File: diskscan.c

package info (click to toggle)
diskscan 0.21-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,656 kB
  • sloc: ansic: 11,136; python: 338; xml: 138; sh: 41; makefile: 34
file content (786 lines) | stat: -rw-r--r-- 23,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/*
 *  Copyright 2013 Baruch Even <baruch@ev-en.org>
 *
 *  This file is part of DiskScan.
 *
 *  DiskScan is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *  DiskScan is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with DiskScan.  If not, see <http://www.gnu.org/licenses/>.
 * 
 */

#include "diskscan.h"
#include "verbose.h"
#include "disk.h"
#include "arch.h"
#include "median.h"
#include "compiler.h"
#include "data.h"
#include "libscsicmd/include/smartdb.h"
#include "libscsicmd/include/ata_smart.h"

#include <sched.h>
#include <memory.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <time.h>
#include <inttypes.h>
#include <errno.h>
#include <assert.h>

#define TEMP_THRESHOLD 65

struct scan_state {
	uint32_t latency_bucket;
	uint64_t latency_stride;
	uint32_t latency_count;
	uint32_t *latency;
	void *data;
	uint64_t progress_bytes;
	int progress_part;
	int progress_full;
	unsigned num_unknown_errors;
};

typedef int spinner_t;

static char spinner_form[] = {'|', '/', '-', '\\', '|', '/', '-', '\\'};

static void spinner_init(spinner_t *spinner)
{
	printf("%c\r", spinner_form[0]);
	*spinner = 1;
	fflush(stdout);
}

static void spinner_update(spinner_t *spinner)
{
	printf("\r%c\r", spinner_form[*spinner]);
	if (++(*spinner) == ARRAY_SIZE(spinner_form))
		*spinner = 0;
	fflush(stdout);
}

static void spinner_done(void)
{
	printf("\r                           \r");
	fflush(stdout);
}

const char *conclusion_to_str(enum conclusion conclusion)
{
	switch (conclusion) {
		case CONCLUSION_FAILED_IO_ERRORS: return "failed due to IO errors";
		case CONCLUSION_FAILED_MAX_LATENCY: return "failed due to a high max latency";
		case CONCLUSION_FAILED_LATENCY_PERCENTILE: return "failed to to a high latency in the 99.99%'ile";
		case CONCLUSION_PASSED: return "passed";
		case CONCLUSION_SCAN_PROBLEM: return "scan_problem";
		case CONCLUSION_ABORTED: return "scan_aborted";
	}

	return "unknown";
}

enum scan_mode str_to_scan_mode(const char *s)
{
	if (strcasecmp(s, "seq") == 0 || strcasecmp(s, "sequential") == 0)
		return SCAN_MODE_SEQ;
	if (strcasecmp(s, "random") == 0)
		return SCAN_MODE_RANDOM;
	return SCAN_MODE_UNKNOWN;
}

static void disk_ata_monitor_start(disk_t *disk)
{
	if (disk_smart_trip(&disk->dev) == 1) {
		ERROR("Disk has a SMART TRIP at the start of the test, it should be discarded anyhow");
		disk->state.ata.is_smart_tripped = true;
	} else {
		disk->state.ata.is_smart_tripped = false;
	}

	disk->state.ata.smart_table = smart_table_for_disk(disk->vendor, disk->model, disk->fw_rev);
	if (disk->state.ata.smart_table == NULL)
		ERROR("BUG! Failed to setup smart table for the disk.");

	disk->state.ata.smart_num = disk_smart_attributes(&disk->dev, disk->state.ata.smart, ARRAY_SIZE(disk->state.ata.smart));

	if (disk->state.ata.smart_num > 0) {
		// First look at temperatures
		int min_temp = -1;
		int max_temp = -1;
		int temp = ata_smart_get_temperature(disk->state.ata.smart, disk->state.ata.smart_num, disk->state.ata.smart_table, &min_temp, &max_temp);
		disk->state.ata.last_temp = temp;

		if (min_temp > 0 || max_temp > 0)
			INFO("Disk start temperature is %d (lifetime min %d and lifetime max %d)", temp, min_temp, max_temp);
		else
			INFO("Disk start temperature is %d", temp);

