File: simulate_multi_tensor.rst

package info (click to toggle)
dipy 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 43,276 kB
  • ctags: 9,823
  • sloc: python: 22,407; makefile: 260; pascal: 155; sh: 15; ansic: 11
file content (125 lines) | stat: -rw-r--r-- 2,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
.. AUTO-GENERATED FILE -- DO NOT EDIT!

.. _example_simulate_multi_tensor:


======================
MultiTensor Simulation
======================

In this example we show how someone can simulate the signal and the ODF of a
single voxel using a MultiTensor.

::
  
  import numpy as np
  from dipy.sims.voxel import (multi_tensor,
                               multi_tensor_odf,
                               single_tensor_odf,
                               all_tensor_evecs)
  from dipy.data import get_sphere
  

For the simulation we will need a GradientTable with the b-values and b-vectors
Here we use the one we created in :ref:`example_gradients_spheres`.

::
  
  from gradients_spheres import gtab
  

In ``mevals`` we save the eigenvalues of each tensor.

::
  
  mevals = np.array([[0.0015, 0.0003, 0.0003],
                     [0.0015, 0.0003, 0.0003]])
  

In ``angles`` we save in polar coordinates (:math:`\theta, \phi`) the principal
axis of each tensor.

::
  
  angles = [(0, 0), (60, 0)]
  

In ``fractions`` we save the percentage of the contribution of each tensor.

::
  
  fractions = [50, 50]
  

The function ``multi_tensor`` will return the simulated signal and an array
with the principal axes of the tensors in cartesian coordinates.

::
  
  signal, sticks = multi_tensor(gtab, mevals, S0=100, angles=angles,
                           fractions=fractions, snr=None)
  

We can also add rician noise with a specific SNR.

::
  
  signal_noisy, sticks = multi_tensor(gtab, mevals, S0=100, angles=angles,
                           fractions=fractions, snr=20)
  
  
  import matplotlib.pyplot as plt
  
  plt.plot(signal, label='noiseless')
  
  plt.plot(signal_noisy, label='with noise')
  plt.legend()
  plt.show()
  plt.savefig('simulated_signal.png')
  

.. figure:: simulated_signal.png
   :align: center

   **Simulated MultiTensor signal**

::
  

For the ODF simulation we will need a sphere. Because we are interetested in a
simulation of only a single voxel, we can use a sphere with very high
resolution. We generate that by subdividing the triangles of one of Dipy's
cached spheres, which we can read in the following way.

::
  
  sphere = get_sphere('symmetric724')
  sphere = sphere.subdivide(2)
  
  odf = multi_tensor_odf(sphere.vertices, mevals, angles, fractions)
  
  from dipy.viz import fvtk
  
  ren = fvtk.ren()
  
  odf_actor = fvtk.sphere_funcs(odf, sphere)
  odf_actor.RotateX(90)
  
  fvtk.add(ren, odf_actor)
  
  print('Saving illustration as multi_tensor_simulation')
  fvtk.record(ren, out_path='multi_tensor_simulation.png', size=(300, 300))
  

.. figure:: multi_tensor_simulation.png
   :align: center

   **Simulating a MultiTensor ODF**

        
.. admonition:: Example source code

   You can download :download:`the full source code of this example <./simulate_multi_tensor.py>`.
   This same script is also included in the dipy source distribution under the
   :file:`doc/examples/` directory.