1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
|
# -*- coding: utf-8 -*-
"""
Diverse color mathematical functions.
Note:
In most cases, unless otherwise stated RGB is R'G'B' (gamma-compressed)
"""
import colorsys
import logging
import math
import sys
import warnings
def get_transfer_function_phi(alpha, gamma):
return (math.pow(1 + alpha, gamma) * math.pow(gamma - 1, gamma - 1)) / (
math.pow(alpha, gamma - 1) * math.pow(gamma, gamma)
)
LSTAR_E = 216.0 / 24389.0 # Intent of CIE standard, actual CIE standard = 0.008856
LSTAR_K = 24389.0 / 27.0 # Intent of CIE standard, actual CIE standard = 903.3
REC709_K0 = 0.081 # 0.099 / (1.0 / 0.45 - 1)
REC709_P = 4.5 # get_transfer_function_phi(0.099, 1.0 / 0.45)
SMPTE240M_K0 = 0.0913 # 0.1115 / (1.0 / 0.45 - 1)
SMPTE240M_P = 4.0 # get_transfer_function_phi(0.1115, 1.0 / 0.45)
SMPTE2084_M1 = (2610.0 / 4096) * 0.25
SMPTE2084_M2 = (2523.0 / 4096) * 128
SMPTE2084_C1 = 3424.0 / 4096
SMPTE2084_C2 = (2413.0 / 4096) * 32
SMPTE2084_C3 = (2392.0 / 4096) * 32
SRGB_K0 = 0.04045 # 0.055 / (2.4 - 1)
SRGB_P = 12.92 # get_transfer_function_phi(0.055, 2.4)
def specialpow(a, b, slope_limit=0):
"""Wrapper for power, Rec. 601/709, SMPTE 240M, sRGB and L* functions
Positive b = power, -2.4 = sRGB, -3.0 = L*, -240 = SMPTE 240M,
-601 = Rec. 601, -709 = Rec. 709 (Rec. 601 and 709 transfer functions are
identical)
"""
if b >= 0.0:
# Power curve
if a < 0.0:
if slope_limit:
return min(-math.pow(-a, b), a / slope_limit)
return -math.pow(-a, b)
else:
if slope_limit:
return max(math.pow(a, b), a / slope_limit)
return math.pow(a, b)
if a < 0.0:
signScale = -1.0
a = -a
else:
signScale = 1.0
if b in (1.0 / -601, 1.0 / -709):
# XYZ -> RGB, Rec. 601/709 TRC
if a < REC709_K0 / REC709_P:
v = a * REC709_P
else:
v = 1.099 * math.pow(a, 0.45) - 0.099
elif b == 1.0 / -240:
# XYZ -> RGB, SMPTE 240M TRC
if a < SMPTE240M_K0 / SMPTE240M_P:
v = a * SMPTE240M_P
else:
v = 1.1115 * math.pow(a, 0.45) - 0.1115
elif b == 1.0 / -3.0:
# XYZ -> RGB, L* TRC
if a <= LSTAR_E:
v = 0.01 * a * LSTAR_K
else:
v = 1.16 * math.pow(a, 1.0 / 3.0) - 0.16
elif b == 1.0 / -2.4:
# XYZ -> RGB, sRGB TRC
if a <= SRGB_K0 / SRGB_P:
v = a * SRGB_P
else:
v = 1.055 * math.pow(a, 1.0 / 2.4) - 0.055
elif b == 1.0 / -2084:
# XYZ -> RGB, SMPTE 2084 (PQ)
v = (
(2413.0 * (a**SMPTE2084_M1) + 107) / (2392.0 * (a**SMPTE2084_M1) + 128)
) ** SMPTE2084_M2
elif b == -2.4:
# RGB -> XYZ, sRGB TRC
if a <= SRGB_K0:
v = a / SRGB_P
else:
v = math.pow((a + 0.055) / 1.055, 2.4)
elif b == -3.0:
# RGB -> XYZ, L* TRC
if a <= 0.08: # E * K * 0.01
v = 100.0 * a / LSTAR_K
else:
v = math.pow((a + 0.16) / 1.16, 3.0)
elif b == -240:
# RGB -> XYZ, SMPTE 240M TRC
if a < SMPTE240M_K0:
v = a / SMPTE240M_P
else:
v = math.pow((0.1115 + a) / 1.1115, 1.0 / 0.45)
elif b in (-601, -709):
# RGB -> XYZ, Rec. 601/709 TRC
if a < REC709_K0:
v = a / REC709_P
else:
v = math.pow((a + 0.099) / 1.099, 1.0 / 0.45)
elif b == -2084:
# RGB -> XYZ, SMPTE 2084 (PQ)
# See https://www.smpte.org/sites/default/files/2014-05-06-EOTF-Miller-1-2-handout.pdf
v = (
max(a ** (1.0 / SMPTE2084_M2) - SMPTE2084_C1, 0)
/ (SMPTE2084_C2 - SMPTE2084_C3 * a ** (1.0 / SMPTE2084_M2))
) ** (1.0 / SMPTE2084_M1)
else:
raise ValueError("Invalid gamma %r" % b)
return v * signScale
def DICOM(j, inverse=False):
if inverse:
log10Y = math.log10(j)
A = 71.498068
B = 94.593053
C = 41.912053
D = 9.8247004
E = 0.28175407
F = -1.1878455
G = -0.18014349
H = 0.14710899
I = -0.017046845
return (
A
+ B * log10Y
+ C * math.pow(log10Y, 2)
+ D * math.pow(log10Y, 3)
+ E * math.pow(log10Y, 4)
+ F * math.pow(log10Y, 5)
+ G * math.pow(log10Y, 6)
+ H * math.pow(log10Y, 7)
+ I * math.pow(log10Y, 8)
)
else:
logj = math.log(j)
a = -1.3011877
b = -2.5840191e-2
c = 8.0242636e-2
d = -1.0320229e-1
e = 1.3646699e-1
f = 2.8745620e-2
g = -2.5468404e-2
h = -3.1978977e-3
k = 1.2992634e-4
m = 1.3635334e-3
return (
a
+ c * logj
+ e * math.pow(logj, 2)
+ g * math.pow(logj, 3)
