1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
|
''' Learning algorithms for tractography'''
import numpy as np
from . import track_metrics as tm
import dipy.core.track_performance as pf
from scipy import ndimage as nd
import itertools
import time
import numpy.linalg as npla
def larch(tracks,
split_thrs=[50.**2,20.**2,10.**2],
ret_atracks=False,
info=False):
''' LocAl Rapid Clusters for tractograpHy
Parameters
----------
tracks : sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
split_thrs : sequence
of 3 floats with the squared distances
approx_tracks: bool
if True return an approximation of the initial tracks
info: bool
print some information
Returns
--------
C : dict
a tree graph containing the clusters
atracks : sequence
of approximated tracks the approximation preserves initial shape.
'''
'''
t1=time.clock()
print 'Reducing to 3-point approximate tracks...'
tracks3=[tm.downsample(t,3) for t in tracks]
t2=time.clock()
print 'Done in ', t2-t1, 'secs'
print 'Reducing to n-point approximate tracks...'
atracks=[pf.approx_polygon_track(t) for t in tracks]
t3=time.clock()
print 'Done in ', t3-t2, 'secs'
print('Starting larch_preprocessing...')
C=pf.larch_preproc(tracks3,split_thrs,info)
t4=time.clock()
print 'Done in ', t4-t3, 'secs'
print('Finding most similar tracks in every cluster ...')
for c in C:
local_tracks=[atracks[i] for i in C[c]['indices']]
#identify the most similar track in the cluster C[c] and return the index of
#the track and the distances of this track with all other tracks
msi,distances=pf.most_similar_track_mam(local_tracks,metric='avg')
C[c]['repz']=atracks[C[c]['indices'][msi]]
C[c]['repz_dists']=distances
print 'Done in ', time.clock()-t4
if ret_atracks:
return C,atracks
else:
return C
'''
return
def detect_corresponding_tracks(indices,tracks1,tracks2):
''' Detect corresponding tracks from 1 to 2
Parameters
----------
indices : sequence
of indices of tracks1 that are to be detected in tracks2
tracks1 : sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
tracks2 : sequence
of tracks as arrays, shape (M1,3) .. (Mm,3)
Returns
-------
track2track : array
of int showing the correspondance
'''
li=len(indices)
track2track=np.zeros((li,3))
cnt=0
for i in indices:
rt=[pf.zhang_distances(tracks1[i],t,'avg') for t in tracks2]
rt=np.array(rt)
track2track[cnt-1]=np.array([cnt,i,rt.argmin()])
cnt+=1
return track2track.astype(int)
def detect_corresponding_tracks_extended(indices,tracks1,indices2,tracks2):
''' Detect corresponding tracks from 1 to 2
Parameters:
----------------
indices: sequence
of indices of tracks1 that are to be detected in tracks2
tracks1: sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
indices2: sequence
of indices of tracks2 in the initial brain
tracks2: sequence
of tracks as arrays, shape (M1,3) .. (Mm,3)
Returns:
-----------
track2track: array of int
showing the correspondance
'''
li=len(indices)
track2track=np.zeros((li,3))
cnt=0
for i in indices:
rt=[pf.zhang_distances(tracks1[i],t,'avg') for t in tracks2]
rt=np.array(rt)
track2track[cnt-1]=np.array([cnt,i,indices2[rt.argmin()]])
cnt+=1
return track2track.astype(int)
def rm_far_ends(ref,tracks,dist=25):
''' rm tracks with far endpoints
Parameters
----------
ref : array, shape (N,3)
xyz points of the reference track
tracks : sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
dist : float
endpoint distance threshold
Returns
-------
tracksr : sequence
reduced tracks
indices : sequence
indices of tracks
'''
indices=[i for (i,t) in enumerate(tracks) if tm.max_end_distances(t,ref) <= dist]
tracksr=[tracks[i] for i in indices]
return tracksr,indices
def rm_far_tracks(ref,tracks,dist=25,down=False):
''' Remove tracks which are far away using as a distance metric the average euclidean distance of the
following three points start point, midpoint and end point.