		// First look on reallocations
		disk->state.ata.last_reallocs = ata_smart_get_num_reallocations(disk->state.ata.smart, disk->state.ata.smart_num,
				disk->state.ata.smart_table);
		disk->state.ata.last_pending_reallocs = ata_smart_get_num_pending_reallocations(disk->state.ata.smart, disk->state.ata.smart_num,
				disk->state.ata.smart_table);

		// Now take a first look at the CRC error counters
		disk->state.ata.last_crc_errors = ata_smart_get_num_crc_errors(disk->state.ata.smart, disk->state.ata.smart_num,
				disk->state.ata.smart_table);
	} else {
		ERROR("Failed to read SMART attributes from device");
	}
}

static void ata_test_temp(disk_t *disk, ata_smart_attr_t *smart, int smart_num)
{
	int min_temp = -1;
	int max_temp = -1;
	int temp = ata_smart_get_temperature(smart, smart_num, disk->state.ata.smart_table, &min_temp, &max_temp);

	if (temp != disk->state.ata.last_temp) {
		INFO("Disk temperature changed from %d to %d", disk->state.ata.last_temp, temp);
		disk->state.ata.last_temp = temp;
	}

	if (temp >= TEMP_THRESHOLD) {
		spinner_t spinner;
		INFO("Pausing scan due to high disk temperature");
		spinner_init(&spinner);
		while (temp >= TEMP_THRESHOLD) {
			sleep(1);
			spinner_update(&spinner);
			smart_num = disk_smart_attributes(&disk->dev, smart, smart_num);
			if (smart_num > 0) {
				temp = ata_smart_get_temperature(smart, smart_num, disk->state.ata.smart_table, &min_temp, &max_temp);
			} else {
				ERROR("Failed to read temperature while paused!");
				break;
			}
		}
		spinner_done();
		INFO("Finished pause, temperature is now %d", temp);
	}
}

static void ata_test_reallocs(disk_t *disk, ata_smart_attr_t *smart, int smart_num)
{
	int num_reallocs;
	int num_pending_reallocs;

	num_reallocs = ata_smart_get_num_reallocations(smart, smart_num, disk->state.ata.smart_table);
	num_pending_reallocs = ata_smart_get_num_pending_reallocations(smart, smart_num, disk->state.ata.smart_table);

	if (num_reallocs > disk->state.ata.last_reallocs) {
		INFO("Number of reallocated sectors increased from %d to %d\n", disk->state.ata.last_reallocs, num_reallocs);
		disk->state.ata.last_reallocs = num_reallocs;
	}

	if (num_pending_reallocs != disk->state.ata.last_pending_reallocs) {
		INFO("Number of pending sectors for reallocations changed from %d to %d\n", disk->state.ata.last_pending_reallocs,
				num_pending_reallocs);
		disk->state.ata.last_pending_reallocs = num_pending_reallocs;
	}
}

static void ata_test_crc_errors(disk_t *disk, ata_smart_attr_t *smart, int smart_num)
{
	int crc_errors;

	crc_errors = ata_smart_get_num_crc_errors(smart, smart_num, disk->state.ata.smart_table);
	if (crc_errors != disk->state.ata.last_crc_errors) {
		ERROR("CRC errors increased from %d to %d, your problem is not the disk but in a cable most likely!",
				disk->state.ata.last_crc_errors, crc_errors);
		disk->state.ata.last_crc_errors = crc_errors;
	}
}

static void disk_ata_monitor(disk_t *disk)
{
	ata_smart_attr_t smart[MAX_SMART_ATTRS];
	int smart_num;

	if (!disk->state.ata.is_smart_tripped && disk_smart_trip(&disk->dev) == 1) {
		ERROR("Disk has a SMART TRIP in the middle of the test, it should be discarded!");
		disk->state.ata.is_smart_tripped = true;
	}

	smart_num = disk_smart_attributes(&disk->dev, smart, ARRAY_SIZE(smart));

