File: K3000_working_zone.py

package info (click to toggle)
discosnp 1%3A2.6.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: python: 5,893; sh: 2,966; cpp: 2,692; makefile: 14
file content (248 lines) | stat: -rw-r--r-- 11,833 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import sys
import K3000_common as kc

"""
Given an input phased variants, select and output only "working zones"
A working zone is defined by
1/ Coverage XXX todo
2/ Topology: conserve only parts defined with X patterns. 
A node is linked to at most two other nodes.
If a node n1 is linked to two nodes n2 and n3, then n2 and n3 have at most two sons, n4 and n5
"""

def get_reverse_fact(x):
    ''' reverse of a fact x. Example  x = "4l_0;2h_3;-6h_21", reverse(x) = "6h_0;-2h_21;-4l_3"'''
    res =""
    x=x.strip(";").split(";")
    for i in range (len(x)):
        original_id = x[-i-1]
        if original_id[0]=="-": reversed_id = original_id[1:]
        else:                   reversed_id = "-"+original_id
        if i==0: 
            value=kc.string_allele_value(reversed_id)+"_0"                               # With i=0, add '_0' to the value
        else:
            value=kc.string_allele_value(reversed_id)+"_"+kc.distance_string_value(x[-i])   # With i=1, add '_21' to the value
        res+=value+";"
    return res


def store_nodes(fact_file_name):
    """
    Store nodes with their min, max and mean coverages
    """
    nodes = {}      # key= (int) node id, value variant_id
    with open(fact_file_name) as fact_file:
        for line in fact_file.readlines():
            if not line: break
            line=line.strip()
            if line[0]=="#": continue
            " -1145l_0;4780h_-60;-248h_-63;-7035l_-60;4077l_-59;-6265l_-60;-2978h_-69;4958h_-59;-4221h_-60;-1376l_-60;-4664l_-59;-2207h_-60;-6257l_-60;-5529l_-59;-5106h_-59;1310h_-59;-4514h_-59;3933h_-60;-5727h_-60;2325l_-60;-3976l_-59;-3363h_-60;-716l_-59;-3526h_-51;-5819h_-57;2927l_-59;-6146l_-60;-4374h_-53; => 1"
            coverage = int(line.split()[-1])
            for fact_id in range(len(line.split())-2): # In case of pairend facts, deal with the two facts (in this case len((line.split()) is 4
                original_fact = line.split()[fact_id]
                for fact in original_fact, get_reverse_fact(original_fact):
                    # print ("fact", fact)
                    for variant in fact.strip(";").split(";"):
                        # print(variant, fact)
                        signed_variant_id=variant.split("_")[0]
                        if signed_variant_id not in nodes: nodes[signed_variant_id] = 0
                        assert len(signed_variant_id)>0,line+"\n"+str(line.split()[fact_id])
                        nodes[signed_variant_id] += coverage
        return nodes
        
def f(tuple, el):
    return tuple[0]==el
    
def isin(list, el):
    for tuple in list: 
        if f(tuple, el): return True
    return False
    
def exists_edge(edges, rev_edges, node_id_1, node_id_2):
    for current_edges in edges, rev_edges: 
        if node_id_1 in current_edges: 
            if isin(current_edges[node_id_1], node_id_2): return True
        if node_id_2 in current_edges: 
            if isin(current_edges[node_id_2], node_id_1): return True
    return False
    