Parameters
----------
ref : array, shape (N,3)
xyz points of the reference track
tracks : sequence
of tracks as arrays, shape (N1,3) .. (Nm,3)
dist : float
average distance threshold
down: bool {True, False}
if down = True then ref and tracks are already downsampled
if down = False then downsample them
Returns
-------
tracksr : sequence
reduced tracks
indices : sequence
indices of tracks
'''
if down==False:
tracksd=[tm.downsample(t,3) for t in tracks]
refd=tm.downsample(ref,3)
indices=[i for (i,t) in enumerate(tracksd) if np.mean(np.sqrt(np.sum((t-refd)**2,axis=1))) <= dist]
tracksr=[tracks[i] for i in indices]
return tracksr, indices
if down==True:
indices=[i for (i,t) in enumerate(tracks) if np.mean(np.sqrt(np.sum((t-ref)**2,axis=1))) <= dist]
tracksr=[tracks[i] for i in indices]
return tracksr,indices
def missing_tracks(indices1,indices2):
''' Missing tracks in bundle1 but not bundle2
Parameters:
------------------
indices1: sequence
of indices of tracks in bundle1
indices2: sequence
of indices of tracks in bundle2
Returns:
-----------
indices: sequence of indices
of tracks in bundle1 absent from bundle2
Example:
-------------
>>> tracksar,indar=rm_far_tracks(ref,tracksa,dist=20)
>>> fornix_ind=G[5]['indices']
>>> len(missing_tracks(fornix_ind, indar)) = 5
>>> tracksar,indar=rm_far_tracks(ref,tracksa,dist=25)
>>> fornix_ind=G[5]['indices']
>>> len(missing_tracks(fornix_ind, indar)) = 0
'''
return list(set(indices1).difference(set(indices2)))
def skeletal_tracks(tracks,rand_selected=1000,ball_radius=5,neighb_no=50):
''' Filter out unnescessary tracks and keep only a few good ones.
Aka the balls along a track method.
Parameters:
----------------
tracks: sequence
of tracks
rand_selected: int
number of initially selected fibers
ball_radius: float
balls along tracks radii
neighb_no: int
lowest threshold for the number of tracks included
Returns:
-----------
reps: sequence
of indices of representative aka skeletal tracks. They should be <= rand_selected
'''
trackno=len(tracks)
#select 1000 random tracks
random_indices=(trackno*np.random.rand(rand_selected)).astype(int)
tracks3points=[tm.downsample(t,3) for t in tracks]
#store representative tracks
representative=[]
representative_indices=[]
#store indices of already visited tracks i.e. which already have a representative track
visited=[]
import time
t1=time.clock()
# for every index of the possible representative tracks
for (i,t) in enumerate(random_indices):
#if track is not already classified
if i not in visited:
print(i,t)
#rm far tracks
tracksr,indices=rm_far_tracks(tracks3points[t],tracks3points,dist=25,down=True)
cnt_neighb=0
just_visited=[]
#for every possible neighbour track tr with index tri
for tri in indices:
cnt_intersected_balls=0
#for every point of the possible representative track
for p in tracks[t]:
#if you intersect the sphere surrounding the point of the random track increase a counter
if tm.inside_sphere(tracks[tri],p,ball_radius): cnt_intersected_balls+=1
#if all spheres are covered then accept this track as your neighbour
if cnt_intersected_balls ==len(tracks[t]):
cnt_neighb+=1
just_visited.append(tri)
#if the number of possible neighbours is above threshold then accept track[t] as a representative fiber
if cnt_neighb>=neighb_no:
representative.append(t)
visited=visited+just_visited
print 'Time:',time.clock()-t1
return representative