+ m * math.pow(logj, 4)
) / (
1
+ b * logj
+ d * math.pow(logj, 2)
+ f * math.pow(logj, 3)
+ h * math.pow(logj, 4)
+ k * math.pow(logj, 5)
)
class HLG:
"""Hybrid Log Gamma (HLG) as defined in Rec BT.2100
and BT.2390-4
"""
def __init__(
self,
black_cdm2=0.0,
white_cdm2=1000.0,
system_gamma=1.2,
ambient_cdm2=5,
rgb_space="Rec. 2020",
):
self.black_cdm2 = black_cdm2
self.white_cdm2 = white_cdm2
self.rgb_space = get_rgb_space(rgb_space)
self.system_gamma = system_gamma
self.ambient_cdm2 = ambient_cdm2
@property
def gamma(self):
"""System gamma for nominal peak luminance and ambient"""
# Adjust system gamma for peak luminance != 1000 cd/m2 (extended model
# described in BT.2390-4)
K = 1.111
gamma = self.system_gamma * K ** math.log(self.white_cdm2 / 1000.0, 2)
if self.ambient_cdm2 > 0:
# Adjust system gamma for ambient surround != 5 cd/m2 (BT.2390-4)
u = 0.98
gamma *= u ** math.log(self.ambient_cdm2 / 5.0, 2)
return gamma
def oetf(self, v, inverse=False):
"""Hybrid Log Gamma (HLG) OETF
Relative scene linear light to non-linear HLG signal, or inverse
Input domain 0..1
Output range 0..1
"""
if v == 1:
return 1.0
a = 0.17883277
b = 1 - 4 * a
c = 0.5 - a * math.log(4 * a)
if inverse:
# Non-linear HLG signal to relative scene linear light
if 0 <= v <= 1 / 2.0:
v = v**2 / 3.0
else:
v = (math.exp((v - c) / a) + b) / 12.0
else:
# Relative scene linear light to non-linear HLG signal
if 0 <= v <= 1 / 12.0:
v = math.sqrt(3 * v)
else:
v = a * math.log(12 * v - b) + c
return v
def eotf(self, RGB, inverse=False, apply_black_offset=True):
"""Hybrid Log Gamma (HLG) EOTF
Non-linear HLG signal to display light, or inverse
Input domain 0..1
Output range 0..1
"""
if isinstance(RGB, (float, int)):
R, G, B = (RGB,) * 3
else:
R, G, B = RGB
if inverse:
# Display light -> relative scene linear light -> HLG signal
R, G, B = (
self.oetf(v) for v in self.ootf((R, G, B), True, apply_black_offset)
)
else:
# HLG signal -> relative scene linear light -> display light
R, G, B = self.ootf(
[self.oetf(v, True) for v in (R, G, B)], False, apply_black_offset
)
return G if isinstance(RGB, (float, int)) else (R, G, B)
def ootf(self, RGB, inverse=False, apply_black_offset=True):
"""Hybrid Log Gamma (HLG) OOTF
Relative scene linear light to display light, or inverse
Input domain 0..1
Output range 0..1
"""
if isinstance(RGB, (float, int)):
R, G, B = (RGB,) * 3
else:
R, G, B = RGB
if apply_black_offset:
black_cdm2 = float(self.black_cdm2)
else:
black_cdm2 = 0
alpha = (self.white_cdm2 - black_cdm2) / self.white_cdm2
beta = black_cdm2 / self.white_cdm2
Y = 0.2627 * R + 0.6780 * G + 0.0593 * B
if inverse:
if Y > beta:
R, G, B = (
((Y - beta) / alpha) ** ((1 - self.gamma) / self.gamma)
* ((v - beta) / alpha)
for v in (R, G, B)
)
else:
R, G, B = 0, 0, 0
else:
if Y:
Y **= self.gamma - 1
R, G, B = (alpha * Y * E + beta for E in (R, G, B))
return G if isinstance(RGB, (float, int)) else (R, G, B)
def RGB2XYZ(self, R, G, B, apply_black_offset=True):
"""Non-linear HLG signal to display XYZ"""
X, Y, Z = self.rgb_space[-1] * [self.oetf(v, True) for v in (R, G, B)]
X, Y, Z = (max(v, 0) for v in (X, Y, Z))
Yy = self.ootf(Y, apply_black_offset=False)
if Y:
X, Y, Z = (v / Y * Yy for v in (X, Y, Z))
else:
X, Y, Z = (v * Yy for v in self.rgb_space[1])
if apply_black_offset:
beta = self.ootf(0)
bp_out = [v * beta for v in self.rgb_space[1]]
X, Y, Z = apply_bpc(X, Y, Z, (0, 0, 0), bp_out, self.rgb_space[1])
return X, Y, Z
def XYZ2RGB(self, X, Y, Z, apply_black_offset=True):
"""Display XYZ to non-linear HLG signal"""
if apply_black_offset:
beta = self.ootf(0)
bp_in = [v * beta for v in self.rgb_space[1]]
X, Y, Z = apply_bpc(X, Y, Z, bp_in, (0, 0, 0), self.rgb_space[1])
Yy = self.ootf(Y, True, apply_black_offset=False)
if Y:
X, Y, Z = (v / Y * Yy for v in (X, Y, Z))
R, G, B = self.rgb_space[-1].inverted() * (X, Y, Z)
R, G, B = (max(v, 0) for v in (R, G, B))
R, G, B = [self.oetf(v) for v in (R, G, B)]
return R, G, B
