=0;

	for (map<int,set<int> >::reverse_iterator rit=freqToPos.rbegin(); rit!=freqToPos.rend() ;rit++) {
		BOOST_FOREACH(int rp, rit->second) {
			if (tot<maxRelPos) {
				relPos.push_back(rp);
				if (DEBUGS) cout << "rp: " << rp << " freq: " << rit->first << endl;
				tot++;
			} else goto _end;
		}
	}
	_end:

	if (DEBUGS) cout << "done"<<endl;
	// run HMM with sparse set of positions
	SStateHMM(relPos);

}

MLAlignment ObservationModelS::align(const HapHash & hash)
{
	AlignHash(hash);
	likelihoodComputed=true;
	reportVariants();
	return ml;
}
/*
inline void ObservationModelS::doTransition(int cr, int nr, const vector<int> & state, vector<double> & alpha, vector<double> & bt, const vector<double> & tr, const int & S)
{
	int r=cr;
	if (state[cr]==-1) {
		// current readbase not fixed
		if (state[nr]==-1) {
			// next base is not fixed
			for (int cs=0;cs<S;cs++) {
				for (int ns=0;ns<S;ns++) {
					double nv=obs[r*S+cs]+alpha[r*S+cs]+tr[cs*S+ns];
					if (nv>alpha[cr*S+ns]+EPS) { alpha[cr*S+ns]=nv; bt[cr*S+ns]=ns; }
				}
			}

		} else {
			// next base is fixed
			for (int cs=0;cs<S;cs++) {
				ns=state[nr];
				double nv=obs[r*S+cs]+alpha[r*S+cs]+tr[cs*S+ns];
				if (nv>alpha[cr*S+ns]+EPS) { alpha[cr*S+ns]=nv; bt[cr*S+ns]=ns; }
			}
		}
	} else {
		// current readbase is fixed
		if (state[nr]==-1) {
			// next base is not fixed
			int cs=state[r];
			for (int ns=0;ns<S;ns++) {
				double nv=obs[r*S+cs]+alpha[r*S+cs]+tr[cs*S+ns];
				if (nv>alpha[cr*S+ns]+EPS) { alpha[cr*S+ns]=nv; bt[cr*S+ns]=ns; }
			}
		} else {
			// next base is fixed
			int cs=state[r];
			int ns=state[nr];
			double nv=obs[r*S+cs]+alpha[r*S+cs]+tr[cs*S+ns];
			if (nv>alpha[cr*S+ns]+EPS) { alpha[cr*S+ns]=nv; bt[cr*S+ns]=ns; }
		}
	}
}

inline void ObservationModelS::doTransitionNF(int cr, int nr, const vector<int> & state, vector<double> & alpha, vector<double> & bt, const vector<double> & tr, const int & S)
{
	int r=cr;
	// next base is not fixed
	for (int cs=0;cs<S;cs++) {
		for (int ns=0;ns<S;ns++) {
			double nv=obs[r*S+cs]+alpha[r*S+cs]+tr[cs*S+ns];
			if (nv>alpha[cr*S+ns]+EPS) { alpha[cr*S+ns]=nv; bt[cr*S+ns]=ns; }
		}
	}
}
*/

void ObservationModelS::SStateHMM(vector<int> & relPos)
{
	// note that this HMM does not keep track of the last base before the insertion, so after the insertion it may transition not to the next haplotype base
	// also, the length of the insertion must be present as the difference between one of the positions in relPos vector.

	// int p1 and p2 are relative positions of first readbase with respect to the haplotype
	if (DEBUGS) cout << "hlen: " << hlen << " rlen: " << rlen << endl;
	const double EPS=1e-7;
	int readLen=read_ptr->size();


	relPos.push_back(-readLen);
	std::sort(relPos.begin(), relPos.end());

	mapState=vector<int>(readLen,0);

	//if (DEBUGS){ cout << "relPos: "; for (int x=0;x<relPos.size();x++) cout << " " << relPos[x]; cout << endl; }


	int S=relPos.size();
	int T=2*S;            // total number of states per slice

	// note that obs will encode observation potentials only for the non-inserted states
	vector<double> tr(S*S, -1000.0), trI(S*S, -1000.0), alpha(readLen*T,-1000.0), obs(readLen*S,0);

