1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011,2012,2013 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// #define DEBUG5 1 /* capture 9600 output to log files */
/*------------------------------------------------------------------
*
* Module: demod_9600.c
*
* Purpose: Demodulator for scrambled baseband encoding.
*
* Input: Audio samples from either a file or the "sound card."
*
* Outputs: Calls hdlc_rec_bit() for each bit demodulated.
*
*---------------------------------------------------------------*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include "direwolf.h"
#include "tune.h"
#include "fsk_demod_state.h"
#include "hdlc_rec.h"
#include "demod_9600.h"
#include "textcolor.h"
#include "dsp.h"
/* Add sample to buffer and shift the rest down. */
__attribute__((hot))
static inline void push_sample (float val, float *buff, int size)
{
int j;
// TODO: memmove any faster?
for (j = size - 1; j >= 1; j--) {
buff[j] = buff[j-1];
}
buff[0] = val;
}
/* FIR filter kernel. */
__attribute__((hot))
static inline float convolve (const float *data, const float *filter, int filter_size)
{
float sum = 0;
int j;
for (j=0; j<filter_size; j++) {
sum += filter[j] * data[j];
}
return (sum);
}
/* Automatic gain control. */
/* Result should settle down to 1 unit peak to peak. i.e. -0.5 to +0.5 */
__attribute__((hot))
static inline float agc (float in, float fast_attack, float slow_decay, float *ppeak, float *pvalley)
{
if (in >= *ppeak) {
*ppeak = in * fast_attack + *ppeak * (1. - fast_attack);
}
else {
*ppeak = in * slow_decay + *ppeak * (1. - slow_decay);
}
if (in <= *pvalley) {
*pvalley = in * fast_attack + *pvalley * (1. - fast_attack);
}
else {
*pvalley = in * slow_decay + *pvalley * (1. - slow_decay);
}
if (*ppeak > *pvalley) {
return ((in - 0.5 * (*ppeak + *pvalley)) / (*ppeak - *pvalley));
}
return (0.0);
}
/*------------------------------------------------------------------
*
* Name: demod_9600_init
*
* Purpose: Initialize the 9600 baud demodulator.
*
* Inputs: samples_per_sec - Number of samples per second.
* Might be upsampled in hopes of
* reducing the PLL jitter.
*
* baud - Data rate in bits per second.
*
* D - Address of demodulator state.
*
* Returns: None
*
*----------------------------------------------------------------*/
void demod_9600_init (int samples_per_sec, int baud, struct demodulator_state_s *D)
{
float fc;
memset (D, 0, sizeof(struct demodulator_state_s));
//dw_printf ("demod_9600_init(rate=%d, baud=%d, D ptr)\n", samples_per_sec, baud);
D->pll_step_per_sample =
(int) round(TICKS_PER_PLL_CYCLE * (double) baud / (double)samples_per_sec);
D->filter_len_bits = 72 * 9600.0 / (44100.0 * 2.0);
D->lp_filter_size = (int) (( D->filter_len_bits * (float)samples_per_sec / baud) + 0.5);
#if TUNE_LP_FILTER_SIZE
D->lp_filter_size = TUNE_LP_FILTER_SIZE;
#endif
D->lpf_baud = 0.59;
#ifdef TUNE_LPF_BAUD
D->lpf_baud = TUNE_LPF_BAUD;
#endif
D->agc_fast_attack = 0.080;
#ifdef TUNE_AGC_FAST
D->agc_fast_attack = TUNE_AGC_FAST;
#endif
D->agc_slow_decay = 0.00012;
#ifdef TUNE_AGC_SLOW
D->agc_slow_decay = TUNE_AGC_SLOW;
#endif
D->pll_locked_inertia = 0.88;
D->pll_searching_inertia = 0.67;
#if defined(TUNE_PLL_LOCKED) && defined(TUNE_PLL_SEARCHING)
D->pll_locked_inertia = TUNE_PLL_LOCKED;
D->pll_searching_inertia = TUNE_PLL_SEARCHING;
#endif
fc = (float)baud * D->lpf_baud / (float)samples_per_sec;
//dw_printf ("demod_9600_init: call gen_lowpass(fc=%.2f, , size=%d, )\n", fc, D->lp_filter_size);
gen_lowpass (fc, D->lp_filter, D->lp_filter_size, BP_WINDOW_HAMMING);
} /* end fsk_demod_init */
/*-------------------------------------------------------------------
*
* Name: demod_9600_process_sample
*
* Purpose: (1) Filter & slice the signal.
