1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
"""Early Recomputation Measurements
"""
import functools as ft
import multiprocessing.pool
import shutil
import threading
import time
import diskcache as dc
def make_timer(times):
"""Make a decorator which accumulates (start, end) in `times` for function
calls.
"""
lock = threading.Lock()
def timer(func):
@ft.wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
func(*args, **kwargs)
pair = start, time.time()
with lock:
times.append(pair)
return wrapper
return timer
def make_worker(times, delay=0.2):
"""Make a worker which accumulates (start, end) in `times` and sleeps for
`delay` seconds.
"""
@make_timer(times)
def worker():
time.sleep(delay)
return worker
def make_repeater(func, total=10, delay=0.01):
"""Make a repeater which calls `func` and sleeps for `delay` seconds
repeatedly until `total` seconds have elapsed.
"""
def repeat(num):
start = time.time()
while time.time() - start < total:
func()
time.sleep(delay)
return repeat
def frange(start, stop, step=1e-3):
"""Generator for floating point values from `start` to `stop` by `step`."""
while start < stop:
yield start
start += step
def plot(option, filename, cache_times, worker_times):
"""Plot concurrent workers and latency."""
import matplotlib.pyplot as plt
fig, (workers, latency) = plt.subplots(2, sharex=True)
fig.suptitle(option)
changes = [(start, 1) for start, _ in worker_times]
changes.extend((stop, -1) for _, stop in worker_times)
changes.sort()
start = (changes[0][0] - 1e-6, 0)
counts = [start]
for mark, diff in changes:
# Re-sample between previous and current data point for a nicer-looking
# line plot.
for step in frange(counts[-1][0], mark):
pair = (step, counts[-1][1])
counts.append(pair)
pair = (mark, counts[-1][1] + diff)
counts.append(pair)
min_x = min(start for start, _ in cache_times)
max_x = max(start for start, _ in cache_times)
for step in frange(counts[-1][0], max_x):
pair = (step, counts[-1][1])
counts.append(pair)
x_counts = [x - min_x for x, y in counts]
y_counts = [y for x, y in counts]
workers.set_title('Concurrency')
workers.set_ylabel('Workers')
workers.set_ylim(0, 11)
workers.plot(x_counts, y_counts)
latency.set_title('Latency')
latency.set_ylabel('Seconds')
latency.set_ylim(0, 0.5)
latency.set_xlabel('Time')
x_latency = [start - min_x for start, _ in cache_times]
y_latency = [stop - start for start, stop in cache_times]
latency.scatter(x_latency, y_latency)
plt.savefig(filename)
def main():
shutil.rmtree('/tmp/cache')
cache = dc.Cache('/tmp/cache')
count = 10
cache_times = []
timer = make_timer(cache_times)
options = {
('No Caching', 'no-caching.png'): [
timer,
],
('Traditional Caching', 'traditional-caching.png'): [
timer,
cache.memoize(expire=1),
],
('Synchronized Locking', 'synchronized-locking.png'): [
timer,
cache.memoize(expire=0),
dc.barrier(cache, dc.Lock),
cache.memoize(expire=1),
],
('Early Recomputation', 'early-recomputation.png'): [
timer,
dc.memoize_stampede(cache, expire=1),
],
('Early Recomputation (beta=0.5)', 'early-recomputation-05.png'): [
timer,
dc.memoize_stampede(cache, expire=1, beta=0.5),
],
('Early Recomputation (beta=0.3)', 'early-recomputation-03.png'): [
timer,
dc.memoize_stampede(cache, expire=1, beta=0.3),
],
}
for (option, filename), decorators in options.items():
print('Simulating:', option)
worker_times = []
worker = make_worker(worker_times)
for decorator in reversed(decorators):
worker = decorator(worker)
worker()
repeater = make_repeater(worker)
with multiprocessing.pool.ThreadPool(count) as pool:
pool.map(repeater, [worker] * count)
plot(option, filename, cache_times, worker_times)
cache.clear()
cache_times.clear()
if __name__ == '__main__':
main()
|