File: K3000_common.py

package info (click to toggle)
discosnp 1%3A2.6.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: python: 5,893; sh: 2,966; cpp: 2,692; makefile: 14
file content (612 lines) | stat: -rwxr-xr-x 25,001 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
'''
Compaction of facts. Non ambiguous paths from a set of facts are compacted
@author (except for the 'unique' function) pierre peterlongo pierre.peterlongo@inria.fr
'''

__author__ = "Pierre Peterlongo"
__email__ = "pierre.peterlongo@inria.fr"


import sys
import sorted_list
import os



# update_progress() : Displays or updates a console progress bar
## Accepts a float between 0 and 1. Any int will be converted to a float.
## A value under 0 represents a 'halt'.
## A value at 1 or bigger represents 100%
#https://stackoverflow.com/questions/3160699/python-progress-bar 
def update_progress(progress):
    barLength = 50 # Modify this to change the length of the progress bar
    status = ""
    # if isinstance(progress, int):
    #     progress = float(progress)
    # if not isinstance(progress, float):
    #     progress = 0
    #     status = "error: progress var must be float\r\n"
    if progress < 0:
        progress = 0
        status = "Halt...\r\n"
    if progress >= 1:
        progress = 1
        status = "Done...\r\n"
    block = int(round(barLength*progress))
    text = "\rPercent: [{0}] {1}% {2}".format( "#"*block + "-"*(barLength-block), round(progress*100,2), status)
    sys.stderr.write(text)
    sys.stderr.flush()
    
def file_size(f):
    old_file_position = f.tell()
    f.seek(0, os.SEEK_END)
    size = f.tell()
    f.seek(old_file_position, os.SEEK_SET)
    return size

def hamming_near_perfect (s1, s2, max=0):
    """ returns True is the hamming distance between {s1} and {s2} at most equal to {max} 
    jocker N are authorized.
    s1 and s2 are compared as upper case sequences (eg a==A)
    """ 
    res=0
    
    if len(s1) != len(s2): return False
    for i in range(len(s1)):      
        if s1[i].upper() == 'N' or s2[i].upper()=='N': continue
        if s1[i].upper()!=s2[i].upper():
            res+=1
            if res>max: return False
    return True

    
    
    
def get_complement(char):
    complement = {"A" : "T", "T" : "A", "G" : "C", "C" : "G", "a" : "t", "t" : "a", "g" : "c" , "c" : "g", "N":"N"}
    return complement[char]

    
def get_reverse_complement(seq):
    s = ""
    for i in range(len(seq)):
        s = get_complement(seq[i]) + s
    return s

string_allele_value = lambda x: x.split('_')[0]
allele_value = lambda x: int(x.split('_')[0])
allele_values = lambda list_: [allele_value(x) for x in list_]
distance_string_value = lambda x: x.split('_')[1]

def generate_header(raw_int_facts):
    # from 204_0;201_-23;336_-85; to 102h;100l;168h;
    res=""
    for raw_int_fact in raw_int_facts.strip(";").split(';'):
        res+=unitig_id2snp_id(allele_value(raw_int_fact))+";"
    return res

def d_list_equal(a_d,b_d):
    a=[allele_value(x) for x in a_d]
    b=[allele_value(x) for x in b_d]
    return a==b
    
def d_list_sup(a_d,b_d):
    a=[allele_value(x) for x in a_d]
    b=[allele_value(x) for x in b_d]
    return a>=b
    
    
def d_list_order(a_d,b_d):
    a=[allele_value(x) for x in a_d]
    b=[allele_value(x) for x in b_d]
    if a<b: return -1
    if a==b: return 0
    return 1


def get_reverse_fact(x):
    ''' reverse of a fact x. Example is fact x = ["4_0","2_3","-6_21"], reverse(x) = ["6_0","-2_21","-4_3"] '''
    res =[]
    for i in range (len(x)):
        value = -allele_value(x[-i-1])                          # With i=0, '-6_21' is transformed into 6
        if i==0: 
            value=str(value)+"_0"                               # With i=0, add '_0' to the value
        else:
            value=str(value)+"_"+distance_string_value(x[-i])   # With i=1, add '_21' to the value
        res.append(value)
    return res