def detect_corpus_callosum(tracks,plane=91,ysize=217,zsize=181,width=1.0,use_atlas=0,use_preselected_tracks=0,ball_radius=5):
''' Detect corpus callosum in a mni registered dataset of shape (181,217,181)
Parameters:
----------------
tracks: sequence
of tracks
Returns:
----------
cc_indices: sequence
with the indices of the corpus_callosum tracks
left_indices: sequence
with the indices of the rest of the brain
'''
cc=[]
#for every track
for (i,t) in enumerate(tracks):
#for every index of any point in the track
for pi in range(len(t)-1):
#if track segment is cutting the plane (assuming the plane is at the x-axis X=plane)
if (t[pi][0] <= plane and t[pi+1][0] >= plane) or (t[pi+1][0] <= plane and t[pi][0] >= plane) :
v=t[pi+1]-t[pi]
k=(plane-t[pi][0])/v[0]
hit=k*v+t[pi]
#report the index of the track and the point of intersection with the plane
cc.append((i,hit))
#indices
cc_i=[c[0] for c in cc]
print 'Number of tracks cutting plane Before',len(cc_i)
#hit points
cc_p=np.array([c[1] for c in cc])
p_neighb=len(cc_p)*[0]
cnt=0
#imaging processing from now on
im=np.zeros((ysize,zsize))
im2=np.zeros((ysize,zsize))
im_track={}
cnt=0
for p in cc_p:
p1=int(round(p[1]))
p2=int(round(p[2]))
im[p1,p2]=1
im2[p1,p2]=im2[p1,p2]+1
try:
im_track[(p1,p2)]=im_track[(p1,p2)]+[cc_i[cnt]]
except:
im_track[(p1,p2)]=[cc_i[cnt]]
cnt+=1
#create a cross structure
cross=np.array([[0,1,0],[1,1,1],[0,1,0]])
im=(255*im).astype('uint8')
im2=(np.interp(im2,[0,im2.max()],[0,255])).astype('uint8')
#erosion
img=nd.binary_erosion(im,structure=cross)
#and another one erosion
#img=nd.binary_erosion(img,structure=cross)
#im2g=nd.grey_erosion(im2,structure=cross)
#im2g2=nd.grey_erosion(im2g,structure=cross)
indg2=np.where(im2==im2.max())
p1max=indg2[0][0]
p2max=indg2[1][0]
#label objects
imgl=nd.label(img)
no_labels=imgl[1]
imgl=imgl[0]
#find the biggest objects the second biggest should be the cc the biggest should be the background
'''
find_big=np.zeros(no_labels)
for i in range(no_labels):
ind=np.where(imgl==i)
find_big[i]=len(ind[0])
print find_big
find_bigi=np.argsort(find_big)
'''
cc_label=imgl[p1max,p2max]
imgl2=np.zeros((ysize,zsize))
#cc is found and copied to a new image here
#imgl2[imgl==int(find_bigi[-2])]=1
imgl2[imgl==int(cc_label)]=1
imgl2=imgl2.astype('uint8')
#now do another dilation to recover some cc shape from the previous erosion
imgl2d=nd.binary_dilation(imgl2,structure=cross)
#and another one
#imgl2d=nd.binary_dilation(imgl2d,structure=cross)
imgl2d=imgl2d.astype('uint8')
#get the tracks back
cc_indices=[]
indcc=np.where(imgl2d>0)
for i in range(len(indcc[0])):
p1=indcc[0][i]
p2=indcc[1][i]
cc_indices=cc_indices+im_track[(p1,p2)]
print 'After', len(cc_indices)
#export also the rest of the brain
indices=range(len(tracks))
left=set(indices).difference(set(cc_indices))
left_indices=[l for l in left]
#return im,im2,imgl2d,cc_indices,left_indices
return cc_indices,left_indices
def track_indices_for_a_value_in_atlas(atlas,value,tes,tracks):
ind=np.where(atlas==value)
indices=set([])
for i in range(len(ind[0])):
try:
tmp=tes[(ind[0][i], ind[1][i], ind[2][i])]
indices=indices.union(set(tmp))
except:
pass
#bundle=[tracks[i] for i in list(indices)]
#return bundle,list(indices)
return list(indices)
def relabel_by_atlas_value_and_mam(atlas_tracks,atlas,tes,tracks,tracksd,zhang_thr):
emi=emi_atlas()
brain_relabeled={}
for e in range(1,9): #from emi:
print emi[e]['bundle_name']
indices=emi[e]['init_ref']+emi[e]['selected_ref']+emi[e]['apr_ref']