    

def store_ordered_edges(fact_file_name):
    """
    Store edges
    Conserve only the closest edges. In case of equalities of minimal distance edges, conserve the closest ones. 
    """
    edges = {}      # key = (signed int) node id, value = set of (signed int) target node ids with their distance (signed int). This distance may be negative as it reflects the position of the second variant wrt the end of the bubble sequence of the first. 
                    # Hence a key is a couple (signed_int, signed int).
    rev_edges = {}  # key = (signed int) node id, value = set of (signed int) target node ids (idem)
    with open(fact_file_name) as fact_file:
        for line in fact_file.readlines():
            if not line: break
            line=line.strip()
            if line[0]=="#": continue
            # print(line)
            # print(len(line.split()))
            for fact_id in range(len(line.split())-2): # In case of pairend facts, deal with the two facts (in this case len((line.split()) is 4
                original_fact = line.split()[fact_id]
                for used_fact in original_fact, get_reverse_fact(original_fact):
                    comapped_variants = used_fact.strip(";").split(";")
                    # print(comapped_variants)
                    for i in range(len(comapped_variants)-1):
                        from_node_id = comapped_variants[i].split("_")[0]
                        to_node_id   = comapped_variants[i+1].split("_")[0]
                        distance = int(comapped_variants[i+1].split("_")[1])
                        
                        # add edge:
                        if from_node_id not in edges: edges[from_node_id] = set()
                        edges[from_node_id].add((to_node_id, distance))
                        if to_node_id not in rev_edges: rev_edges[to_node_id] = set()
                        rev_edges[to_node_id].add((from_node_id, distance))
                    # print(edges)
    ## Sort each list wrt distance: 
    for current_edges in edges, rev_edges: 
        for from_variant_id in current_edges:
            current_edges[from_variant_id] = sorted(current_edges[from_variant_id], key=lambda x : x[1])
    sys.stderr.write(f"sorted edges {edges}\n")
    ## remove transitive edges:
    nb_removed = 0
    nb_total = 0
    new_edges = [{},{}]
    i=-1
    for current_edges in edges, rev_edges: 
        i+=1
        # new_edges[i] = {}
        for from_variant_id in current_edges:
            # if an ordered list contains more than 2 children (A->B and A->C for instance), remove A->C if B->C exists somewhere else
            updated_list = set()
            updated_list.add(current_edges[from_variant_id][0]) # the first one stays, whatever. 
            for id_in_current_edges in range(len(current_edges[from_variant_id])-1):
                nb_total+=1
                cur_var = current_edges[from_variant_id][id_in_current_edges]
                next_var = current_edges[from_variant_id][id_in_current_edges+1]
                if cur_var[1]==next_var[1]: # same distance to start, we keep it
                    updated_list.add(current_edges[from_variant_id][id_in_current_edges+1])
                    continue                        
                if not exists_edge(edges, rev_edges, cur_var[0], next_var[0]): # this is a not a transitive edge, we keep it
                    updated_list.add(current_edges[from_variant_id][id_in_current_edges+1])
                else:
                    sys.stderr.write(f"removed  {from_variant_id} -> {current_edges[from_variant_id][id_in_current_edges+1]}\n")
                    nb_removed+=1
            updated_list = sorted(updated_list, key=lambda x : x[1])
            # sys.stderr.write(f"avant {from_variant_id} -> {current_edges[from_variant_id]}\n")
            new_edges[i][from_variant_id]=updated_list
            # sys.stderr.write(f"apres {from_variant_id} -> {new_edges[i][from_variant_id]}\n")
    sys.stderr.write(f"Removed {nb_removed} among {nb_total}\n")
    edges = new_edges[0]
    rev_edges = new_edges[1]
    
    ## remove distances: 

    for current_edges in edges, rev_edges: 
        for from_variant_id in current_edges:
            id_only_list = set()
            # print("HO avant", current_edges[from_variant_id])
            for to_variant_id, distance in current_edges[from_variant_id]:
                id_only_list.add(to_variant_id)
            current_edges[from_variant_id] = id_only_list
            # print("HO apres", current_edges[from_variant_id])
    