def is_palindromic(x):
    ''' return true is a fact x is palindromic, eg [1_0,2_12,-2_13,-1_12]'''
    if len(x)%2 == 1: return False
    for i in range(0,int(len(x)/2)):
        if allele_value(x[i]) != -allele_value(x[-i-1]): return False
    return True
    #
#
# print(get_reverse_sr(["4_0","2_3","-6_21"]))
# print(is_palindromic(["4_0","4_21"]))

def f(variant):
    ''' 
    sVp 
    * s='-' or nothing
    * V=int value
    * p='h' or 'l' (path)

    f(sVp)=s2V+g(p) with g(p)=0 if p='h' and 1 if p='l'
    '''
    s=''
    if variant[0]=='-': 
        s='-'
        V=int(variant[1:-1])
    else: 
        V=int(variant[:-1])
    p=variant[-1]
    odd=0
    if p=='l':
        odd=1
    
    res=(V*2)+odd
    return s+str(res)


def valid_fact(rawfact):
    """
    Checks if a fact is valid.
    A fact containing twice or more the same variant id is not valid. 
    eg: 9h_0;35100h_34;-42157l_33; ok
    eg: 10081h_0;10081l_13; ko
    eg: 10081h_0;10081h_13; ko
    eg: -10081h_0;10081l_13; ko
    """
    id_variants = set()
    for variant in rawfact.rstrip(';').split(';'):
        id_variant = variant.lstrip("-").split("_")[0][:-1] # from -10081h_0 to 10081
        if id_variant in id_variants: return False
        id_variants.add(id_variant)
    return True    

def generate_facts_from_disco_pashing(file_name):
    mfile = open(file_name)
    sl = sorted_list.sorted_list()
    nb_non_valid = 0
    for line in mfile: 
        #9h_0;35100h_34;-42157l_33; -16792l_0;-41270h_70; => 1
        # or
        #-2586h_0;19690h_40; => 2
        if line[0]=='#': 
            # print(line,end='')
            continue
        line=line.strip().split("=>")[0]
        line=line.strip().split()
        for fact in line: 
            if not valid_fact(fact): 
                nb_non_valid+=1
                continue
            facttab=[]
            for variant in fact.split(';')[:-1]:
                facttab.append(f(variant.split('_')[0])+"_"+variant.split('_')[1])
        
            
            facttab = get_canonical(facttab) # store the canonical version of the fact. Btw, afterwards we add all reverse complements. 
            sl.add(facttab)

    sl.unique() # Remove redundancies
    return sl, nb_non_valid

def generate_facts(file_name):
    ''' Given an input file storing facts, store them in the fact array'''
    # -10021_0;68561_21;-86758_3;27414_12;
    sr_file = open(file_name, 'r')
    sl = sorted_list.sorted_list()
    for line in sr_file:
        if line[0]==">": continue # compatible with fasta-file format
        line = line.split()[0].rstrip()[:-1].split(';')
        sr=[]
        for allele_id in line:
            # sr_val=int(unitig_id)
            sr=sr+[allele_id]
        sl.add(sr)
        # print(sr)#DEBUG
    return sl

def detect_input_output_edges(facts):
    '''
    Given all stored facts and ther reverse complements, stores variants that have at least one input edge (in has_input_edge) 
    and those that have at least one output edge (in has_output_edge)

    if a fact is ["4_0","2_3","-6_21"], 
        has_input_edge = {2,-6}
        has_output_edge = {4,2}
    
    
    this means that ["6_0","-2_21","-4_3"] is also stored, hence:
        has_input_edge = {2, -6, -2, -4}
        has_output_edge = {4, 2, 6, -2}