tmp=detect_corresponding_tracks(indices,atlas_tracks,tracks)
corresponding_indices=tmp[:,2]
corresponding_indices=list(set(corresponding_indices))
value_indices=[]
for value in emi[e]['value']:
value_indices+=track_indices_for_a_value_in_atlas(atlas,value,tes,tracks)
value_indices=list(set(value_indices))
print 'len corr_ind',len(corresponding_indices)
#check if value_indices do not have anything in common with corresponding_indices and expand
if list(set(value_indices).intersection(set(corresponding_indices)))==[]:
#value_indices=corresponding_indices
print 'len corr_ind',len(corresponding_indices)
for ci in corresponding_indices:
print 'koukou',ci
ref=tracksd[ci]
brain_rf, ind_fr = rm_far_tracks(ref,tracksd,dist=10,down=True)
value_indices+=ind_fr
value_indices=list(set(value_indices))
print 'len vi',len(value_indices)
value_indices_new=[]
#reduce value_indices which are far from every corresponding fiber
for vi in value_indices:
dist=[]
for ci in corresponding_indices:
dist.append(pf.zhang_distances(tracks[vi],tracks[ci],'avg'))
for d in dist:
if d <= zhang_thr[e-1]:
value_indices_new.append(vi)
value_indices=list(set(value_indices_new))
#store value indices
brain_relabeled[e]={}
brain_relabeled[e]['value_indices']=value_indices
brain_relabeled[e]['corresponding_indices']=corresponding_indices
brain_relabeled[e]['color']=emi[e]['color']
brain_relabeled[e]['bundle_name']=emi[e]['bundle_name'][0]
return brain_relabeled
def threshold_hitdata(hitdata, divergence_threshold=0.25, fibre_weight=0.8):
''' [1] Removes hits in hitdata which have divergence above threshold.
[2] Removes fibres in hitdata whose fraction of remaining hits is below
the required weight.
Parameters:
----------------
ref: array, shape (N,5)
xyzrf hit data from cut_planes
divergence_threshold: float
if radial coefficient of divergence is above this then drop the hit
fibre_weight: float
the number of remaing hits on a fibre as a fraction of len(trackdata),
which is the maximum number possible
Returns:
-----------
reduced_hitdata: array, shape (M, 5)
light_weight_fibres: list of integer track indices
'''
# first pass: remove hits with r>divergence_threshold
firstpass = [[[x,y,z,r,f] for (x,y,z,r,f) in plane if r<=divergence_threshold] for plane in hitdata]
# second pass: find fibres hit weights
fibrecounts = {}
for l in [[f,r] for (x,y,z,r,f) in itertools.chain(*firstpass)]:
f = l[0].astype('int')
try:
fibrecounts[f] += 1
except:
fibrecounts[f] = 1
weight_thresh = len(hitdata)*fibre_weight
heavy_weight_fibres = [f for f in fibrecounts.keys() if fibrecounts[f]>=weight_thresh]
# third pass
reduced_hitdata = [np.array([[x,y,z,r,f] for (x,y,z,r,f) in plane if fibrecounts[f.astype('int')] >= weight_thresh]) for plane in firstpass]
return reduced_hitdata, heavy_weight_fibres
def neck_finder(hitdata, ref):
'''
To identify regions of concentration of fibres related by hitdata to a reference fibre
'''
#typically len(hitdata) = len(ref)-2 at present, though it should ideally be
# len(ref)-1 which is the number of segments in ref
# We will assume that hitdata[i] relates to the segment from ref[i] to ref[i+1]
#xyz=[]
#rcd=[]
#fibres=[]
weighted_mean_rcd = []
unweighted_mean_rcd = []
weighted_mean_dist = []
unweighted_mean_dist = []
hitcount = []
for (p, plane) in enumerate(hitdata):
xyz = plane[:,:3]
rcd =plane[:,3]
fibres = plane[:,4]
hitcount +=[len(plane)]