	// NOTE alpha is defined as the message that readbase r sends to its neighbour, where neighbour depends on the readbase and bmid

	vector<int> bt(readLen*T,0); // backtracking matrix for Viterbi

	// setup state array
	// initialize to all undetermined
	vector<int> state(readLen,-1);

	// initialize obs_lik (log-emission-probabilities) for every read-base

	for (int r=0;r<readLen;r++) {
		for (int s=0;s<S;s++) {
			int p1=relPos[s];
			if (p1+r>=0 && p1+r<hlen) {
				obs[r*S+s]=(read_ptr->seq.seq[r]==hap_ptr->seq[p1+r])?logMatch[r]:logMismatch[r];
			} else {
				// this corresponds to LO/RO in ObservationModelFB
				obs[r*S+s]=logMatch[r];
			}
		}

		// obs[r*S+S-1]=logMatch[r]; // assume match if insertion
		if (DEBUGS) { cout << "obs: "; for (int s=0;s<S;s++) cout << " " << -int(round(obs[r*S+s])); cout << endl; }
	}




	// todo : add code to fix state to OffHaplotype if to the left or right of a fixed base?


	// setup transition-matrix

	vector<double> prior(T, -1000.0), priorHMQ(T, -1000.0);

 	// p1 <- p1
	// p1 <- p2
	// p1 <- I

	// p2 <- p1
	// p2 <- p2
	// p2 <- I

	// I <- p1
	// I <- p2
	// I <- I


	// setup prior distribution for bMid
	for (int ins=0;ins<2;ins++) {
		double pins=(ins==0)?log(1.0-params.pError):log(params.pError);
		for (int y=0;y<S;y++) {
			int x=y+ins*S;
			int hp=relPos[y]+bMid;
			if (hp>=0 && hp<hlen) {
				prior[x]=log(1.0-pOffFirst)+pins;
				priorHMQ[x]=log(1.0-pOffFirstHMQ)+pins;
			} else {
				prior[x]=log(pOffFirst)+pins;
				priorHMQ[x]=log(pOffFirstHMQ)+pins;
			}
			if (DEBUGS) cout << "prior[" << x << "]: " << prior[x] << " " << priorHMQ[x] << endl;
		}
	}

	double logpInsgNoIns = log(params.pError);
	double logpInsgIns = -0.25;
	double logpNoInsgIns = log(1-exp(logpInsgIns));
	//double logpNoInsgNoIns = log(1.0-params.pError);



	// transitions between relPos
	for (int s1=0;s1<S;s1++) for (int s2=0;s2<S;s2++) {
		double ll=-1000.0;
		// relpos to relpos
		// for non-inserted states only deletions are allowed.
		// you can only transition to a lower relPos from an insertion-state (ie x>=S)
		if (s1!=s2) {
			double d=fabs(double(relPos[s1]-relPos[s2]));
			ll=(d-1.0)*logpInsgIns+log(params.pError);
			trI[s1*S+s2]=(d-1.0)*logpInsgIns;
		} else if (s1==s2) {
			ll=log(1.0-params.pError);
		}

		// Pr[s1 | s2 ]
		tr[s1*S+s2]=ll;
	}

	if (DEBUGS) for (int s1=0;s1<S;s1++) {
		cout << "tr["<< s1 << "]: "; for (int s2=0;s2<S;s2++) cout << " " << tr[s1*S+s2]; cout << endl;
	}
	// from left to bMid

	for (int r=0;r<bMid;r++) {
		int cr=r;
		//doTransition(cr, nr, state, alpha, bt, tr);

		for (int cs=0;cs<S;cs++) {
			double pv=obs[r*S+cs]; if (r) pv+=alpha[(r-1)*T+cs];

			// transition to non-inserted from non-inserted
			for (int ns=cs;ns<S;ns++) {
				double nv=pv+tr[cs*S+ns];
				if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=cs; }
			}

			// r          <---  r+1
			// to non-ins from ins
			int ns=cs+S;
			double nv=pv+logpNoInsgIns;
			if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=cs; }


			// insertion states

			// r          <---  r+1
			// ins        <---  ins

			int ics=cs+S;
			ns=ics;
			nv=logMatch[r]+logpInsgIns; if (r) nv += alpha[(r-1)*T+ics];
			if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=ics; }