    Returns:
        has_input_edge, has_output_edge
    '''
    has_input_edge= set()
    has_output_edge = set()


    for fact in facts.traverse():
        previous_variant_id = ""
        # print(fact)
        for variant_id in allele_values(fact):
            if previous_variant_id == "": # first value, just store it:
                previous_variant_id = variant_id
                continue
            has_output_edge.add(previous_variant_id)
            has_input_edge.add(variant_id)
            previous_variant_id = variant_id
        # print(f'output {has_output_edge}')
        # print(f'inputput {has_input_edge}')
        # sys.exit()
    return has_input_edge,has_output_edge

def add_reverse_facts(facts):
    ''' For all facts, we add their reverse in the same structure 
    This double the fact size, unless there are palindromes ([1_0,-1_21] for instance). Those are not added.
    We don't check that this does not create any duplicates'''
    facts_ = sorted_list.sorted_list()
    for fact in facts.traverse():
        if not is_palindromic(fact):
            facts_.add(get_reverse_fact(fact))
    for fact in facts_.traverse():
        facts.add(fact)
    return facts



def colinear(x,X,starting_positions):
    ''' Check that all sr in X are colinear with x
    For each sr in X, one knows its starting position on x, with table starting_positions'''
    for i in range(len(X)):
        other = X[i]
        starting_position = starting_positions[i]
        pos=0
        while True:
            if pos>=len(other) or pos+starting_position>=len(x) : break
            if allele_value(other[pos]) != allele_value(x[pos+starting_position]):          # "non colinear"
                return False
            pos+=1
    return True


def is_canonical(sr):
    ''' return True if the canonical representation of sr is itself'''
    if d_list_sup(sr, get_reverse_fact(sr)):
        return True
    else:
        return False

def get_canonical(fact):
    ''' return the canonical representation of sr'''
    fact_=get_reverse_fact(fact)
    if d_list_sup(fact, fact_):    
        return fact
    else:
        return fact_

def print_maximal_facts(facts):

    '''print all maximal facts as a flat format'''
    for sr in facts.traverse():
        if is_canonical(sr) or is_palindromic(sr):
            if len(sr)==1:
                print (str(allele_value(sr[0]))+";")
            else:
                for unitig_id in sr:
                    print (str(unitig_id)+";", end="")
                print ()



def determine_k(fa_file_name):
    """ given the output disco file, ie discoRes_k_31_c_2_D_0_P_3_b_2_coherent.fa return the k value (ie 31). 
    """
    return int(fa_file_name.split("_k_")[1].split("_")[0]) 

def unitig_id2snp_id(unitig_id):
    sign=1
    if unitig_id<0: sign=-1
    unitig_id=abs(unitig_id)
    res=str(sign*(unitig_id//2))
    if unitig_id%2==0:
        res+="h"
    else:
        res+="l"
    return res


def get_fact_id(fact):
    ''' returns the id of a fact
    WARNING: here fact contains as last value its unique id.
    '''
    return int(fact[-1].split("_")[1])

def get_reverse_fact_id(fact,facts):
    ''' returns the id of the reverse complement of fact
    1/ find the sequence of the fact_ in facts
    2/ grab its id
    WARNING: here fact contains as last value its unique id.
    '''
    #1/
    # print("reverse fact id of",fact)
    without_id_reverse_fact = get_reverse_fact(fact[:-1])                           # get the fact reverse complement
    # print("rc is", without_id_reverse_fact)
    Y=facts.get_lists_starting_with_given_prefix(without_id_reverse_fact)          # find the reverse complement in the list.
    # print("Y is", Y)
    for y in Y:                                                                 # should be of size >= 1. One of them is exactly 'without_id_reverse_fact' plus its id.
        if len(y) == len(without_id_reverse_fact)+1:                             # 'y' is 'without_id_reverse_fact' with its node id
            return get_fact_id(y)                                                # 2/
    return None                                                                 # Should not happend

