1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HAPLOTYPEDISTRIBUTION_HPP_
#define HAPLOTYPEDISTRIBUTION_HPP_
#include <string>
#include <assert.h>
#include <iostream>
#include <stdint.h>
#include <vector>
#include <list>
#include <set>
#include <string>
#include <map>
#include <cmath>
#include "bam.h"
#include "Haplotype.hpp"
#include "HapBlock.hpp"
#include <boost/foreach.hpp>
#include "VariantFile.hpp"
using namespace std;
class HaplotypeDistribution
{
friend class HDIterator2;
// methods
public:
HaplotypeDistribution(uint32_t _midPos, const string & refSeq, uint32_t refSeqStart);
void insertRead(const bam1_t *b);
static int fetchFuncInsertRead(const bam1_t *b, void *data);
pair<vector<Haplotype>, vector<double> > enumerateHaplotypes(double th);
friend ostream &operator<<(ostream &stream, const HaplotypeDistribution &hb);
void insertSeq(Haplotype & seq, uint32_t seqStart);
void check();
size_t getNumberOfHaplotypes(uint32_t start, uint32_t end) const;
size_t getNumberOfHaplotypes(uint32_t start, uint32_t end, double minFreq) const;
void setFrequencies();
~HaplotypeDistribution();
set<Haplotype> getIndelsAtMidPos() const { return indelsAtMidPos; };
vector<Variant> getIndelVariantsAtMidPos();
protected:
void updateBlock(HapBlock *hb, const Haplotype & seq, uint32_t seqStart);
void newBlock(HapBlock *hb);
void deleteBlock(int idx);
void splitBlock(int idx, const Haplotype & seq, uint32_t seqStart);
int getFirstOverlappingBlock(uint32_t seqStart, uint32_t seqEnd) const;
uint32_t len;
uint32_t pos0, pos1, midPos;
vector<HapBlock*> hapBlocks;
map<int, HapBlock*> insertions;
set<Haplotype> indelsAtMidPos;
};
class HDHapBlock
{
public:
HDHapBlock() { };
vector<Haplotype> haps;
uint32_t start, end;
int type;
};
class HDIterator2
{
public:
HDIterator2(const HaplotypeDistribution &hd, size_t maxHap, uint32_t pos, uint32_t left, uint32_t right, int _noIndelWindow=-1)
{
// noIndelWindow ignores indels around pos
noIndelWindow=_noIndelWindow;
// variants will be added at position pos
hdPtr=&hd;
midPos=pos;
setupBlocks(hd, pos, left, right);
setThresholds(maxHap);
init();
};
void init()
{
for (size_t x=0;x<iter.size();x++) {
iter[x]=0;
}
hap.seq.clear();
_last=false;
};
void operator++()
{
size_t x;
for (x=0;x<iter.size() && (++iter[x])==max[x];++x) {
iter[x]=0;
if (x==iter.size()-1) _last=true;
}
};
bool last() const { return _last; };
uint32_t start() const { return (*hapBlocks.begin())->start(); };
uint32_t end() const { return (*hapBlocks.rbegin())->end(); };
Haplotype getMaxFreqHap() const
{
Haplotype maxh;
maxh.seq.clear();
maxh.freq=1.0;
maxh.nfreq=1.0;
for (size_t x=0;x<hbs.size();x++) {
double mf=0.0;
size_t idx;
for (size_t y=0;y<hbs[x].haps.size();y++) if (hbs[x].haps[y].freq>mf) { idx=y; mf=hbs[x].haps[y].freq; };
maxh.freq*=mf;
if (!hasIndel[x]) maxh.nfreq*=mf;
maxh.append(hbs[x].haps[idx].seq);
}
return maxh;
}
operator Haplotype()
{
throw string("REIMPLEMENT");