			// ins       <---   noins
			ics=cs+S;		  //  must transition to a lower relPos in case of insertion and going from left to right
			for (int ns=0;ns<cs;ns++) if (relPos[cs]-r>=relPos[ns]) {
				nv=logMatch[r]+trI[cs*S+ns]+logpInsgNoIns; if (r) nv += alpha[(r-1)*T+ics];
				if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=ics; }
			}


		}

		if (DEBUGS) { cout << "alpha_fw: "; for (int x=0;x<T;x++) cout << " " << alpha[r*S+x]; cout << endl; }
	}

	if (DEBUGS) cout << endl;

	// from right to bMid

	for (int r=readLen-1;r>bMid;r--) {
		int cr=r;
		//doTransition(cr, nr, state, alpha, bt, tr);

		for (int cs=0;cs<S;cs++) {
			double pv=obs[r*S+cs]; if (r<readLen-1) pv+=alpha[(r+1)*T+cs];

			// transition to non-inserted from non-inserted
			for (int ns=0;ns<=cs;ns++) {
				double nv=pv+tr[cs*S+ns];
				if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=cs; }
			}

			// r          <---  r-1
			// to ins     from no-ins
			double nv=logMatch[r]+logpInsgNoIns; if (r<readLen-1) nv += alpha[(r+1)*T+cs+S];

			if (nv>alpha[cr*T+cs]+EPS) { alpha[cr*T+cs]=nv; bt[cr*T+cs]=cs+S; }

			int ns;

			// insertion states

			// r          <---  r-1
			// ins        <---  ins

			int ics=cs+S;
			ns=ics;
			nv=logMatch[r]+logpInsgIns; if (r<readLen-1) nv+= alpha[(r+1)*T+ics];
			if (nv>alpha[cr*T+ns]+EPS) { alpha[cr*T+ns]=nv; bt[cr*T+ns]=ics; }

			// r	       <---   r-1
			// noins       <---   ins
			ics=cs+S;		  //  must transition to a lower relPos in case of insertion and going from left to right
			for (int ns=cs+1;ns<S;ns++) if (relPos[cs]>relPos[ns]-r) {
				nv=obs[r*S+cs]+logpNoInsgIns+trI[cs*S+ns]; if (r<readLen-1) nv +=  alpha[(r+1)*T+cs];
				if (nv>alpha[cr*T+ns+S]+EPS) { alpha[cr*T+ns+S]=nv; bt[cr*T+ns+S]=cs; }
			}


		}
			// r               r-1
			// ins     <-----  noins

		if (DEBUGS) { cout << "alpha_bw: "; for (int x=0;x<T;x++) cout << " " << alpha[r*T+x]; cout << endl; }
	}


	double max=-HUGE_VAL;
	int xmax=0;

	for (int ins=0;ins<2;ins++)
	for (int y=0;y<S;y++) {
		int x=ins*S+y;
		double obsv=(ins==0)?obs[bMid*S+y]:logMatch[bMid];
		alpha[bMid*T+x]=obsv+prior[x];
		if (bMid<readLen-1) alpha[bMid*T+x]+=alpha[(bMid+1)*T+x];
		if (bMid>0) alpha[bMid*T+x]+=alpha[(bMid-1)*T+x];

		if (alpha[bMid*T+x]>max) {
			max=alpha[bMid*T+x];
			xmax=x;
		}
	}

	if (DEBUGS) { cout << "alpha_bmid: "; for (int x=0;x<T;x++) cout << " " << alpha[bMid*T+x]; cout << endl; }

	// check position of bMid on haplotype

	int hp=relPos[xmax%S]+bMid;
	if (hp>=0 || hp < hlen) {
		// bMid is an insertion

		ml.offHap=false;

	} else {
		// not an insertion
		// is it on or off the haplotype?

		ml.offHap=true;


	}


	ml.ll=max;

	max=-HUGE_VAL;
	xmax=0;

	if (DEBUGS) cout << "alpha_bmid_HMQ: ";
	for (int ins=0;ins<2;ins++)
	for (int y=0;y<S;y++) {
		int x=ins*S+y;
		double obsv=(ins==0)?obs[bMid*S+x]:logMatch[bMid];
		double v=obsv+priorHMQ[x];
		if (bMid<readLen-1) v+=alpha[(bMid+1)*T+x];
		if (bMid>0) v+=alpha[(bMid-1)*T+x];

		if (v>max) {
			max=v;
			xmax=x;
		}
		if (DEBUGS) cout << " " << v;
	}
	if (DEBUGS) cout << endl;

	hp=relPos[xmax%S]+bMid;
	if (hp>=0 || hp < hlen) {
		// bMid is an insertion
		ml.offHapHMQ=false;