# facts=generate_facts("test.txt")
# facts.unique()
# facts=add_reverse_facts(facts)
# facts.unique()
# for sr in facts.traverse():
#     print (sr)

def get_snp_positions(comment_line):
    """ 
    from a comment line, eg:
    >SNP_higher_path_99|P_1:20_C/T,P_2:25_T/C|high|nb_pol_2|left_unitig_length_21|right_unitig_length_14|C1_262|Q1_73|G1_0/1:5710,65,3395|rank_0
    returns the snp positions, eg
    [20, 25]
    """
    positions = []
    for variants_localization in comment_line.split("|")[1].split(','):
        positions.append(int(variants_localization.split(":")[1].split("_")[0]))
    return positions


def index_sequences(fa_file_name, sequences={}):
    mfile = open(fa_file_name)
    while True:
        line1 = mfile.readline()
        if not line1: break
        line1 = line1.strip()
        line2 = mfile.readline().strip()
        mfile.readline()              # USELESS
        line4 = mfile.readline().strip()

        if not line1.startswith(">SNP"): continue

        #line1: 
        #>SNP_higher_path_9|P_1:30_A/C|high|nb_pol_1|left_unitig_length_152|right_unitig_length_3|C1_25|Q1_63|G1_0/1:399,14,359|rank_0
            # key is 9h
            # one need to store the left unitig length. Here 152
            # one need to store the right unitig length. Here 3
            # note that the position of the left_unitig_length field is always the same with or without multiple snps.
        snp_positions = get_snp_positions(line1)
        line1 = line1.split('|')
        snp_id = line1[0].split('_')[-1]  # from SNP_higher_path_9 to 9

        left_unitig_len = int(line1[4].split('_')[-1])
        right_unitig_len = int(line1[5].split('_')[-1])

        sequences[snp_id] = [left_unitig_len, right_unitig_len, line2, line4, snp_positions]  #sequences[snp_id] = [left_unitig_len, right_unitig_len, upperseq, lowerseq, snp_positions] 
        
    mfile.close()
    return sequences

def seq_to_lower_case_except_SNPs(seq, snp_positions):
    """ given a sequence in ACGTN, put everything in lower case, except the variant positions on the upper case bubble"""
    res=""
    position_on_bubble=-1
    for letter in seq:
        if letter.isupper():
            position_on_bubble+=1
        if position_on_bubble!=-1 and position_on_bubble in snp_positions: res+=letter.upper()
        else: res+=letter.lower()
    return res

def update_SNP_positions(seq1, seq2):
    """
    Given a sequence `seq1` with upper case letters showing SNP positions, eg
    acggcgagTg
    update SNPs positions given a a sequence `seq2` of the same length, eg: 
    aGggTgaggg    
    final results is 
    aGggTgagTg
    In case of equality of lower case letter, seq1 is abitrary showen
    raises an error if two distinct upper case letters occur at the same position
    """
    new_seq = ""
    # print(f'Try concatenate \n{seq1} with \n{seq2}')

    for i, letter in enumerate(seq1):
        if seq2[i].isupper():
            # detects errors
            if letter.isupper() and letter != seq2[i]: raise ValueError (f'Cannot concatenate \n{seq1} with \n{seq2}, no solution for position {i} of suffix')
            # no error conserve the previous value as it was upper case
            new_seq+=seq2[i]
        # here either letter is upper, we keep it, or letter is lower, we also keept it. 
        else: new_seq+=letter
    return new_seq



def test_update_SNP_positions():
    seq1 = "atggcgagTg"
    seq2 = "aGggTgtggg"
    res = update_SNP_positions(seq1,seq2)
    assert res == "aGggTgagTg"
    