* (2) Descramble it.
* (2) Recover clock and data.
*
* Inputs: chan - Audio channel. 0 for left, 1 for right.
*
* sam - One sample of audio.
* Should be in range of -32768 .. 32767.
*
* Returns: None
*
* Descripion: "9600 baud" packet is FSK for an FM voice transceiver.
* By the time it gets here, it's really a baseband signal.
* At one extreme, we could have a 4800 Hz square wave.
* A the other extreme, we could go a considerable number
* of bit times without any transitions.
*
* The trick is to extract the digital data which has
* been distorted by going thru voice transceivers not
* intended to pass this sort of "audio" signal.
*
* Data is "scrambled" to reduce the amount of DC bias.
* The data stream must be unscrambled at the receiving end.
*
* We also have a digital phase locked loop (PLL)
* to recover the clock and pick out data bits at
* the proper rate.
*
* For each recovered data bit, we call:
*
* hdlc_rec (channel, demodulated_bit);
*
* to decode HDLC frames from the stream of bits.
*
* Future: This could be generalized by passing in the name
* of the function to be called for each bit recovered
* from the demodulator. For now, it's simply hard-coded.
*
* References: 9600 Baud Packet Radio Modem Design
* http://www.amsat.org/amsat/articles/g3ruh/109.html
*
* The KD2BD 9600 Baud Modem
* http://www.amsat.org/amsat/articles/kd2bd/9k6modem/
*
* 9600 Baud Packet Handbook
* ftp://ftp.tapr.org/general/9600baud/96man2x0.txt
*
*
* TODO: This works in a simulated environment but it has not yet
* been successfully tested for interoperability with
* other systems over the air.
* That's why it is not mentioned in documentation.
*
* The signal from the radio speaker does NOT have
* enough bandwidth and the waveform is hopelessly distorted.
* It will be necessary to obtain a signal right after
* the discriminator of the receiver.
* It will probably also be necessary to tap directly into
* the modulator, bypassing the microphone amplifier.
*
*--------------------------------------------------------------------*/
__attribute__((hot))
void demod_9600_process_sample (int chan, int sam, struct demodulator_state_s *D)
{
float fsam;
float abs_fsam;
float amp;
float demod_out;
#if DEBUG5
static FILE *demod_log_fp = NULL;
static int seq = 0; /* for log file name */
#endif
int j;
int subchan = 0;
int demod_data; /* Still scrambled. */
static int descram; /* Data bit de-scrambled. */
assert (chan >= 0 && chan < MAX_CHANS);
assert (subchan >= 0 && subchan < MAX_SUBCHANS);
/*
* Filters use last 'filter_size' samples.
*
* First push the older samples down.
*
* Finally, put the most recent at the beginning.
*
* Future project? Rather than shifting the samples,
* it might be faster to add another variable to keep
* track of the most recent sample and change the
* indexing in the later loops that multipy and add.
*/
/* Scale to nice number, range -1.0 to +1.0. */
fsam = sam / 32768.0;
push_sample (fsam, D->raw_cb, D->lp_filter_size);
/*
* Low pass filter to reduce noise yet pass the data.
*/
amp = convolve (D->raw_cb, D->lp_filter, D->lp_filter_size);
/*
* The input level can vary greatly.
* More importantly, there could be a DC bias which we need to remove.
*
* Normalize the signal with automatic gain control (AGC).
* This works by looking at the minimum and maximum signal peaks
* and scaling the results to be roughly in the -1.0 to +1.0 range.
*/
demod_out = 2.0 * agc (amp, D->agc_fast_attack, D->agc_slow_decay, &(D->m_peak), &(D->m_valley));
//dw_printf ("peak=%.2f valley=%.2f amp=%.2f norm=%.2f\n", D->m_peak, D->m_valley, amp, norm);
/* Throw in a little Hysteresis??? */
/* (Not to be confused with Hysteria.) */
if (demod_out > 0.01) {
demod_data = 1;
}
else if (demod_out < -0.01) {
demod_data = 0;
}
else {
demod_data = D->prev_demod_data;
}
/*
* Next, a PLL is used to sample near the centers of the data bits.