	if (smart_num > 0) {
		ata_test_temp(disk, smart, smart_num);
		ata_test_reallocs(disk, smart, smart_num);
		ata_test_crc_errors(disk, smart, smart_num);
	} else {
		ERROR("Failed to read SMART attributes from device");
	}
}

static void disk_ata_monitor_end(disk_t *disk)
{
	ata_smart_attr_t smart[MAX_SMART_ATTRS];
	int smart_num;
	int num_reallocs;
	int num_pending_reallocs;

	if (disk_smart_trip(&disk->dev) == 1) {
		ERROR("Disk has a SMART TRIP at the end of the test, it should be discarded!");
	} else if (disk->state.ata.is_smart_tripped) {
		ERROR("Disk had a SMART TRIP during the test but it disappeared. This is super weird!!!");
	}

	smart_num = disk_smart_attributes(&disk->dev, smart, ARRAY_SIZE(smart));
	num_reallocs = ata_smart_get_num_reallocations(smart, smart_num, disk->state.ata.smart_table);
	num_pending_reallocs = ata_smart_get_num_pending_reallocations(smart, smart_num, disk->state.ata.smart_table);

	if (num_pending_reallocs > 0) {
		INFO("At the end of the test there are still some sectors pending reallocation, this is rather unexpected but can be lived with.");
	}

	if (num_reallocs > 1000) {
		INFO("Number of reallocated sectors is above 1000, you should probably stop using this disk!");
	}
}

static void disk_scsi_monitor_start(disk_t *disk)
{
	(void)disk;
}

static void disk_scsi_monitor(disk_t *disk)
{
	(void)disk;
}

static void disk_scsi_monitor_end(disk_t *disk)
{
	(void)disk;
}

static const char *disk_mount_str(disk_mount_e mount)
{
	switch (mount) {
		case DISK_NOT_MOUNTED: return "not mounted";
		case DISK_MOUNTED_RO: return "mounted read-only";
		case DISK_MOUNTED_RW: return "mounted read-write";
		default: return "unknown";
	}
}

static int disk_mount_allowed(const char *path, disk_mount_e allowed_mount)
{
	const disk_mount_e mount_state = disk_dev_mount_state(path);

	if (mount_state > allowed_mount) {
		ERROR("Disk is currently %s and we only allow %s, use --force-mounted or --force-mounted-rw if the risk of problems is acceptable", disk_mount_str(mount_state), disk_mount_str(allowed_mount));
		return 0;
	}

	if (mount_state != DISK_NOT_MOUNTED) {
		INFO("Disk is %s but this is allowed with a force option", disk_mount_str(mount_state));
	}

	return 1;
}

int disk_open(disk_t *disk, const char *path, int fix, unsigned latency_graph_len, disk_mount_e allowed_mount)
{
	memset(disk, 0, sizeof(*disk));
	disk->fix = fix;

	INFO("Validating path %s", path);
	if (access(path, F_OK)) {
		ERROR("Disk path %s does not exist, errno=%d: %s", path, errno, strerror(errno));
		return 1;
	}

	const int access_mode_flag = fix ? R_OK|W_OK : R_OK;
	if (access(path, access_mode_flag)) {
		ERROR("Disk path %s is inaccessible, errno=%d: %s", path, errno, strerror(errno));
		return 1;
	}

	if (fix && !disk_mount_allowed(path, allowed_mount)) {
		ERROR("Better not fix with the disk mounted, mounted fs may get confused when data is possibly modified under its feet");
		return 1;
	}

	if (!disk_dev_open(&disk->dev, path)) {
		ERROR("Failed to open path %s, errno=%d: %s", path, errno, strerror(errno));
		return 1;
	}

	if (disk_dev_read_cap(&disk->dev, &disk->num_bytes, &disk->sector_size) < 0) {
		ERROR("Can't get block device size information for path %s, errno=%d: %s", path, errno, strerror(errno));
		goto Error;
	}

	if (disk->num_bytes == 0) {
		ERROR("Invalid number of sectors");
		goto Error;
	}

	if (disk->sector_size == 0 || disk->sector_size % 512 != 0) {
		ERROR("Invalid sector size %" PRIu64, disk->sector_size);
		goto Error;
	}