# test_update_SNP_positions()
    
def line2seq(line, sequences, int_facts_format, hamming_max=3):
    '''
    Parses a (non paired) fact, represented by ints or not
    Returns a bench of information relative to the line to be printed or not to be printed
    '''
    header = line.strip()+ " SP:"  # add latter the starting and ending positions of each allele on the global sequence (SP = Sequence positions). Enables to recover the good overlap length in the final GFA file
    bubble_facts_position_start_stops = "BP:" # to the header is also added the Bubble positions. For each allele in the fact we store the distance between the bubble start (upper case letter and the end of the previous bubble (also upper case letter). We add the length of the bubble (upper case letter).
    # EG:
    # ------XXXXXXXXXXXXXXXXXX------  0_18
    #                ------------XXXXXXXXXXXXXX----------- 3:14
    #                         ----------XXXXXXXXXXXXXXXX----------   -7:16 (distance is negative is bubbles overlap 

    line=line.strip(';').split(';')
    previous_bubble_ru=0
    full_seq = ""
    toprint = True
    for i,int_snp_id_d in enumerate(line): 
        
        # print("#################@ i #######################@",i)
        
        ## _________--------X---------______________________________      previous snp (or full sequence we dont care)
        ##                            <---- previous_bubble_ru ---->
        ##                            <------ right_unitig_len ---->      previous snp  -> previous_bubble_ru = k-1+right_unitig_len of the previous snp
        ##                                __--------X---------_________________________________  new SNP
        ##                            <---->  shift between snps    <------------------------->  to be written
        ##                                  <---upper_case---><----------------ru------------->
        
        
        ## shift + uppercase + ru = to_be_written + previous_bubble_ru
        ## ->
        ## to_be_written = shift + uppercase + ru - previous_bubble_ru
        ## If a SNP is reversed, we reverse complement the sequence and change "right“ unitig for "left" unitig
        if int_facts_format:
            allele_id = unitig_id2snp_id(allele_value(int_snp_id_d))
        else:
            allele_id = int_snp_id_d.split("_")[0]
        
        # print(f"\n\n *****{int_snp_id_d}, {allele_id} ********")
        snp_id = allele_id[:-1]

        higher=True
        if allele_id[-1] == 'l': 
            higher=False
        
        forward=True
        if allele_id[0] == '-':
            forward=False
            snp_id = snp_id[1:]
        try:

            if higher: seq = sequences[snp_id][2]
            else: seq = sequences[snp_id][3]
            if forward: 
                lu = sequences[snp_id][0]
                ru = sequences[snp_id][1]
                len_bubble = len(seq)-lu-ru # len sequence - len left unitig - len right unitig
                snp_positions = sequences[snp_id][4]
            else: 
                seq=get_reverse_complement(seq)
                lu = sequences[snp_id][1]
                ru = sequences[snp_id][0]
                len_bubble = len(seq)-lu-ru # len sequence - len left unitig - len right unitig
                snp_positions = [len_bubble-x-1 for x in sequences[snp_id][4]] # reverse snp positions
                snp_positions.sort() # and sort them in increasing order


            #conserves only SNP positions in upper case: 
            seq = seq_to_lower_case_except_SNPs(seq, snp_positions)
            
            #treat first snp apart
            if i==0: 
                full_seq+=seq
                previous_bubble_ru = ru
                header+="0_"+str(len(full_seq))+";" # SP==Sequence Positions
                bubble_facts_position_start_stops+="0_"+str(len_bubble)+";"
                # print("full_seq =",full_seq)
                
            else:
                to_be_written = len_bubble + ru + int(distance_string_value(int_snp_id_d)) - previous_bubble_ru
                bubble_facts_position_start_stops+=distance_string_value(int_snp_id_d)+"_"+str(len_bubble)+";"
                # #DEBUG
                # print("to_be_written =",to_be_written)
                # print("len seq =",len(seq))
                # print("previous_bubble_ru =",previous_bubble_ru)
                # print("len_bubble =", len_bubble)
                # print("start_to_end  =", len_bubble+ru)
                # print("shift =", int(distance_string_value(int_snp_id_d)))
                