	} else {
		// not an insertion
		// is it on or off the haplotype?
		ml.offHapHMQ=true;
	}

	state[bMid]=xmax;

	// backtrack to get the map state

	for (int b=bMid; b>0;b--) {
		state[b-1]=bt[(b-1)*T+state[b]];
	}

	for (int b=bMid;b<readLen-1;b++) {
		state[b+1]=bt[(b+1)*T+state[b]];
	}

	if (DEBUGS){ cout << "state: "; for (int r=0;r<readLen;r++) cout << "[" << r << " " << read_ptr->seq.seq[r] << " " << state[r] << "]"; cout << endl;}


	// convert relative positions to absolute positions, using LO, RO, x convention

	int lhp=1;
	for (int r=0; r<readLen; r++) {
		if (state[r]==-1) throw string("error in mapstate fast");
		if (state[r]<S) {
			int hp=relPos[state[r]]+r;
			if (hp>=0 && hp<hlen) {
				mapState[r]=hp+1;
				lhp=hp+1;
			} else if (hp<0) mapState[r]=0; else mapState[r]=hlen; // LO and RO
			if (DEBUGS) cout << "ms: " << r << " " << state[r] << " " << hp << endl;

		} else {
			// insertion
			mapState[r]=hlen+2+lhp;

		}
		if (DEBUGS) cout << "ms: " << r << " " << state[r] << " mapstate " << mapState[r] << endl;
	}


}


void ObservationModelS::reportVariants()
{
	int hapSize=hlen;
	int readSize=rlen;
	int numS=hapSize+2;

	const Read & read = *read_ptr;
	const Haplotype & hap = *hap_ptr;


	ml.align=string(hapSize, 'R');
	ml.indels.clear();
	ml.snps.clear();

	ml.firstBase=-1;
	ml.lastBase=-1;
	ml.hapIndelCovered.clear();
	ml.hapSNPCovered.clear();
	ml.hpos.clear();
	ml.hpos.resize(readSize);


	int b=0;
	while (b<readSize) {
		// only report variants for bases that are on the haplotype
		int s=mapState[b];
		if ( (s%numS)>0 && (s%numS)<=hapSize ) {
			if (s>=numS) { // insertion
				int pos=(s%numS)-1+1; // position of insertion wrt haplotype MAINTAIN CONVENTION OF INSERTION BEFORE BASE X
				int len=0; // length of insertion
				int rpos=b; // start base of insertion in read
				while (b<readSize && mapState[b]>=numS) {
					ml.hpos[b]=MLAlignment::INS;
					b++;
					len++;
				}
				int readStart=rpos;
				int readEnd=b-1;
				int hapStart=pos;
				int hapEnd=pos;
				string seq=read.seq.seq.substr(rpos,len);
				ml.indels[pos]=AlignedVariant(string("+").append(seq),  hapStart, hapEnd, readStart, readEnd);
				b--;
			} else {
				ml.hpos[b]=s-1;
				// update firstBase and lastBase
				if (ml.firstBase==-1) ml.firstBase=s-1; else if (s-1<ml.firstBase) ml.firstBase=s-1;
				if (ml.lastBase==-1) ml.lastBase=s-1; else if (s-1>ml.lastBase) ml.lastBase=s-1;


				// check for SNP
				if (read.seq[b]!=hap.seq[s-1]) {
					string snp;
					snp+=hap.seq[s-1];
					snp.append("=>");
					snp+=read.seq[b];
					int readStart=b;
					int readEnd=b;
					int hapStart=s-1;
					int hapEnd=s-1;


					ml.snps[s-1]=AlignedVariant(snp,hapStart, hapEnd, readStart, readEnd);
					ml.align[s-1]=read.seq[b];
				}
				// check for deletion
				if (b<readSize-1) {
					int ns=mapState[b+1];
					if (ns<numS && ns-s>1) { // make sure next state is not an insertion..
						int pos=s+1-1;
						int len=-(ns-s-1);
						//indels[pos]=ReportVariant(len, hap.seq.substr(pos, -len), b);

						for (int y=pos;y<-len+pos;y++) ml.align[y]='D';
						int readStart=b;
						int readEnd=b+1;
						int hapStart=pos;
						int hapEnd=pos-len-1;
						string seq=hap.seq.substr(pos,-len);
						ml.indels[pos]=AlignedVariant(string("-").append(seq), hapStart, hapEnd, readStart, readEnd);
					}
				}