radial_distances=np.sqrt(np.diag(np.inner(xyz-ref[p],xyz-ref[p])))
unweighted_mean_rcd += [np.average(1-rcd)]
weighted_mean_rcd += [np.average(1-rcd, weights=np.exp(-radial_distances))]
unweighted_mean_dist += [np.average(np.exp(-radial_distances))]
weighted_mean_dist += [np.average(np.exp(-radial_distances), weights=1-rcd)]
return np.array(hitcount), np.array(unweighted_mean_rcd), np.array(weighted_mean_rcd), \
np.array(unweighted_mean_dist), np.array(weighted_mean_dist)
def max_concentration(plane_hits,ref):
'''
calculates the log determinant of the concentration matrix for the hits in planehits
'''
dispersions = [np.prod(np.sort(npla.eigvals(np.cov(p[:,0:3].T)))[1:2]) for p in plane_hits]
index = np.argmin(dispersions)
log_max_concentration = -np.log2(dispersions[index])
centre = ref[index+1]
return index, centre, log_max_concentration
def refconc(brain, ref, divergence_threshold=0.3, fibre_weight=0.7):
'''
given a reference fibre locates the parallel fibres in brain (tracks)
with threshold_hitdata applied to cut_planes output then follows
with concentration to locate the locus of a neck
'''
hitdata = pf.cut_plane(brain, ref)
reduced_hitdata, heavy_weight_fibres = threshold_hitdata(hitdata, divergence_threshold, fibre_weight)
#index, centre, log_max_concentration = max_concentration(reduced_hitdata, ref)
index=None
centre=None
log_max_concentration=None
return heavy_weight_fibres, index, centre
def bundle_from_refs(brain,braind, refs, divergence_threshold=0.3, fibre_weight=0.7,far_thresh=25,zhang_thresh=15, end_thresh=10):
'''
'''
bundle = set([])
centres = []
indices = []
for ref in refs:
refd=tm.downsample(ref,3)
brain_rf, ind_fr = rm_far_tracks(refd,braind,dist=far_thresh,down=True)
brain_rf=[brain[i] for i in ind_fr]
#brain_rf,ind_fr = rm_far_tracks(ref,brain,dist=far_thresh,down=False)
heavy_weight_fibres, index, centre = refconc(brain_rf, ref, divergence_threshold, fibre_weight)
heavy_weight_fibres_z = [i for i in heavy_weight_fibres if pf.zhang_distances(ref,brain_rf[i],'avg')<zhang_thresh]
#heavy_weight_fibres_z_e = [i for i in heavy_weight_fibres_z if tm.max_end_distances(brain_rf[i],ref)>end_thresh]
hwfind = set([ind_fr[i] for i in heavy_weight_fibres_z])
bundle = bundle.union(hwfind)
bundle_med = []
for i in bundle:
minmaxdist = 0.
for ref in refs:
minmaxdist=min(minmaxdist,tm.max_end_distances(brain[i],ref))
if minmaxdist<=end_thresh:
bundle_med.append(i)
#centres.append(centre)
#indices.append(index)
#return list(bundle), centres, indices
return bundle_med
class FACT_Delta():
''' Generates tracks with termination criteria defined by a
delta function [1]_ and it has similarities with FACT algorithm [2]_.
Can be used with any reconstruction method as DTI,DSI,QBI,GQI which can
calculate an orientation distribution function and find the local peaks of
that function. For example a single tensor model can give you only
one peak a dual tensor model 2 peaks and quantitative anisotropy
method as used in GQI can give you 3,4,5 or even more peaks.
The parameters of the delta function are checking thresholds for the
direction propagation magnitude and the angle of propagation.
A specific number of seeds is defined randomly and then the tracks
are generated for that seed if the delta function returns true.
Trilinear interpolation is being used for defining the weights of
the propagation.
References
----------
.. [1] Yeh. et al. Generalized Q-Sampling Imaging, TMI 2010.
