1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
''' This module contains functions necessary to fit a negative binomial
using the maximum likelihood estimator and some numerical analysis
@author: Peter Xenopoulos
@website: http://www.peterxeno.com
@downloaded 17 oct 2019 from https://github.com/pnxenopoulos/negative_binomial/blob/master/negative_binomial/core.py
'''
import math
import numpy as np
from scipy.optimize import newton
from scipy.special import digamma
def r_derv(r_var, vec):
''' Function that represents the derivative of the neg bin likelihood wrt r
@param r: The value of r in the derivative of the likelihood wrt r
@param vec: The data vector used in the likelihood
'''
if not r_var or not vec:
raise ValueError("r parameter and data must be specified")
if r_var <= 0:
raise ValueError("r must be strictly greater than 0")
total_sum = 0
obs_mean = np.mean(vec) # Save the mean of the data
n_pop = float(len(vec)) # Save the length of the vector, n_pop
for obs in vec:
total_sum += digamma(obs + r_var)
total_sum -= n_pop*digamma(r_var)
total_sum += n_pop*math.log(r_var / (r_var + obs_mean))
return total_sum
def p_equa(r_var, vec):
''' Function that represents the equation for p in the neg bin likelihood wrt p
@param r: The value of r in the derivative of the likelihood wrt p
@param vec: Te data vector used in the likelihood
'''
if not r_var or not vec:
raise ValueError("r parameter and data must be specified")
if r_var <= 0:
raise ValueError("r must be strictly greater than 0")
data_sum = np.sum(vec)
n_pop = float(len(vec))
p_var = 1 - (data_sum / (n_pop * r_var + data_sum))
return p_var
def neg_bin_fit(vec, init=0.0001):
''' Function to fit negative binomial to data
@param vec: The data vector used to fit the negative binomial distribution
@param init: Set init to a number close to 0, and you will always converge
'''
if not vec:
raise ValueError("Data must be specified")
est_r = newton(r_derv, init, args=(vec,))
est_p = p_equa(est_r, vec)
return est_r, est_p
# r = 40
# p = 0.5
# size = 100000
#
# import matplotlib.pyplot as plt
# random_nb_data = np.random.negative_binomial(r, p, size)
# print(random_nb_data)
# a=[]
# for i in random_nb_data:
# a.append(i)
# _ = plt.hist(a, bins='auto')
# plt.title("Histogram with 'auto' bins")
# plt.show()
# print(neg_bin_fit(a))
|