			}

		} else {// on haplotype
			if (s%numS==0) ml.hpos[b]=MLAlignment::LO; else ml.hpos[b]=MLAlignment::RO;

		}
		b++;
	}

	for (map<int,AlignedVariant>::const_iterator it=hap.indels.begin();it!=hap.indels.end();it++) {
		const AlignedVariant & av=it->second;
		if (av.isCovered(params.padCover, ml.firstBase, ml.lastBase)) ml.hapIndelCovered[it->first]=true; else ml.hapIndelCovered[it->first]=false;
	}
	for (map<int,AlignedVariant>::const_iterator it=hap.snps.begin();it!=hap.snps.end();it++) {
		const AlignedVariant & av=it->second;
		if (av.isCovered(params.padCover, ml.firstBase, ml.lastBase)) ml.hapSNPCovered[it->first]=true; else ml.hapSNPCovered[it->first]=false;
	}


}

void ObservationModelS::printAlignment(size_t hapScrPos)
{
	// count how many bases in the read are left of the haplotype
	if (!likelihoodComputed) throw string("Must align() first!");
	int hapSize=hlen;
	int readSize=rlen;
	int numS=hapSize+2;

	const Read & read = *read_ptr;
	const Haplotype & hap = *hap_ptr;


	string leftHap, rightHap;
	string rhap(hap.size(),' ');
	string ins;

	bool insact=false;
	int b=0;
	while (b<readSize) {
		// only report variants for bases that are on the haplotype
		int s=mapState[b];
		char nuc=read.seq.seq[b];
		if (s%numS==0) {
			//
			leftHap+=nuc;
		} else if ( (s%numS)>0 && (s%numS)<=hapSize ) {
			if (s>=numS) { // insertion
				if (!insact) {
					insact=true;
					ins+='[';
					stringstream os; os << (s%numS);
					ins.append(os.str());
					ins+=' ';
				}

				ins+=nuc;

			} else {
				if (insact) ins+=']';
				insact=false;
				rhap[s-1]=nuc;

				if (b<readSize-1) {
					int ns=mapState[b+1];
					if (ns<numS && ns-s>1) {
						int len=ns-s-1;
						rhap.replace(s, len, string(len,'_'));
					}


				}


			}

		} else {
			rightHap+=nuc;
		}
		b++;
	}
	if (insact) ins+=']';

	stringstream os;
	os << readSize << " " << ml.offHap << " " << ml.indels.size() << " " << ml.firstBase << " " << ml.lastBase << " " << ml.ll << " ";
	for (map<int,AlignedVariant>::const_iterator it=hap.indels.begin();it!=hap.indels.end();it++) {
		if  (ml.hapIndelCovered[it->first]) os << "1 "; else os << "0 ";
	}
	string prefix=os.str();

	int leftHapSpace=int(hapScrPos)-int(prefix.size());
	if (leftHapSpace<0) leftHapSpace=0;

	string prLeftHap=string(leftHapSpace,' ');

	if (int(leftHap.size())>leftHapSpace) {
		prLeftHap=leftHap.substr(leftHap.size()-leftHapSpace, leftHapSpace);
	} else if (leftHap.size()>0) {
		prLeftHap.replace(leftHapSpace-leftHap.size(), leftHap.size(), leftHap);
	}

	cout << prefix<<prLeftHap<<rhap<<rightHap << " " << ins << " read: " << read.seq.seq << endl;


	for (map<int,AlignedVariant>::const_iterator it=hap.indels.begin();it!=hap.indels.end();it++) {
		cout << " " << it->first;
	}
	cout << endl;

	cout << endl;

	for (int x=0;x<readSize;x++) {
		cout << "[" << x << ":" << ml.hpos[x] << "]";
	}
	cout << endl;
}

ObservationModelS::~ObservationModelS()
{


}