#if 0
	const uint64_t new_bytes_raw = disk->num_bytes / 10;
	const uint64_t new_bytes_leftover = new_bytes_raw % 512;
	const uint64_t new_bytes = new_bytes_raw - new_bytes_leftover;
	disk->num_bytes = new_bytes;
#endif

	if (disk_dev_identify(&disk->dev, disk->vendor, disk->model, disk->fw_rev, disk->serial, &disk->is_ata, disk->ata_buf, &disk->ata_buf_len) < 0) {
		ERROR("Can't identify disk for path %s, errno=%d: %s", path, errno, strerror(errno));
		goto Error;
	}

	strncpy(disk->path, path, sizeof(disk->path));
	disk->path[sizeof(disk->path)-1] = 0;

	hdr_init(1, 60*1000*1000, 3, &disk->histogram);

	disk->latency_graph_len = latency_graph_len;
	disk->latency_graph = calloc(latency_graph_len, sizeof(latency_t));
	if (disk->latency_graph == NULL) {
		ERROR("Failed to allocate memory for latency graph data");
		goto Error;
	}

	if (disk->is_ata)
		disk_ata_monitor_start(disk);
	else
		disk_scsi_monitor_start(disk);

	INFO("Opened disk %s sector size %"PRIu64" num bytes %"PRIu64, path, disk->sector_size, disk->num_bytes);
	return 0;

Error:
	disk_close(disk);
	return 1;
}

int disk_close(disk_t *disk)
{
	if (disk->is_ata)
		disk_ata_monitor_end(disk);
	else
		disk_scsi_monitor_end(disk);

	INFO("Closed disk %s", disk->path);
	disk_dev_close(&disk->dev);
	if (disk->latency_graph) {
		free(disk->latency_graph);
		disk->latency_graph = NULL;
	}
	return 0;
}

void disk_scan_stop(disk_t *disk)
{
	disk->run = 0;
}

static void *allocate_buffer(int buf_size)
{
	void *buf = mmap(NULL, buf_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
	if (!buf)
		return NULL;

	return buf;
}

static void free_buffer(void *buf, int buf_size)
{
	munmap(buf, buf_size);
}

static void latency_bucket_prepare(disk_t *disk, struct scan_state *state, uint64_t offset)
{
	assert(state->latency_bucket < disk->latency_graph_len);
	latency_t *l = &disk->latency_graph[state->latency_bucket];
	const uint64_t start_sector = offset / disk->sector_size;

	VVERBOSE("bucket prepare bucket=%u", state->latency_bucket);

	l->start_sector = start_sector;
	l->latency_min_msec = UINT32_MAX;
	state->latency_count = 0;
}

static void latency_bucket_finish(disk_t *disk, struct scan_state *state, uint64_t offset)
{
	latency_t *l = &disk->latency_graph[state->latency_bucket];
	const uint64_t end_sector = offset / disk->sector_size;

	VVERBOSE("bucket finish bucket=%d", state->latency_bucket);

	l->end_sector = end_sector;
	l->latency_median_msec = median(state->latency, state->latency_count);

	state->latency_count = 0;
	state->latency_bucket++;
}

static void latency_bucket_add(disk_t *disk, uint64_t latency, struct scan_state *state)
{
	latency_t *l = &disk->latency_graph[state->latency_bucket];

	if (latency < l->latency_min_msec)
		l->latency_min_msec = latency;
	if (l->latency_max_msec < latency)
		l->latency_max_msec = latency;