*
* D->data_clock_pll is a SIGNED 32 bit variable.
* When it overflows from a large positive value to a negative value, we
* sample a data bit from the demodulated signal.
*
* Ideally, the the demodulated signal transitions should be near
* zero we we sample mid way between the transitions.
*
* Nudge the PLL by removing some small fraction from the value of
* data_clock_pll, pushing it closer to zero.
*
* This adjustment will never change the sign so it won't cause
* any erratic data bit sampling.
*
* If we adjust it too quickly, the clock will have too much jitter.
* If we adjust it too slowly, it will take too long to lock on to a new signal.
*
* I don't think the optimal value will depend on the audio sample rate
* because this happens for each transition from the demodulator.
*
* This was optimized for 1200 baud AFSK. There might be some opportunity
* for improvement here.
*/
D->prev_d_c_pll = D->data_clock_pll;
D->data_clock_pll += D->pll_step_per_sample;
if (D->data_clock_pll < 0 && D->prev_d_c_pll > 0) {
/* Overflow. */
/*
* At this point, we need to descramble the data as
* in hardware based designs by G3RUH and K9NG.
*
* http://www.amsat.org/amsat/articles/g3ruh/109/fig03.gif
*/
//assert (modem.modem_type[chan] == SCRAMBLE);
//if (modem.modem_type[chan] == SCRAMBLE) {
// TODO: This needs to be rearranged to allow attempted "fixing"
// of corrupted bits later. We need to store the original
// received bits and do the descrambling after attempted
// repairs. However, we also need to descramble now to
// detect the flag sequences.
descram = descramble (demod_data, &(D->lfsr));
#if SLICENDICE
// TODO: Needs more thought.
// Does it even make sense to remember demod_out in this case?
// We would need to do the re-thresholding before descrambling.
//hdlc_rec_bit_sam (chan, subchan, descram, descram ? 1.0 : -1.0);
#else
// TODO: raw received bit and true later.
hdlc_rec_bit (chan, subchan, descram, 0, D->lfsr);
#endif
//D->prev_descram = descram;
//}
//else {
/* Baseband signal for completeness - not in common use. */
#if SLICENDICE
//hdlc_rec_bit_sam (chan, subchan, demod_data, demod_data ? 1.0 : -1.0);
#else
//hdlc_rec_bit (chan, subchan, demod_data);
#endif
//}
}
if (demod_data != D->prev_demod_data) {
// Note: Test for this demodulator, not overall for channel.
if (hdlc_rec_data_detect_1 (chan, subchan)) {
D->data_clock_pll = (int)(D->data_clock_pll * D->pll_locked_inertia);
}
else {
D->data_clock_pll = (int)(D->data_clock_pll * D->pll_searching_inertia);
}
}
#if DEBUG5
//if (chan == 0) {
if (hdlc_rec_data_detect_1 (chan,subchan)) {
char fname[30];
if (demod_log_fp == NULL) {
seq++;
sprintf (fname, "demod96/%04d.csv", seq);
if (seq == 1) mkdir ("demod96"
#ifndef __WIN32__
, 0777
#endif
);
demod_log_fp = fopen (fname, "w");
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Starting 9600 decoder log file %s\n", fname);
fprintf (demod_log_fp, "Audio, Peak, Valley, Demod, SData, Descram, Clock\n");
}
fprintf (demod_log_fp, "%.3f, %.3f, %.3f, %.3f, %.2f, %.2f, %.2f\n",
0.5 * fsam + 3.5,
0.5 * D->m_peak + 3.5,
0.5 * D->m_valley + 3.5,
0.5 * demod_out + 2.0,
demod_data ? 1.35 : 1.0,
descram ? .9 : .55,
(D->data_clock_pll & 0x80000000) ? .1 : .45);
}
else {
if (demod_log_fp != NULL) {
fclose (demod_log_fp);
demod_log_fp = NULL;
}
}
//}
#endif
/*
* Remember demodulator output (pre-descrambling) so we can compare next time
* for the DPLL sync.
*/
D->prev_demod_data = demod_data;
} /* end demod_9600_process_sample */
/* end demod_9600.c */
|