rgb_spaces = {
# http://brucelindbloom.com/WorkingSpaceInfo.html
# ACES: https://github.com/ampas/aces-dev/blob/master/docs/ACES_1.0.1.pdf?raw=true
# Adobe RGB: http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
# DCI P3: http://www.hp.com/united-states/campaigns/workstations/pdfs/lp2480zx-dci--p3-emulation.pdf
# http://dcimovies.com/specification/DCI_DCSS_v12_with_errata_2012-1010.pdf
# Rec. 2020: http://en.wikipedia.org/wiki/Rec._2020
#
# name gamma white primaries
# point Rx Ry RY Gx Gy GY Bx By BY
"ACES": (
1.0,
(0.95265, 1.0, 1.00883),
(0.7347, 0.2653, 0.343961),
(0.0000, 1.0000, 0.728164),
(0.0001, -0.0770, -0.072125),
),
"ACEScg": (
1.0,
(0.95265, 1.0, 1.00883),
(0.7130, 0.2930, 0.272230),
(0.1650, 0.8300, 0.674080),
(0.1280, 0.0440, 0.053690),
),
"Adobe RGB (1998)": (
2 + 51 / 256.0,
"D65",
(0.6400, 0.3300, 0.297361),
(0.2100, 0.7100, 0.627355),
(0.1500, 0.0600, 0.075285),
),
"Apple RGB": (
1.8,
"D65",
(0.6250, 0.3400, 0.244634),
(0.2800, 0.5950, 0.672034),
(0.1550, 0.0700, 0.083332),
),
"Best RGB": (
2.2,
"D50",
(0.7347, 0.2653, 0.228457),
(0.2150, 0.7750, 0.737352),
(0.1300, 0.0350, 0.034191),
),
"Beta RGB": (
2.2,
"D50",
(0.6888, 0.3112, 0.303273),
(0.1986, 0.7551, 0.663786),
(0.1265, 0.0352, 0.032941),
),
"Bruce RGB": (
2.2,
"D65",
(0.6400, 0.3300, 0.240995),
(0.2800, 0.6500, 0.683554),
(0.1500, 0.0600, 0.075452),
),
"CIE RGB": (
2.2,
"E",
(0.7350, 0.2650, 0.176204),
(0.2740, 0.7170, 0.812985),
(0.1670, 0.0090, 0.010811),
),
"ColorMatch RGB": (
1.8,
"D50",
(0.6300, 0.3400, 0.274884),
(0.2950, 0.6050, 0.658132),
(0.1500, 0.0750, 0.066985),
),
# "DCDM X'Y'Z'": (2.6, "E", (1.0000, 0.0000, 0.000000), (0.0000, 1.0000, 1.000000), (0.0000, 0.0000, 0.000000)),
"DCI P3": (
2.6,
(0.89459, 1.0, 0.95442),
(0.6800, 0.3200, 0.209475),
(0.2650, 0.6900, 0.721592),
(0.1500, 0.0600, 0.068903),
),
"DCI P3 D65": (
2.6,
"D65",
(0.6800, 0.3200, 0.209475),
(0.2650, 0.6900, 0.721592),
(0.1500, 0.0600, 0.068903),
),
"Don RGB 4": (
2.2,
"D50",
(0.6960, 0.3000, 0.278350),
(0.2150, 0.7650, 0.687970),
(0.1300, 0.0350, 0.033680),
),
"ECI RGB": (
1.8,
"D50",
(0.6700, 0.3300, 0.320250),
(0.2100, 0.7100, 0.602071),
(0.1400, 0.0800, 0.077679),
),
"ECI RGB v2": (
-3.0,
"D50",
(0.6700, 0.3300, 0.320250),
(0.2100, 0.7100, 0.602071),
(0.1400, 0.0800, 0.077679),
),
"Ekta Space PS5": (
2.2,
"D50",
(0.6950, 0.3050, 0.260629),
(0.2600, 0.7000, 0.734946),
(0.1100, 0.0050, 0.004425),
),
"NTSC 1953": (
2.2,
"C",
(0.6700, 0.3300, 0.298839),
(0.2100, 0.7100, 0.586811),
(0.1400, 0.0800, 0.114350),
),
"PAL/SECAM": (
2.2,
"D65",
(0.6400, 0.3300, 0.222021),
(0.2900, 0.6000, 0.706645),
(0.1500, 0.0600, 0.071334),
),
"ProPhoto RGB": (
1.8,
"D50",
(0.7347, 0.2653, 0.288040),
(0.1596, 0.8404, 0.711874),
(0.0366, 0.0001, 0.000086),
),
"Rec. 709": (
-709,
"D65",
(0.6400, 0.3300, 0.212656),
(0.3000, 0.6000, 0.715158),
(0.1500, 0.0600, 0.072186),
),
"Rec. 2020": (
-709,
"D65",
(0.7080, 0.2920, 0.262694),
(0.1700, 0.7970, 0.678009),
(0.1310, 0.0460, 0.059297),
),
"SMPTE-C": (
2.2,
"D65",
(0.6300, 0.3400, 0.212395),
(0.3100, 0.5950, 0.701049),
(0.1550, 0.0700, 0.086556),
),
"SMPTE 240M": (
-240,
"D65",
(0.6300, 0.3400, 0.212395),
(0.3100, 0.5950, 0.701049),
(0.1550, 0.0700, 0.086556),
),
"sRGB": (
-2.4,
"D65",
(0.6400, 0.3300, 0.212656),
(0.3000, 0.6000, 0.715158),
(0.1500, 0.0600, 0.072186),
),
"Wide Gamut RGB": (
2.2,
"D50",
(0.7350, 0.2650, 0.258187),
(0.1150, 0.8260, 0.724938),
(0.1570, 0.0180, 0.016875),
),
}
def get_cat_matrix(cat="Bradford"):
if isinstance(cat, str):
cat = cat_matrices[cat]
elif isinstance(cat, bytes):
cat = cat_matrices[cat.decode()]
if not isinstance(cat, Matrix3x3):
cat = Matrix3x3(cat)
return cat
def cbrt(x):
return math.pow(x, 1.0 / 3.0) if x >= 0 else -math.pow(-x, 1.0 / 3.0)
def var(a):
"""Variance"""
s = 0.0
l = len(a)
while l:
l -= 1
s += a[l]
l = len(a)
m = s / l
s = 0.0
while l:
l -= 1
s += (a[l] - m) ** 2
return s / len(a)