                # print("full_seq =",full_seq)
                # print("seq =",seq)
                # if to_be_written>0: print("add ", seq[-to_be_written:])
                # else: print("add nothing")
                
                if to_be_written>0:                                 # an overlap exists
                    if to_be_written<=len(seq):                     # the to_be_written part is smaller or equal to the length of the new sequence, we concatenate the to_be_written part.
                        # check that the overlap is correct. Fake read happen with reads containing indels. We could try to retreive the good overlap, but it'd be time consuming and useless as other reads should find the good shift.
                        p=len(seq)-to_be_written                    # maximal size of the overlap. 
                        if p > len(full_seq):
                        # if the previous sequence is included into the new one, the start on the new seq is shifted
                        #      ------------------   full_seq
                        # ------------------------- seq
                        # <---> = len(seq)-len(full_seq)-to_be_written
                            start_on_seq=len(seq)-len(full_seq)-to_be_written
                            stop_on_seq=start_on_seq+min(p,len(full_seq))
                        else:
                            start_on_seq=0
                            stop_on_seq=start_on_seq+p
                            
                        if not hamming_near_perfect(full_seq[-p:], seq[start_on_seq:stop_on_seq], hamming_max):    #Fake read (happens with reads containing indels). We could try to retreive the good sequence, but it'd be time consuming and useless as other reads should find the good shift.
                            toprint = False
                            break
                        header+=str(len(full_seq)-len(seq)+to_be_written)    # starting position of the new sequence on the full seq that overlaps the full seq by len(seq)-to_be_written
                        try:
                            overlap = update_SNP_positions(full_seq[-p:], seq[start_on_seq:stop_on_seq])
                        except ValueError as err: 
                            toprint = False
                            # sys.stderr.write(f"{format(err)} \n")
                            break
                            
                        full_seq = full_seq[:-p]+overlap+seq[-to_be_written:] 

                        header+="_"+str(len(full_seq))+";"                           # ending position of the new sequence on the full seq. 
                    else:                                           # the to_be_written part is bigger than the length of the new sequence, we fill with Ns and add the full new seq
                        for i in range(to_be_written-len(seq)):
                            full_seq+='N'
                        header+=str(len(full_seq))                           # starting position of the new sequence on the full seq (possibly overlapping the full seq)
                        full_seq+=seq
                        header+="_"+str(len(full_seq))+";"                           # ending position of the new sequence on the full seq. 
                    previous_bubble_ru = ru
                        
                else:                                               # the new seq finishes before the already created full_seq. In this case we need to update the previous ru wrt 
                    ### ----------XXXXXXXX-------------------------- 
                    ###                   <--      pbru           -->
                    ###        -------------------XXXXX-------
                    ###                   <shift >            < tbw > (negative)
                    ###                                <---npbru --->  (next previous_bubble_ru)
                    ### pbru = shift +len(upper) + npbru --> 
                    ### npbru = pbru - shift - len(upper)
                    ### TODO BUG ? (I_ here is alway followed by a negative value in the experiments I made (june 2020))
                    previous_bubble_ru = previous_bubble_ru-int(distance_string_value(int_snp_id_d))-len_bubble
                    
                    overlap_start = len(full_seq)+to_be_written-len(seq) #(included)
                    overlap_stop = len(full_seq)+to_be_written #(excluded)
                    
                    header += "I_"+str(overlap_start)+"_"+str(overlap_stop)+";"                                          # this allele is useless we do not store its start and stop positions
                    
                    if not hamming_near_perfect(full_seq[overlap_start:overlap_stop], seq, hamming_max): 
                        # print(f"Too far:\n{full_seq[overlap_start:overlap_stop]}\n{seq}\n")
                        toprint=False
                    # print(full_seq[overlap_start:overlap_stop]+"\n"+seq+"\n")
                    try:
                        overlap = update_SNP_positions(full_seq[overlap_start:overlap_stop], seq)
                    except ValueError as err: 
                        toprint = False
                        # sys.stderr.write(f"{format(err)} \n")
                        break
                    full_seq = full_seq[:overlap_start] + overlap + full_seq[overlap_stop:]
                    
            
        except KeyError: # in case a variant is in the phasing file but absent from the disco file. This is due to uncoherent prediction
            sys.stderr.write(f"{snp_id} not in sequences\n")
            toprint=False
            break
    return toprint, header, bubble_facts_position_start_stops, full_seq