.. [2] Mori et al. Three-dimensional tracking of axonal projections
in the brain by magnetic resonance imaging. Ann. Neurol. 1999.
'''
def __init__(self,qa,ind,seeds_no=1000,odf_vertices=None,qa_thr=0.0239,step_sz=0.5,ang_thr=60.):
'''
Parameters
----------
qa: array, shape(x,y,z,Np), magnitude of the peak (QA) or
shape(x,y,z) a scalar volume like FA.
ind: array, shape(x,y,z,Np), indices of orientations of the QA
peaks found at odf_vertices used in QA or, shape(x,y,z), ind
seeds_no: number of random seeds
odf_vertices: sphere points which define a discrete
representation of orientations for the peaks, the same for all voxels
qa_thr: float, threshold for QA(typical 0.023) or FA(typical 0.2)
step_sz: float, propagation step
ang_thr: float, if turning angle is smaller than this threshold
then tracking stops.
Returns
-------
tracks: sequence of arrays
'''
if len(qa.shape)==3:
qa.shape=qa.shape+(1,)
ind.shape=ind.shape+(1,)
#store number of maximum peacks
self.Np=qa.shape[-1]
x,y,z,g=qa.shape
tlist=[]
if odf_vertices==None:
eds=np.load(os.path.join(os.path.dirname(__file__),'matrices',\
'evenly_distributed_sphere_362.npz'))
odf_vertices=eds['vertices']
self.seed_list=[]
for i in range(seeds_no):
rx=(x-1)*np.random.rand()
ry=(y-1)*np.random.rand()
rz=(z-1)*np.random.rand()
seed=np.array([rx,ry,rz])
#print 'init seed', seed
#self.seed_list.append(seed.copy())
track=self.propagation(seed.copy(),qa,ind,odf_vertices,qa_thr,ang_thr,step_sz)
if track == None:
pass
else:
self.seed_list.append(seed.copy())
tlist.append(track)
self.tracks=tlist
def trilinear_interpolation(self,X):
'''
Parameters
----------
X: array, shape(3,), a point
Returns
--------
W: array, shape(8,2) weights, think of them like the 8
subvolumes of a unit cube surrounding the seed.
IN: array, shape(8,2), the corners of the unit cube
'''
Xf=np.floor(X)
#d holds the distance from the (floor) corner of the voxel
d=X-Xf
#nd holds the distance from the opposite corner
nd = 1-d
#filling the weights
W=np.array([[ nd[0] * nd[1] * nd[2] ],
[ d[0] * nd[1] * nd[2] ],
[ nd[0] * d[1] * nd[2] ],
[ nd[0] * nd[1] * d[2] ],
[ d[0] * d[1] * nd[2] ],
[ nd[0] * d[1] * d[2] ],
[ d[0] * nd[1] * d[2] ],
[ d[0] * d[1] * d[2] ]])
IN=np.array([[ Xf[0] , Xf[1] , Xf[2] ],
[ Xf[0]+1 , Xf[1] , Xf[2] ],
[ Xf[0] , Xf[1]+1, Xf[2] ],
[ Xf[0] , Xf[1] , Xf[2]+1 ],
[ Xf[0]+1 , Xf[1]+1, Xf[2] ],
[ Xf[0] , Xf[1]+1, Xf[2]+1 ],
[ Xf[0]+1 , Xf[1] , Xf[2]+1 ],
[ Xf[0]+1 , Xf[1]+1, Xf[2]+1 ]])
return W,IN.astype(np.int)
def nearest_direction(self,dx,qa,ind,odf_vertices,qa_thr=0.0245,ang_thr=60.):
''' Give the nearest direction to a point
Parameters
----------
dx: array, shape(3,), as float, moving direction of the current
tracking
qa: array, shape(Np,), float, quantitative anisotropy matrix,
where Np the number of peaks, found using self.Np
ind: array, shape(Np,), float, index of the track orientation
odf_vertices: array, shape(N,3), float, odf sampling directions
qa_thr: float, threshold for QA, we want everything higher than
this threshold
ang_thr: float, theshold, we only select fiber orientation with
this range
Returns
--------
delta: bool, delta funtion, if 1 we give it weighting if it is 0
we don't give any weighting
direction: array, shape(3,), the fiber orientation to be
consider in the interpolation
'''
max_dot=0
max_doti=0
angl = np.cos((np.pi*ang_thr)/180.)