def XYZ2LMS(X, Y, Z, cat="Bradford"):
"""Convert from XYZ to cone response domain
:param X:
:param Y:
:param Z:
:param str, Matrix3x3 cat:
"""
cat = get_cat_matrix(cat)
p, y, b = cat * [X, Y, Z]
return p, y, b
def LMS_wp_adaption_matrix(
whitepoint_source=None, whitepoint_destination=None, cat="Bradford"
):
"""Prepare a matrix to match the whitepoints in cone response domain"""
# chromatic adaption
# based on formula http://brucelindbloom.com/Eqn_ChromAdapt.html
# cat = adaption matrix or predefined choice ('CAT02', 'Bradford',
# 'Von Kries', 'XYZ Scaling', see cat_matrices), defaults to 'Bradford'
cat = get_cat_matrix(cat)
XYZWS = get_whitepoint(whitepoint_source)
XYZWD = get_whitepoint(whitepoint_destination)
if XYZWS[1] <= 1.0 < XYZWD[1]:
# make sure the scaling is identical
XYZWD = [v / XYZWD[1] * XYZWS[1] for v in XYZWD]
if XYZWD[1] <= 1.0 < XYZWS[1]:
# make sure the scaling is identical
XYZWS = [v / XYZWS[1] * XYZWD[1] for v in XYZWS]
Ls, Ms, Ss = XYZ2LMS(XYZWS[0], XYZWS[1], XYZWS[2], cat)
Ld, Md, Sd = XYZ2LMS(XYZWD[0], XYZWD[1], XYZWD[2], cat)
return Matrix3x3([[Ld / Ls, 0, 0], [0, Md / Ms, 0], [0, 0, Sd / Ss]])
def wp_adaption_matrix(
whitepoint_source=None, whitepoint_destination=None, cat="Bradford"
):
"""Prepare a matrix to match the whitepoints in cone response doamin and
transform back to XYZ
"""
# chromatic adaption
# based on formula http://brucelindbloom.com/Eqn_ChromAdapt.html
# cat = adaption matrix or predefined choice ('CAT02', 'Bradford',
# 'Von Kries', 'XYZ Scaling', see cat_matrices), defaults to 'Bradford'
cachehash = (
(
tuple(whitepoint_source)
if isinstance(whitepoint_source, (list, tuple))
else whitepoint_source
),
(
tuple(whitepoint_destination)
if isinstance(whitepoint_destination, (list, tuple))
else whitepoint_destination
),
cat if isinstance(cat, str) else id(cat),
)
if cachehash in wp_adaption_matrix.cache:
return wp_adaption_matrix.cache[cachehash]
cat = get_cat_matrix(cat)
wpam = (
cat.inverted()
* LMS_wp_adaption_matrix(whitepoint_source, whitepoint_destination, cat)
* cat
)
wp_adaption_matrix.cache[cachehash] = wpam
return wpam
wp_adaption_matrix.cache = {}
def adapt(X, Y, Z, whitepoint_source=None, whitepoint_destination=None, cat="Bradford"):
"""Transform XYZ under source illuminant to XYZ under destination illuminant"""
# chromatic adaption
# based on formula http://brucelindbloom.com/Eqn_ChromAdapt.html
# cat = adaption matrix or predefined choice ('CAT02', 'Bradford',
# 'Von Kries', 'XYZ Scaling', see cat_matrices), defaults to 'Bradford'
return wp_adaption_matrix(whitepoint_source, whitepoint_destination, cat) * (
X,
Y,
Z,
)
def apply_bpc(
X, Y, Z, bp_in=None, bp_out=None, wp_out="D50", weight=False, pin_chromaticity=False
):
"""Apply black point compensation"""
if not bp_in:
bp_in = (0, 0, 0)
if not bp_out:
bp_out = (0, 0, 0)
wp_out = get_whitepoint(wp_out)
if weight:
L = XYZ2Lab(*[v * 100 for v in (X, Y, Z)])[0]
bp_in_Lab = XYZ2Lab(*[v * 100 for v in bp_in])
bp_out_Lab = XYZ2Lab(*[v * 100 for v in bp_out])
vv = (L - bp_in_Lab[0]) / (100.0 - bp_in_Lab[0]) # 0 at bp, 1 at wp
vv = 1.0 - vv
if vv < 0.0:
vv = 0.0
elif vv > 1.0:
vv = 1.0
vv = math.pow(vv, min(40.0, 40.0 / (max(bp_in_Lab[0], bp_out_Lab[0]) or 1.0)))
bp_in = Lab2XYZ(*[v * vv for v in bp_in_Lab])
bp_out = Lab2XYZ(*[v * vv for v in bp_out_Lab])
if pin_chromaticity:
XYZ = [Y]
x, y = XYZ2xyY(X, Y, Z, wp_out)[:2]
bp_in = bp_in[1:2]
bp_out = bp_out[1:2]
wp_out = wp_out[1:2]
else:
XYZ = [X, Y, Z]
for i, v in enumerate(XYZ):
XYZ[i] = ((wp_out[i] - bp_out[i]) * v - wp_out[i] * (bp_in[i] - bp_out[i])) / (
wp_out[i] - bp_in[i]
)
if pin_chromaticity:
XYZ = xyY2XYZ(x, y, XYZ[0])
return XYZ
def avg(*args):
return float(sum(args)) / len(args)
def blend_ab(X, Y, Z, bp, wp, power=40.0, signscale=1):
if Y < 0:
return 0, 0, 0
L, a, b = XYZ2Lab(X, Y, Z, whitepoint=wp)
bpL, bpa, bpb = XYZ2Lab(*bp, whitepoint=wp)
if bpL == 100:
raise ValueError("Black L* is 100!")
