File: plot_early_recompute.py

package info (click to toggle)
diskcache 5.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,364 kB
  • sloc: python: 7,026; makefile: 20
file content (176 lines) | stat: -rw-r--r-- 4,497 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""Early Recomputation Measurements
"""

import functools as ft
import multiprocessing.pool
import shutil
import threading
import time

import diskcache as dc


def make_timer(times):
    """Make a decorator which accumulates (start, end) in `times` for function
    calls.

    """
    lock = threading.Lock()

    def timer(func):
        @ft.wraps(func)
        def wrapper(*args, **kwargs):
            start = time.time()
            func(*args, **kwargs)
            pair = start, time.time()
            with lock:
                times.append(pair)

        return wrapper

    return timer


def make_worker(times, delay=0.2):
    """Make a worker which accumulates (start, end) in `times` and sleeps for
    `delay` seconds.

    """

    @make_timer(times)
    def worker():
        time.sleep(delay)

    return worker


def make_repeater(func, total=10, delay=0.01):
    """Make a repeater which calls `func` and sleeps for `delay` seconds
    repeatedly until `total` seconds have elapsed.

    """

    def repeat(num):
        start = time.time()
        while time.time() - start < total:
            func()
            time.sleep(delay)

    return repeat


def frange(start, stop, step=1e-3):
    """Generator for floating point values from `start` to `stop` by `step`."""
    while start < stop:
        yield start
        start += step


def plot(option, filename, cache_times, worker_times):
    """Plot concurrent workers and latency."""
    import matplotlib.pyplot as plt

    fig, (workers, latency) = plt.subplots(2, sharex=True)

    fig.suptitle(option)

    changes = [(start, 1) for start, _ in worker_times]
    changes.extend((stop, -1) for _, stop in worker_times)
    changes.sort()
    start = (changes[0][0] - 1e-6, 0)
    counts = [start]

    for mark, diff in changes:
        # Re-sample between previous and current data point for a nicer-looking
        # line plot.

        for step in frange(counts[-1][0], mark):
            pair = (step, counts[-1][1])
            counts.append(pair)

        pair = (mark, counts[-1][1] + diff)
        counts.append(pair)

    min_x = min(start for start, _ in cache_times)
    max_x = max(start for start, _ in cache_times)
    for step in frange(counts[-1][0], max_x):
        pair = (step, counts[-1][1])
        counts.append(pair)

    x_counts = [x - min_x for x, y in counts]
    y_counts = [y for x, y in counts]

    workers.set_title('Concurrency')
    workers.set_ylabel('Workers')
    workers.set_ylim(0, 11)
    workers.plot(x_counts, y_counts)

    latency.set_title('Latency')
    latency.set_ylabel('Seconds')
    latency.set_ylim(0, 0.5)
    latency.set_xlabel('Time')
    x_latency = [start - min_x for start, _ in cache_times]
    y_latency = [stop - start for start, stop in cache_times]
    latency.scatter(x_latency, y_latency)

    plt.savefig(filename)


def main():
    shutil.rmtree('/tmp/cache')
    cache = dc.Cache('/tmp/cache')

    count = 10

    cache_times = []
    timer = make_timer(cache_times)

    options = {
        ('No Caching', 'no-caching.png'): [
            timer,
        ],
        ('Traditional Caching', 'traditional-caching.png'): [
            timer,
            cache.memoize(expire=1),
        ],
        ('Synchronized Locking', 'synchronized-locking.png'): [
            timer,
            cache.memoize(expire=0),
            dc.barrier(cache, dc.Lock),
            cache.memoize(expire=1),
        ],
        ('Early Recomputation', 'early-recomputation.png'): [
            timer,
            dc.memoize_stampede(cache, expire=1),
        ],
        ('Early Recomputation (beta=0.5)', 'early-recomputation-05.png'): [
            timer,
            dc.memoize_stampede(cache, expire=1, beta=0.5),
        ],
        ('Early Recomputation (beta=0.3)', 'early-recomputation-03.png'): [
            timer,
            dc.memoize_stampede(cache, expire=1, beta=0.3),
        ],
    }

    for (option, filename), decorators in options.items():
        print('Simulating:', option)
        worker_times = []
        worker = make_worker(worker_times)
        for decorator in reversed(decorators):
            worker = decorator(worker)

        worker()
        repeater = make_repeater(worker)

        with multiprocessing.pool.ThreadPool(count) as pool:
            pool.map(repeater, [worker] * count)

        plot(option, filename, cache_times, worker_times)

        cache.clear()
        cache_times.clear()


if __name__ == '__main__':
    main()