if qa[0] <= qa_thr:
return False, np.array([0,0,0])
for i in range(self.Np):
if qa[i]<= qa_thr:
break
curr_dot = np.abs(np.dot(dx, odf_vertices[ind[i]]))
if curr_dot > max_dot:
max_dot = curr_dot
max_doti = i
if max_dot < angl :
return False, np.array([0,0,0])
if np.dot(dx,odf_vertices[ind[max_doti]]) < 0:
return True, - odf_vertices[ind[max_doti]]
else:
return True, odf_vertices[ind[max_doti]]
def propagation_direction(self,point,dx,qa,ind,odf_vertices,qa_thr,ang_thr):
''' Find where you are moving next
'''
total_w = 0 # total weighting
new_direction = np.array([0,0,0])
w,index=self.trilinear_interpolation(point)
#print w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7]
#print index
#check if you are outside of the volume
for i in range(3):
if index[7][i] >= qa.shape[i] or index[0][i] < 0:
return False, np.array([0,0,0])
#calculate qa & ind of each of the 8 corners
for m in range(8):
x,y,z = index[m]
qa_tmp = qa[x,y,z]
ind_tmp = ind[x,y,z]
#print qa_tmp[0]#,qa_tmp[1],qa_tmp[2],qa_tmp[3],qa_tmp[4]
delta,direction = self.nearest_direction(dx,qa_tmp,ind_tmp,odf_vertices,qa_thr,ang_thr)
#print delta, direction
if not delta:
continue
total_w += w[m]
new_direction = new_direction + w[m][0]*direction
if total_w < .5: # termination criteria
return False, np.array([0,0,0])
return True, new_direction/np.sqrt(np.sum(new_direction**2))
def initial_direction(self,seed,qa,ind,odf_vertices,qa_thr):
''' First direction that we get from a seeding point
'''
#very tricky/cool addition/flooring that helps create a valid
#neighborhood (grid) for the trilinear interpolation to run smoothly
#seed+=0.5
point=np.floor(seed+.5)
x,y,z = point
qa_tmp=qa[x,y,z,0]#maximum qa
ind_tmp=ind[x,y,z,0]#corresponing orientation indices for max qa
if qa_tmp < qa_thr:
return False, np.array([0,0,0])
else:
return True, odf_vertices[ind_tmp]
def propagation(self,seed,qa,ind,odf_vertices,qa_thr,ang_thr,step_sz):
'''
Parameters
----------
seed: array, shape(3,), point where the tracking starts
qa: array, shape(Np,), float, quantitative anisotropy matrix,
where Np the number of peaks, found using self.Np
ind: array, shape(Np,), float, index of the track orientation
Returns
-------
d: bool, delta function result
idirection: array, shape(3,), index of the direction of the propagation
'''
point_bak=seed.copy()
point=seed.copy()
#d is the delta function
d,idirection=self.initial_direction(seed,qa,ind,odf_vertices,qa_thr)
#print('FD',idirection[0],idirection[1],idirection[2])
#print d
if not d:
return None
dx = idirection
#point = seed-0.5
track = []
track.append(point.copy())
#track towards one direction
while d:
d,dx = self.propagation_direction(point,dx,qa,ind,\
odf_vertices,qa_thr,ang_thr)
if not d:
break
point = point + step_sz*dx
track.append(point)
d = True
dx = - idirection
point=point_bak.copy()
#point = seed
#track towards the opposite direction
while d:
d,dx = self.propagation_direction(point,dx,qa,ind,\
odf_vertices,qa_thr,ang_thr)
if not d:
break
point = point + step_sz*dx
track.insert(0,point.copy())
return np.array(track)
|