vv = (L - bpL) / (100.0 - bpL) # 0 at bp, 1 at wp
vv = 1.0 - vv # 1 at bp, 0 at wp
if vv < 0.0:
vv = 0.0
elif vv > 1.0:
vv = 1.0
vv = math.pow(vv, power) * signscale
a += vv * bpa
b += vv * bpb
return Lab2XYZ(L, a, b, whitepoint=wp)
def blend_blackpoint(
X, Y, Z, bp_in=None, bp_out=None, wp=None, power=40.0, pin_chromaticity=False
):
"""Blend to destination black as L approaches black, optionally compensating
for input black first
"""
wp = get_whitepoint(wp)
for i, bp in enumerate((bp_in, bp_out)):
if not bp or tuple(bp) == (0, 0, 0):
continue
bp_wp = tuple(v / wp[1] * bp[1] for v in wp)
if i == 0:
X, Y, Z = blend_ab(X, Y, Z, bp, wp, power, -1)
X, Y, Z = apply_bpc(X, Y, Z, bp_wp, None, wp, pin_chromaticity)
else:
X, Y, Z = apply_bpc(X, Y, Z, None, bp_wp, wp, pin_chromaticity)
X, Y, Z = blend_ab(X, Y, Z, bp, wp, power, 1)
return X, Y, Z
def interp_old(x, xp, fp, left=None, right=None):
"""One-dimensional linear interpolation similar to numpy.interp
Values do NOT have to be monotonically increasing
interp(0, [0, 0], [0, 1]) will return 0
"""
if not isinstance(x, (int, float, complex)):
yi = []
for n in x:
yi.append(interp_old(n, xp, fp, left, right))
return yi
if x in xp:
return fp[xp.index(x)]
elif x < xp[0]:
return fp[0] if left is None else left
elif x > xp[-1]:
return fp[-1] if right is None else right
else:
# Interpolate
lower = 0
higher = len(fp) - 1
for i, v in enumerate(xp):
if v < x and i > lower:
lower = i
elif v > x and i < higher:
higher = i
step = float(x - xp[lower])
steps = (xp[higher] - xp[lower]) / step
return fp[lower] + (fp[higher] - fp[lower]) / steps
# This is much faster than the old implementation
def interp(x, xp, fp, left=None, right=None, period=None):
"""One-dimensional linear interpolation similar to numpy.interp
Values do NOT have to be monotonically increasing
interp(0, [0, 0], [0, 1]) will return 0
"""
# TODO: This function overrides the class implementation (Interp) and forces to use
# numpy.interp all the time, and it is kind of rude in that manner.
# Please respect the previous implementation, but use nump.interp again.
import numpy
return numpy.interp(x, xp, fp, left, right, period)
def interp_resize(iterable, new_size, use_numpy=False):
"""Change size of iterable through linear interpolation"""
result = []
x_new = list(range(len(iterable)))
# interp = Interp(x_new, iterable, use_numpy=use_numpy)
for i in range(new_size):
result.append(
interp(
i / (new_size - 1.0) * (len(iterable) - 1.0),
x_new,
iterable,
)
)
return result
def interp_fill(xp, fp, new_size, use_numpy=False):
"""Fill missing points by interpolation"""
result = []
last = xp[-1]
# interp = Interp(xp, fp, use_numpy=use_numpy)
for i in range(new_size):
result.append(interp(i / (new_size - 1.0) * last, xp, fp))
return result
def smooth_avg_old(values, passes=1, window=None, protect=None):
"""Smooth values (moving average).
Args:
values (list): A list of float values.
passes (int): Number of passes
window (tuple/list): Tuple or list containing weighting factors. Its length
determines the size of the window to use. Defaults to (1.0, 1.0, 1.0)
protect (list): A list of indices to protect. The values related to these
indices will be protected.
"""
if not window or len(window) < 3 or len(window) % 2 != 1:
if window:
warnings.warn(
"Invalid window %r, size %i - using default (1, 1, 1)"
% (window, len(window)),
Warning,
)
window = (1.0, 1.0, 1.0)
for _x in range(0, passes):
data = []
for j, v in enumerate(values):
tmp_window = window
if not protect or j not in protect:
while 0 < j < len(values) - 1 and len(tmp_window) >= 3:
tl = (len(tmp_window) - 1) / 2
# print j, tl, tmp_window
if tl > 0 and j - tl >= 0 and j + tl <= len(values) - 1:
windowslice = values[int(j - tl) : int(j + tl + 1)]
windowsize = 0
for k, weight in enumerate(tmp_window):
windowsize += float(weight) * windowslice[k]
v = windowsize / sum(tmp_window)
break
else:
tmp_window = tmp_window[1:-1]
data.append(v)
values = data
return values
def smooth_avg(values, passes=1, window=None, protect=None):
"""Smooth values fast (moving average).
This is (should be) the fast implementation of the ``smooth_avg``. Inputs are the
same.
Args:
values (list): A list of float values.
passes (int): Number of passes
window (tuple/list): Tuple or list containing weighting factors. Its length
determines the size of the window to use. Defaults to (1.0, 1.0, 1.0)
protect (list): A list of indices to protect. The values related to these
indices will be restored after each pass.