    
    ## filter edges.
    # for current_edges in edges, rev_edges:
   #      for from_variant_id in current_edges:
   #          # print(from_variant_id, current_edges[from_variant_id])
   #          ## determine min dist
   #          min_dist= sys.maxsize
   #          for to_variant_id, distance in current_edges[from_variant_id]:
   #              print (from_variant_id, to_variant_id, distance)
   #              if distance < min_dist: min_dist = distance
   #          print()
   #          ## conserve only edges equal to min dist:
   #          to_variants = set()
   #          for to_variant_id, distance in current_edges[from_variant_id]:
   #              if distance == min_dist:
   #                  to_variants.add(to_variant_id)
   #          current_edges[from_variant_id] = to_variants
   #          # print(from_variant_id, current_edges[from_variant_id])
        
    
    
    return edges,rev_edges
    
    
def store_edges(fact_file_name):
    """
    Store edges
    """
    edges = {}      # key = (signed int) node id, value = set of (signed int) target node ids.
    rev_edges = {}  # key = (signed int) node id, value = set of (signed int) target node ids.
    with open(fact_file_name) as fact_file:
        for line in fact_file.readlines():
            if not line: break
            line=line.strip()
            if line[0]=="#": continue
            # print(line)
            # print(len(line.split()))
            for fact_id in range(len(line.split())-2): # In case of pairend facts, deal with the two facts (in this case len((line.split()) is 4
                comapped_variants = line.split()[fact_id].strip(";").split(";")
                for i in range(len(comapped_variants)-1):
                    from_node_id = comapped_variants[i].split("_")[0]
                    to_node_id   = comapped_variants[i+1].split("_")[0]
                    
                    # add edge:
                    if from_node_id not in edges: edges[from_node_id] = set()
                    edges[from_node_id].add(to_node_id)
                    if to_node_id not in rev_edges: rev_edges[to_node_id] = set()
                    rev_edges[to_node_id].add(from_node_id)
                    
    return edges,rev_edges
    
def remove_nodes_with_high_io_degree(edges, rev_edges, nodes, max_io=2):
    """
    remove any node that has two or more childre and remove all the corresponding children
    """
    for current_edges in edges, rev_edges:
        for from_variant_id in current_edges: 
            if len(current_edges[from_variant_id]) > max_io:
                if from_variant_id in nodes: del nodes[from_variant_id]
                for to_variant_id in current_edges[from_variant_id]:
                    if to_variant_id in nodes: del nodes[to_variant_id]
                
    
    
def print_as_gfa(nodes, edges):
    # cov_threshold=10
    # index nodes:
    node_id_to_variant_id = {} # key = node_id (1,2, ..., n) value = variant_id (eg. -14h)
    variant_id_to_node_id = {} # key = variant_id (eg. -14h) value = node_id (eg. 2)
    node_id=1
    for node in nodes:
        node_id_to_variant_id[node_id] = node
        variant_id_to_node_id[node] = node_id
        node_id+=1
    
        
    for node_id in node_id_to_variant_id:
        # if nodes[node_id_to_variant_id[node_id]] < cov_threshold: continue
        print("S\t"+str(node_id)+"\t"+str(node_id_to_variant_id[node_id])+"\tRC:i:"+str(nodes[node_id_to_variant_id[node_id]]))
    

    for from_variant_id in edges:
        if from_variant_id not in nodes: continue # had been removed 
        # if nodes[from_variant_id] < cov_threshold: continue # too low cove
        for to_variant_id in edges[from_variant_id]:
            if to_variant_id not in nodes: continue # had been removed
            # if nodes[to_variant_id] < cov_threshold: continue # too low cove
            print("L\t"+str(variant_id_to_node_id[from_variant_id])+"\t+\t"+str(variant_id_to_node_id[to_variant_id])+"\t+\t0M")

def main():
    nodes = store_nodes(sys.argv[1])
    # print (nodes)
    edges,rev_edges = store_ordered_edges(sys.argv[1])
    remove_nodes_with_high_io_degree(edges, rev_edges, nodes, 2000)
    print_as_gfa (nodes, edges)
    

if __name__ == '__main__':
    main()