hap.seq.clear();
hap.freq=1.0;
hap.nfreq=1.0;
hap.type=Haplotype::Normal;
//hap.haps.clear();
for (size_t x=0;x<iter.size();x++) {
const Haplotype & h=hbs[x].haps[iter[x]];
// do not append deletions as they are codes by '#'
if (h.type==Haplotype::In || h.type==Haplotype::Normal) {
hap.append(h.seq);
}
if (h.seq.size()>0) {
hap.type|=h.type;
}
hap.freq*=h.freq;
if (hasIndel[x]==0) {
hap.nfreq*=h.freq;
}
//hap.haps.push_back(pair<string, double>(h.seq, h.freq));
}
return hap;
}
double getLogNumHaps() const { return logNumHap; };
friend ostream &operator<<(ostream &stream, const HDIterator2 & hdi)
{
vector<HapBlock *> hb; hb.reserve(hdi.hapBlocks.size());
for (list<HapBlock*>::const_iterator lit=hdi.hapBlocks.begin();lit!=hdi.hapBlocks.end();lit++) hb.push_back(*lit);
HapBlock::showVector(stream, hb, hdi.midPos);
return stream;
}
void generateHapsWithAlignedVariants(vector<Haplotype> & haps, const AlignedCandidates & variants, int print=0, bool changeINStoN=false)
{
haps.clear();
if (print) {
cout << "Variants: ";
BOOST_FOREACH(Variant var, variants.variants) {
cout << "[" << var.size() << " " << var.getSeq() << "]";
}
cout << endl;
}
//map <Haplotype, Haplotype> pRef, pInd;
set <Haplotype> setHap;
vector <Haplotype> vecHap;
vector <vector<int> > vecRefPos;
size_t minLen=100000;
init();
while (!last()) {
hap.seq.clear();
hap.freq=1.0;
hap.nfreq=1.0;
hap.type=Haplotype::Normal;
//hap.haps.clear();
vector<int> refPos;
for (size_t x=0;x<iter.size();x++) {
const Haplotype & h=hbs[x].haps[iter[x]];
int len = hbs[x].end-hbs[x].start+1;
if (hbs[x].type == HapBlock::NORMAL) {
int p = hbs[x].start;
bool hasDel = false;
for (size_t y=0;y<h.seq.size();y++) {
int c=int(h.seq[y]);
if (c>=35 && c<65) { hasDel = true; }
refPos.push_back(p);
p++;
}
if (hasDel == false && int(h.seq.size())!=len) throw string("What's going on here?");
} else if (hbs[x].type == HapBlock::INSERT) {
for (size_t y=0;y<h.seq.size();y++) {
refPos.push_back(-1);
}
}
hap.append(h.seq);
hap.freq*=h.freq;
}
// effectuate deletions at positions outside midPos
size_t y=0;
while (y<hap.size()) {
int c=int(hap[y]);
if (c>=35 && c<65) {
int len=c-int('#');
if (len>int(hap.size()-y)) len=hap.size()-y;
hap.seq.erase(y,len);
refPos.erase(refPos.begin()+y,refPos.begin()+y+len);
} else y++;
}
vecHap.push_back(hap);
vecRefPos.push_back(refPos);
++(*this);
}
// first add variants combinatorially, the add variants to the set of combinatorially generated haplotypes
for (int ac = 1;ac>=0;ac--) {
size_t numHap = vecHap.size();
bool addComb = false;
if (ac==1) {
addComb = true;
} else numHap = vecHap.size();
BOOST_FOREACH(AlignedVariant var, variants.variants) {
if (addComb) {
numHap = vecHap.size();
}
if (var.getAddComb()==addComb) {
for (size_t h=0;h<numHap;h++) {
Haplotype _hap=vecHap[h];
bool changed=false;
//cout << "******************************" << endl;
//cout << "var: " << var.getStartHap() << " " << var.getString() << endl;