"""
if not window or len(window) < 3 or len(window) % 2 != 1:
if window:
warnings.warn(
"Invalid window %r, size %i - using default (1, 1, 1)"
% (window, len(window)),
Warning,
)
window = (1, 1, 1)
# fix the window values
window_length = float(len(window))
window_weight = sum(window)
window = tuple([i / window_weight for i in window])
# extend the array by ceil(window_size / 2)
extend_amount = math.ceil(window_length / 2)
# protect start and end values by adding the first and last values by the half of
# the window length
values = values[0:1] * extend_amount + values + values[-1:] * extend_amount
protection_extension = 1
protected_start = values[: extend_amount + protection_extension]
protected_end = values[-extend_amount - protection_extension :]
protected_values = {}
if protect is not None:
for index in protect:
# offset the values with ``extend_amount``
protected_values[index + extend_amount] = values[index + extend_amount]
import numpy
for i in range(passes):
values = list(numpy.convolve(values, window, mode="same"))
# Protect start and end values
values[: extend_amount + protection_extension] = protected_start
values[-extend_amount - protection_extension :] = protected_end
# restore protected values
if protect is not None:
for k in protected_values:
v = protected_values[k]
values[k] = v
# return the non-extended portion
return values[extend_amount:-extend_amount]
def compute_bpc(bp_in, bp_out):
"""Black point compensation. Implemented as a linear scaling in XYZ.
Black points should come relative to the white point. Fills and
returns a matrix/offset element.
[matrix]*bp_in + offset = bp_out
[matrix]*D50 + offset = D50
"""
# This is a linear scaling in the form ax+b, where
# a = (bp_out - D50) / (bp_in - D50)
# b = - D50* (bp_out - bp_in) / (bp_in - D50)
D50 = get_standard_illuminant("D50")
tx = bp_in[0] - D50[0]
ty = bp_in[1] - D50[1]
tz = bp_in[2] - D50[2]
ax = (bp_out[0] - D50[0]) / tx
ay = (bp_out[1] - D50[1]) / ty
az = (bp_out[2] - D50[2]) / tz
bx = -D50[0] * (bp_out[0] - bp_in[0]) / tx
by = -D50[1] * (bp_out[1] - bp_in[1]) / ty
bz = -D50[2] * (bp_out[2] - bp_in[2]) / tz
matrix = Matrix3x3([[ax, 0, 0], [0, ay, 0], [0, 0, az]])
offset = [bx, by, bz]
return matrix, offset
def delta(
L1,
a1,
b1,
L2,
a2,
b2,
method="1976",
p1=None,
p2=None,
p3=None,
cie94_use_symmetric_chrominance=True,
):
"""Compute the delta of two samples
CIE 1994 & CMC calculation code derived from formulas on
www.brucelindbloom.com
CIE 1994 code uses some alterations seen on
www.farbmetrik-gall.de/cielab/korrcielab/cie94.html
(see notes in code below)
CIE 2000 calculation code derived from Excel spreadsheet available at
www.ece.rochester.edu/~gsharma/ciede2000
method: either "CIE94", "CMC", "CIE2K" or "CIE76"
(default if method is not set)
p1, p2, p3 arguments have different meaning for each calculation method:
CIE 1994: If p1 is not None, calculation will be adjusted for
textiles, otherwise graphics arts (default if p1 is not set)
CMC(l:c): p1 equals l (lightness) weighting factor and p2 equals c
(chroma) weighting factor.
Commonly used values are CMC(1:1) for perceptability
(default if p1 and p2 are not set) and CMC(2:1) for
acceptability
CIE 2000: p1 becomes kL (lightness) weighting factor, p2 becomes
kC (chroma) weighting factor and p3 becomes kH (hue)
weighting factor (all three default to 1 if not set)
"""
if isinstance(method, str):
method = method.lower()
else:
method = str(int(method))
if method in ("94", "1994", "cie94", "cie1994"):
textiles = p1
dL = L2 - L1
C1 = math.sqrt(math.pow(a1, 2) + math.pow(b1, 2))
C2 = math.sqrt(math.pow(a2, 2) + math.pow(b2, 2))
dC = C2 - C1
dH2 = math.pow(a1 - a2, 2) + math.pow(b1 - b2, 2) - math.pow(dC, 2)
dH = math.sqrt(dH2) if dH2 > 0 else 0
SL = 1.0
K1 = 0.048 if textiles else 0.045
K2 = 0.014 if textiles else 0.015
if cie94_use_symmetric_chrominance:
C_ = math.sqrt(C1 * C2)
else:
C_ = C1
SC = 1.0 + K1 * C_
SH = 1.0 + K2 * C_
KL = 2.0 if textiles else 1.0
KC = 1.0
KH = 1.0
dLw, dCw, dHw = dL / (KL * SL), dC / (KC * SC), dH / (KH * SH)
dE = math.sqrt(math.pow(dLw, 2) + math.pow(dCw, 2) + math.pow(dHw, 2))
elif method in ("cmc(2:1)", "cmc21", "cmc(1:1)", "cmc11", "cmc"):
if method in ("cmc(2:1)", "cmc21"):
p1 = 2.0
l = p1 if isinstance(p1, (float, int)) else 1.0
c = p2 if isinstance(p2, (float, int)) else 1.0
dL = L2 - L1
C1 = math.sqrt(math.pow(a1, 2) + math.pow(b1, 2))
C2 = math.sqrt(math.pow(a2, 2) + math.pow(b2, 2))
dC = C2 - C1
dH2 = math.pow(a1 - a2, 2) + math.pow(b1 - b2, 2) - math.pow(dC, 2)
dH = math.sqrt(dH2) if dH2 > 0 else 0
SL = 0.511 if L1 < 16 else (0.040975 * L1) / (1 + 0.01765 * L1)
SC = (0.0638 * C1) / (1 + 0.0131 * C1) + 0.638