	// Collect info for median calculation later
	state->latency[state->latency_count++] = latency;
}

static const char *error_to_str(enum result_error_e err)
{
	switch (err)
	{
		case ERROR_NONE: return "none";
		case ERROR_CORRECTED: return "corrected";
		case ERROR_UNCORRECTED: return "uncorrected";
		case ERROR_NEED_RETRY: return "need_retry";
		case ERROR_FATAL: return "fatal";
		case ERROR_UNKNOWN: return "unknown";
	}

	return "unknown";
}

static const char *data_to_str(enum result_data_e data)
{
	switch (data)
	{
		case DATA_FULL: return "full";
		case DATA_PARTIAL: return "partial";
		case DATA_NONE: return "none";
	}

	return "unknown";
}

static bool disk_scan_part(disk_t *disk, uint64_t offset, void *data, int data_size, struct scan_state *state)
{
	ssize_t ret;
	struct timespec t_start;
	struct timespec t_end;
	uint64_t t;
	int error = 0;
	io_result_t io_res;

	clock_gettime(CLOCK_MONOTONIC, &t_start);
	ret = disk_dev_read(&disk->dev, offset, data_size, data, &io_res);
	clock_gettime(CLOCK_MONOTONIC, &t_end);

	t = (t_end.tv_sec - t_start.tv_sec) * 1000000000 +
		t_end.tv_nsec - t_start.tv_nsec;
	const uint64_t t_msec = t / 1000000;

	// Perform logging
	data_log_raw(&disk->data_raw, offset/disk->sector_size, data_size/disk->sector_size, &io_res, t);
	data_log(&disk->data_log, offset/disk->sector_size, data_size/disk->sector_size, &io_res, t);

	// Handle error or incomplete data
	if (io_res.data != DATA_FULL || io_res.error != ERROR_NONE) {
		int s_errno = errno;
		ERROR("Error when reading at offset %" PRIu64 " size %d read %zd, errno=%d: %s", offset, data_size, ret, errno, strerror(errno));
		ERROR("Details: error=%s data=%s %02X/%02X/%02X", error_to_str(io_res.error), data_to_str(io_res.data),
				io_res.info.sense_key, io_res.info.asc, io_res.info.ascq);
		report_scan_error(disk, offset, data_size, t);
		disk->num_errors++;
		error = 1;
		if (io_res.error == ERROR_FATAL) {
			ERROR("Fatal error occurred, bailing out.");
			return false;
		}
		if (io_res.error == ERROR_UNKNOWN || (s_errno != EIO && s_errno != 0)) {
			if (state->num_unknown_errors++ > 500) {
				ERROR("%u unknown errors occurred, assuming fatal issue.", state->num_unknown_errors);
				return false;
			}
			ERROR("Unknown error occurred, possibly untranslated error by storage layers, trying to continue.");

		}
	}
	else {
		state->num_unknown_errors = 0; // Clear non-consecutive unknown errors
		report_scan_success(disk, offset, data_size, t);
	}

	hdr_record_value(disk->histogram, t / 1000);
	latency_bucket_add(disk, t_msec, state);

	if (t_msec > 1000) {
		VERBOSE("Scanning at offset %" PRIu64 " took %"PRIu64" msec", offset, t_msec);
	}

	if (disk->fix && (t_msec > 3000 || error)) {
		if (io_res.error != ERROR_UNCORRECTED) {
			INFO("Fixing region by rewriting, offset=%"PRIu64" size=%d", offset, data_size);
			ret = disk_dev_write(&disk->dev, offset, data_size, data, &io_res);
			if (ret != data_size) {
				ERROR("Error while attempting to rewrite the data! ret=%zd errno=%d: %s", ret, errno, strerror(errno));
			}
		} else {
			// When we correct uncorrectable errors we want to zero it out, this should reduce any confusion later on when the data is read
			unsigned fix_offset = 0;
			int fix_size = 4096;

			if (data_size < fix_size)
				fix_size = data_size;

			for (; data_size >= (int)(fix_offset + fix_size); fix_offset += fix_size) {
				disk_dev_read(&disk->dev, offset+fix_offset, fix_size, data, &io_res);
				if (io_res.error == ERROR_UNCORRECTED) {
					INFO("Fixing uncorrectable region by writing zeros, offset=%"PRIu64" size=%d", offset+fix_offset, fix_size);
					memset(data, 0, fix_size);
					ret = disk_dev_write(&disk->dev, offset+fix_offset, fix_size, data, &io_res);
					if (ret != data_size) {
						ERROR("Error while attempting to overwrite uncorrectable data! ret=%zd errno=%d: %s", ret, errno, strerror(errno));
					}
				}
			}
		}
	}