//cout << " hap: " << vecHap[h].seq << endl;
vector<int> refPos = vecRefPos[h];
vector<int>::iterator it = find(refPos.begin(), refPos.end(), var.getStartHap());
if (it!=refPos.end()) {
int idx = distance(refPos.begin(), it);
if (var.getType()==Variant::DEL) {
// deletion
_hap.seq.erase(idx, var.size());
refPos.erase(refPos.begin()+idx, refPos.begin()+idx+var.size());
changed=true;
} else if (var.getType()==Variant::INS) {
// insertion
if (changeINStoN) {
_hap.seq.insert(idx, string(var.getSeq().size(), 'N'));
} else {
_hap.seq.insert(idx, var.getSeq());
}
refPos.insert(refPos.begin()+idx, (size_t) var.size(), -1);
changed=true;
} else if (var.getType()==Variant::SNP) {
// snp
const string & seq=var.getSeq();
char nuc=seq[3];
if (_hap.seq[idx]!=seq[3]) {
_hap.seq[idx]=nuc;
changed=true;
}
}
if (changed) {
// cout << "_hap: " << _hap.seq << endl;
vecHap.push_back(_hap);
vecRefPos.push_back(refPos);
}
}
}
}
}
}
for (size_t x=0;x<vecHap.size();x++) if (vecHap[x].size()<minLen) minLen=vecHap[x].size();
BOOST_FOREACH(Haplotype hap, vecHap) {
//setHap.insert(Haplotype(hap,0, minLen));
setHap.insert(hap);
}
BOOST_FOREACH(Haplotype hap, setHap) {
haps.push_back(hap);
}
}
protected:
void setupBlocks(const HaplotypeDistribution &hd, uint32_t pos, uint32_t left, uint32_t right)
{
//cout << "_minFreq: " << _minFreq << endl;
for (size_t x=0;x<hd.hapBlocks.size();x++) if (hd.hapBlocks[x]!=NULL) {
if (x) {
if (hd.hapBlocks[x-1]->end()>hd.hapBlocks[x]->start()) {
cout << hd.hapBlocks[x-1]->end() << " " << hd.hapBlocks[x]->start() << endl;
cout << "HD: " << endl << hd << endl;
throw string("Blocks are overlapping.");
}
}
if (hd.hapBlocks[x]->start()>=left && hd.hapBlocks[x]->end()<=right) {
if (hd.hapBlocks[x-1]->end()+1!=hd.hapBlocks[x]->start()) {
cout << "NOT CONSECUTIVE" << endl;
cout << hd.hapBlocks[x-1]->end() << " " << hd.hapBlocks[x]->start() << endl;
cout << "HD: " << endl << hd << endl;
throw string("Blocks are not consecutive.");
}
hapBlocks.push_back(hd.hapBlocks[x]);
//cout << *hd.hapBlocks[x] << endl;
}
}
// insertions
list<HapBlock*>::iterator lit=hapBlocks.begin();
for (map<int, HapBlock*>::const_iterator it=hd.insertions.begin();it!=hd.insertions.end();it++) {
if (it->second->start()>=left) {
for (list<HapBlock*>::iterator lit2=lit;lit2!=hapBlocks.end();lit2++) {
if (int((*lit2)->start())>=it->first) {
hapBlocks.insert(lit2, it->second);
lit=lit2;
break;
}
}
}
}
// copy
bool found=false;
hbs.resize(hapBlocks.size());
hasIndel.resize(hapBlocks.size());
int x=0;
for (lit=hapBlocks.begin();lit!=hapBlocks.end();lit++,x++) {
uint32_t bs=(*lit)->start();
uint32_t be=(*lit)->end();
if (pos>=bs && pos<=be) {
indelIdx=x;
indelOffs=pos-bs;
found=true;
}
hasIndel[x]=0;
for (map<Haplotype,int>::const_iterator it=(*lit)->haplotypes.begin();it!=(*lit)->haplotypes.end();it++) {
hbs[x].haps.push_back(it->first);
}
hbs[x].start=bs;
hbs[x].end=be;
hbs[x].type=(*lit)->getType();