F = math.sqrt(math.pow(C1, 4) / (math.pow(C1, 4) + 1900.0))
H1 = math.degrees(math.atan2(b1, a1)) + (0 if b1 >= 0 else 360.0)
T = (
0.56 + abs(0.2 * math.cos(math.radians(H1 + 168.0)))
if 164 <= H1 <= 345
else 0.36 + abs(0.4 * math.cos(math.radians(H1 + 35)))
)
SH = SC * (F * T + 1 - F)
dLw, dCw, dHw = dL / (l * SL), dC / (c * SC), dH / SH
dE = math.sqrt(math.pow(dLw, 2) + math.pow(dCw, 2) + math.pow(dHw, 2))
elif method in ("00", "2k", "2000", "cie00", "cie2k", "cie2000"):
pow25_7 = math.pow(25, 7)
k_L = p1 if isinstance(p1, (float, int)) else 1.0
k_C = p2 if isinstance(p2, (float, int)) else 1.0
k_H = p3 if isinstance(p3, (float, int)) else 1.0
C1 = math.sqrt(math.pow(a1, 2) + math.pow(b1, 2))
C2 = math.sqrt(math.pow(a2, 2) + math.pow(b2, 2))
C_avg = avg(C1, C2)
G = 0.5 * (1 - math.sqrt(math.pow(C_avg, 7) / (math.pow(C_avg, 7) + pow25_7)))
L1_ = L1
a1_ = (1 + G) * a1
b1_ = b1
L2_ = L2
a2_ = (1 + G) * a2
b2_ = b2
C1_ = math.sqrt(math.pow(a1_, 2) + math.pow(b1_, 2))
C2_ = math.sqrt(math.pow(a2_, 2) + math.pow(b2_, 2))
h1_ = (
0
if a1_ == 0 and b1_ == 0
else math.degrees(math.atan2(b1_, a1_)) + (0 if b1_ >= 0 else 360.0)
)
h2_ = (
0
if a2_ == 0 and b2_ == 0
else math.degrees(math.atan2(b2_, a2_)) + (0 if b2_ >= 0 else 360.0)
)
dh_cond = 1.0 if h2_ - h1_ > 180 else (2.0 if h2_ - h1_ < -180 else 0)
dh_ = (
h2_ - h1_
if dh_cond == 0
else (h2_ - h1_ - 360.0 if dh_cond == 1 else h2_ + 360.0 - h1_)
)
dL_ = L2_ - L1_
dL = dL_
dC_ = C2_ - C1_
dC = dC_
dH_ = 2 * math.sqrt(C1_ * C2_) * math.sin(math.radians(dh_ / 2.0))
dH = dH_
L__avg = avg(L1_, L2_)
C__avg = avg(C1_, C2_)
h__avg_cond = (
3.0
if C1_ * C2_ == 0
else (0 if abs(h2_ - h1_) <= 180 else (1.0 if h2_ + h1_ < 360 else 2.0))
)
h__avg = (
h1_ + h2_
if h__avg_cond == 3
else (
avg(h1_, h2_)
if h__avg_cond == 0
else (
avg(h1_, h2_) + 180.0 if h__avg_cond == 1 else avg(h1_, h2_) - 180.0
)
)
)
AB = math.pow(L__avg - 50.0, 2) # (L'_ave-50)^2
S_L = 1 + 0.015 * AB / math.sqrt(20.0 + AB)
S_C = 1 + 0.045 * C__avg
T = (
1
- 0.17 * math.cos(math.radians(h__avg - 30.0))
+ 0.24 * math.cos(math.radians(2.0 * h__avg))
+ 0.32 * math.cos(math.radians(3.0 * h__avg + 6.0))
- 0.2 * math.cos(math.radians(4 * h__avg - 63.0))
)
S_H = 1 + 0.015 * C__avg * T
dTheta = 30.0 * math.exp(-1 * math.pow((h__avg - 275.0) / 25.0, 2))
R_C = 2.0 * math.sqrt(math.pow(C__avg, 7) / (math.pow(C__avg, 7) + pow25_7))
R_T = -math.sin(math.radians(2.0 * dTheta)) * R_C
AJ = dL_ / S_L / k_L # dL' / k_L / S_L
AK = dC_ / S_C / k_C # dC' / k_C / S_C
AL = dH_ / S_H / k_H # dH' / k_H / S_H
dLw, dCw, dHw = AJ, AK, AL
dE = math.sqrt(
math.pow(AJ, 2) + math.pow(AK, 2) + math.pow(AL, 2) + R_T * AK * AL
)
else:
# dE 1976
dL = L2 - L1
C1 = math.sqrt(math.pow(a1, 2) + math.pow(b1, 2))
C2 = math.sqrt(math.pow(a2, 2) + math.pow(b2, 2))
dC = C2 - C1
dH2 = math.pow(a1 - a2, 2) + math.pow(b1 - b2, 2) - math.pow(dC, 2)
dH = math.sqrt(dH2) if dH2 > 0 else 0
dLw, dCw, dHw = dL, dC, dH
dE = math.sqrt(math.pow(dL, 2) + math.pow(a1 - a2, 2) + math.pow(b1 - b2, 2))
return {
"E": dE,
"L": dL,
"C": dC,
"H": dH,
"a": a1 - a2,
"b": b1 - b2,
# Weighted
"Lw": dLw,
"Cw": dCw,
"Hw": dHw,
}
def XYZ2Lab_delta(
X1,
Y1,
Z1,
X2,
Y2,
Z2,
method="76",
whitepoint1="D50",
whitepoint2="D50",
whitepoint_reference="D50",
cat="Bradford",
):
whitepoint1 = get_whitepoint(whitepoint1)
whitepoint2 = get_whitepoint(whitepoint2)
whitepoint_reference = get_whitepoint(whitepoint_reference)
if whitepoint1 != whitepoint_reference:
X1, Y1, Z1 = adapt(X1, Y1, Z1, whitepoint1, whitepoint_reference, cat)
if whitepoint2 != whitepoint_reference:
X2, Y2, Z2 = adapt(X2, Y2, Z2, whitepoint2, whitepoint_reference, cat)
L1, a1, b1 = XYZ2Lab(X1, Y1, Z1, whitepoint_reference)
L2, a2, b2 = XYZ2Lab(X2, Y2, Z2, whitepoint_reference)
logging.debug(
"L*a*b*[1] %.4f %.4f %.4f L*a*b*[2] %.4f %.4f %.4f" % (L1, a1, b1, L2, a2, b2)
)
return delta(L1, a1, b1, L2, a2, b2, method)
def is_similar_matrix(matrix1, matrix2, digits=3):
"""Compare two matrices and check if they are the same
up to n digits after the decimal point"""
return matrix1.rounded(digits) == matrix2.rounded(digits)
def is_equal(values1, values2, quantizer=lambda v: round(v, 4)):
"""Compare two sets of values and check if they are the same
after applying quantization"""
return [quantizer(v) for v in values1] == [quantizer(v) for v in values2]
def four_color_matrix(
XrR,
YrR,
ZrR,
XrG,
YrG,
ZrG,
XrB,
YrB,
ZrB,
XrW,
YrW,
ZrW,
XmR,
YmR,
ZmR,
XmG,
YmG,
ZmG,
XmB,
YmB,
ZmB,
XmW,
YmW,
ZmW,
Y_correction=True,
):
"""Four-Color Matrix Method for Correction of Tristimulus Colorimeters
Based on paper published in Proc., IS&T Fifth Color Imaging Conference,
301-305 (1997) and IS&T Sixth Color Imaging Conference (1998).