	return true;
}

static uint64_t calc_latency_stride(disk_t *disk)
{
	const uint64_t num_sectors = disk->num_bytes / disk->sector_size;
	const uint64_t stride_size = num_sectors / disk->latency_graph_len;
	// At this stage stride_size may have a reminder, we need to distribute the
	// latencies a bit more to avoid it Since the remainder can never be more
	// than the latency_graph_len we can just add one entry to all the buckets
	return stride_size + 1;
}

static uint32_t *calc_scan_order_seq(disk_t *disk, uint64_t stride_size, int read_size_sectors)
{
	uint64_t num_reads = stride_size / read_size_sectors + 2;
	uint32_t *order = malloc(sizeof(uint32_t) * num_reads);

	uint64_t i;
	for (i = 0; i < num_reads-1; i++)
		order[i] = i * read_size_sectors * disk->sector_size;
	order[i] = UINT32_MAX;

	return order;
}

static uint32_t *calc_scan_order_random(disk_t *disk, uint64_t stride_size, int read_size_sectors)
{
	uint64_t num_reads = stride_size / read_size_sectors + 2;
	uint32_t *order = malloc(sizeof(uint32_t) * num_reads);

	// Fill sequential data
	uint64_t i;
	for (i = 0; i < num_reads - 1; i++)
		order[i] = i * read_size_sectors * disk->sector_size;
	order[i] = UINT32_MAX;

	// Shuffle it
	srand(time(NULL));
	for (i = 0; i < num_reads - 1; i++) {
		uint64_t j = rand() % num_reads;
		if (i == j)
			continue;

		uint32_t tmp = order[i];
		order[i] = order[j];
		order[j] = tmp;
	}

	return order;
}

static uint32_t *calc_scan_order(disk_t *disk, enum scan_mode mode, uint64_t stride_size, int read_size)
{
	int read_size_sectors = read_size / disk->sector_size;

	if (mode == SCAN_MODE_SEQ)
		return calc_scan_order_seq(disk, stride_size, read_size_sectors);
	else if (mode == SCAN_MODE_RANDOM)
		return calc_scan_order_random(disk, stride_size, read_size_sectors);
	else
		return NULL;
}

static void progress_calc(disk_t *disk, struct scan_state *state, uint64_t add)
{
	bool do_update;

	if (add != 0) {
		state->progress_bytes += add;
		int progress_part_new = state->progress_bytes * state->progress_full / disk->num_bytes;
		do_update = progress_part_new != state->progress_part;
		state->progress_part = progress_part_new;
	} else {
		do_update = true;
	}

	if (do_update) {
		report_progress(disk, state->progress_part, state->progress_full);
	}
}

static bool disk_scan_latency_stride(disk_t *disk, struct scan_state *state, uint64_t base_offset, uint64_t data_size, uint32_t *scan_order)
{
	unsigned i;
	uint64_t stride_end = base_offset + state->latency_stride * disk->sector_size;
	if (stride_end > disk->num_bytes)
		stride_end = disk->num_bytes;

	for (i = 0; disk->run && scan_order[i] != UINT32_MAX; i++) {
		uint64_t offset = base_offset + scan_order[i];

		progress_calc(disk, state, data_size);