if (hbs[x].type==HapBlock::INSERT) hbs[x].end=hbs[x].start-1;
// set frequency of reference haplotype in block
// this makes sure that the reference haplotype is always included
bool reffound=false;
for (size_t y=0;y<hbs[x].haps.size();y++) {
if (hbs[x].haps[y].type==Haplotype::Ref) {
reffound=true;
//hbs[x][y].freq=1.0;
} else {
//for (size_t z=0;z<hbs[x].haps[y].seq.size();z++) hbs[x].haps[y].seq[z] = tolower(hbs[x].haps[y].seq[z]);
}
}
if (!reffound) {
cout << **lit << endl;
}
assert(reffound==true);
}
if (hbs.size() == 0) {
throw string("Not enough blocks.");
}
//if (!found) throw string("Cannot find position of indel in haplotypedistribution.");
// cout << "maxFreqHap: " << getMaxFreqHap() << endl;
};
void setThresholds(size_t maxHap)
{
// hasIndel is currently set to zero for all blocks, because HaplotypeDistribution
// does not includes indels at midPos
// get lowest frequency
vector<double> minFreq(hbs.size(),0.0);
vector<int> elim(hbs.size(),1);
size_t x=0;
typedef vector<Haplotype>::iterator LHIt;
LHIt it;
double logMinHap=0.0;
double logNH=0.0;
for (x=0;x<hbs.size();x++) {
logNH+=log(double(hbs[x].haps.size()));
}
double logMH=log(double(maxHap));
if (logMH<logMinHap) logMH=logMinHap;
// keep removing haplotypes until we have the desired number of haplotypes
bool erased=true;
while (logNH>logMH && erased) {
erased=false;
for (x=0;x<hbs.size();x++) {
double mf=2.0;
for (it=hbs[x].haps.begin();it!=hbs[x].haps.end();it++) {
if (it->type!=Haplotype::Ref && it->freq<mf) mf=it->freq;
}
if (hbs[x].haps.size()<=1) { minFreq[x]=2.0; elim[x]=0; } else minFreq[x]=mf;
}
vector<double>::iterator mel=min_element(minFreq.begin(), minFreq.end());
assert(mel!=minFreq.end());
size_t y=distance(minFreq.begin(),mel);
if (elim[y]==0) break;
// erase the element
for (it=hbs[y].haps.begin();it!=hbs[y].haps.end();it++) if (it->type!=Haplotype::Ref && it->freq<=*mel) {
hbs[y].haps.erase(it);
erased=true;
break;
}
logNH=0.0;
for (x=0;x<hbs.size();x++) {
logNH+=log(double(hbs[x].haps.size()));
}
//cout << "logNH: " << logNH << " logMH: " << logMH << endl;
}
max.resize(hbs.size(),0);
iter.resize(hbs.size(),0);
for (x=0;x<hbs.size();x++) max[x]=hbs[x].haps.size();
logNumHap=logNH;
// check if we still have the reference sequence in every block
for (size_t x=0;x<hbs.size();x++) {
// cout << "hbs[" << x << "]: " << hbs[x].haps.size() << endl;
bool reffound=false;
for (size_t y=0;y<hbs[x].haps.size();y++) {
if (hbs[x].haps[y].type==Haplotype::Ref) {
reffound=true;
}
}
if (!reffound) {
cout << "x: " << x << endl;
}
if (!reffound) { throw string("Cannot find reference sequence."); };
}
}
double logNumHap;
bool _last;
vector<int > iter, max;
vector<size_t> hasIndel;
list<HapBlock *> hapBlocks;
Haplotype hap;
vector<HDHapBlock > hbs;
int indelIdx, indelOffs, noIndelWindow;
uint32_t midPos;
typedef list<HapBlock*>::iterator HBIt;
const HaplotypeDistribution *hdPtr;
};
#endif
|