		VVVERBOSE("Scanning at offset %"PRIu64" index %u", offset, i);
		int64_t remainder = stride_end - offset;
		if (remainder < (int64_t)data_size) {
			data_size = remainder;
			VERBOSE("Last part scanning size %"PRIu64, data_size);
		}
		if (offset > disk->num_bytes || (offset+remainder) > disk->num_bytes)
			continue;
		if (!disk_scan_part(disk, offset, state->data, data_size, state))
			return false;
	}

	return true;
}

static void set_realtime(bool realtime)
{
	struct sched_param param;
	memset(&param, 0, sizeof(param));
	param.sched_priority = 1;

	if (realtime)
		sched_setscheduler(0, SCHED_RR, &param);
	else
		sched_setscheduler(0, SCHED_OTHER, &param);
}

static enum conclusion conclusion_calc(disk_t *disk)
{
	if (disk->num_errors > 0)
		return CONCLUSION_FAILED_IO_ERRORS;

	if (hdr_max(disk->histogram) > 10000000)
		return CONCLUSION_FAILED_MAX_LATENCY;

	if (hdr_value_at_percentile(disk->histogram, 99.99) > 8000000)
		return CONCLUSION_FAILED_LATENCY_PERCENTILE;

	VERBOSE("Disk has passed the test");
	return CONCLUSION_PASSED;
}

int disk_scan(disk_t *disk, enum scan_mode mode, unsigned data_size)
{
	disk->run = 1;
	void *data = allocate_buffer(data_size);
	uint32_t *scan_order = NULL;
	int result = 0;
	struct scan_state state = {.latency = NULL, .progress_bytes = 0, .progress_full = 1000};
	struct timespec ts_start;
	struct timespec ts_end;
	time_t scan_time;

	disk->conclusion = CONCLUSION_SCAN_PROBLEM;

	if (data_size % disk->sector_size != 0) {
		data_size -= data_size % disk->sector_size;
		if (data_size == 0)
			data_size = disk->sector_size;
		ERROR("Cannot scan data not in multiples of the sector size, adjusted scan size to %u", data_size);
	}

	set_realtime(true);
	clock_gettime(CLOCK_MONOTONIC, &ts_start);

	INFO("Scanning disk %s in %u byte steps", disk->path, data_size);
	scan_time = time(NULL);
	INFO("Scan started at: %s", ctime(&scan_time));
	VVVERBOSE("Using buffer of size %d", data_size);

	if (data == NULL) {
		ERROR("Failed to allocate data buffer, errno=%d: %s", errno, strerror(errno));
		result = 1;
		goto Exit;
	}

	uint64_t offset;
	const uint64_t disk_size_bytes = disk->num_bytes;
	const uint64_t latency_stride = calc_latency_stride(disk);
	VVERBOSE("latency stride is %"PRIu64, latency_stride);

	state.latency_bucket = 0;
	state.latency_stride = latency_stride;
	state.latency_count = 0;
	state.latency = malloc(sizeof(uint32_t) * latency_stride);
	state.data = data;

	scan_order = calc_scan_order(disk, mode, latency_stride, data_size);
	if (!scan_order) {
		result = 1;
		ERROR("Failed to generate scan order");
		goto Exit;
	}

	verbose_extra_newline = 1;
	for (offset = 0; disk->run && offset < disk_size_bytes; offset += latency_stride * disk->sector_size) {
		VERBOSE("Scanning stride starting at %"PRIu64" done %"PRIu64"%%", offset, offset*100/disk_size_bytes);
		progress_calc(disk, &state, 0);
		latency_bucket_prepare(disk, &state, offset);
		if (!disk_scan_latency_stride(disk, &state, offset, data_size, scan_order))
			break;
		latency_bucket_finish(disk, &state, offset + latency_stride * disk->sector_size);

		if (disk->is_ata)
			disk_ata_monitor(disk);
		else
			disk_scsi_monitor(disk);
	}
	verbose_extra_newline = 0;

	if (!disk->run) {
		INFO("Disk scan interrupted");
		disk->conclusion = CONCLUSION_ABORTED;
	} else {
		disk->conclusion = conclusion_calc(disk);
	}
	report_scan_done(disk);

Exit:
	clock_gettime(CLOCK_MONOTONIC, &ts_end);
	set_realtime(false);
	free(scan_order);
	free_buffer(data, data_size);
	free(state.latency);
	disk->run = 0;
	scan_time = time(NULL);
	INFO("Scan ended at: %s", ctime(&scan_time));
	INFO("Scan took %d second", (int)(ts_end.tv_sec - ts_start.tv_sec));
	return result;
}