"""
XYZ = locals()
xyz = {}
M = {}
k = {}
for s in "mr":
xyz[s] = {}
for color in "RGBW":
X, Y, Z = (XYZ[component + s + color] for component in "XYZ")
x, y = XYZ2xyY(X, Y, Z)[:2]
xyz[s][color] = x, y, 1 - x - y
M[s] = Matrix3x3([xyz[s][color] for color in "RGB"]).transposed()
k[s] = M[s].inverted() * xyz[s]["W"]
M[s + "RGB"] = M[s] * Matrix3x3(
[[k[s][0], 0, 0], [0, k[s][1], 0], [0, 0, k[s][2]]]
)
R = M["rRGB"] * M["mRGB"].inverted()
if Y_correction:
# The Y calibration factor kY is obtained as the ratio of the reference
# luminance value to the matrix-corrected Y value, as defined in
# Four-Color Matrix Method for Correction of Tristimulus Colorimeters –
# Part 2
MW = XmW, YmW, ZmW
kY = YrW / (R * MW)[1]
R[:] = [[kY * v for v in row] for row in R]
return R
def get_gamma(values, scale=1.0, vmin=0.0, vmax=1.0, average=True, least_squares=False):
"""Return average or least squares gamma or a list of gamma values"""
if least_squares:
logxy = []
logx2 = []
else:
gammas = []
vmin /= scale
vmax /= scale
for x, y in values:
x /= scale
y = (y / scale - vmin) * (vmax + vmin)
if 0 < x < 1 and y > 0:
if least_squares:
logxy.append(math.log(x) * math.log(y))
logx2.append(math.pow(math.log(x), 2))
else:
gammas.append(math.log(y) / math.log(x))
if average or least_squares:
if least_squares:
if not logxy or not logx2:
return 0
return sum(logxy) / sum(logx2)
else:
if not gammas:
return 0
return sum(gammas) / len(gammas)
else:
return gammas
def guess_cat(chad, whitepoint_source=None, whitepoint_destination=None):
"""Try and guess the chromatic adaption transform used in a chromatic
adaption matrix as found in an ICC profile's 'chad' tag"""
if chad == [[1, 0, 0], [0, 1, 0], [0, 0, 1]]:
# Cannot figure out CAT from identity chad
return
for cat in cat_matrices:
if is_similar_matrix(
(
chad
* cat_matrices[cat].inverted()
* LMS_wp_adaption_matrix(whitepoint_destination, whitepoint_source, cat)
).inverted(),
cat_matrices[cat],
2,
):
return cat
def CIEDCCT2xyY(T, scale=1.0):
"""Convert from CIE correlated daylight temperature to xyY.
T = temperature in Kelvin.
Based on formula from http://brucelindbloom.com/Eqn_T_to_xy.html
"""
if isinstance(T, str):
# Assume standard illuminant, e.g. "D50"
return XYZ2xyY(*get_standard_illuminant(T, scale=scale))
if not (2500 <= T <= 25000):
# Lower limit of 2500 is consistent with Argyll xicc/xspect.c daylight_il
# Actual usable lower limit lies at roughly 2244
return None
if T < 4000:
# Only accurate down to about 4000
warnings.warn("Daylight CCT is only accurate down to about 4000 K", Warning)
if T <= 7000:
xD = (
((-4.607 * math.pow(10, 9)) / math.pow(T, 3))
+ ((2.9678 * math.pow(10, 6)) / math.pow(T, 2))
+ ((0.09911 * math.pow(10, 3)) / T)
+ 0.244063
)
else:
xD = (
((-2.0064 * math.pow(10, 9)) / math.pow(T, 3))
+ ((1.9018 * math.pow(10, 6)) / math.pow(T, 2))
+ ((0.24748 * math.pow(10, 3)) / T)
+ 0.237040
)
yD = -3 * math.pow(xD, 2) + 2.87 * xD - 0.275
return xD, yD, scale
def CIEDCCT2XYZ(T, scale=1.0):
"""Convert from CIE correlated daylight temperature to XYZ.
T = temperature in Kelvin.
"""
xyY = CIEDCCT2xyY(T, scale)
if xyY:
return xyY2XYZ(*xyY)
# cLUT Input value tweaks to make Video encoded black land on
# 65 res grid nodes, which should help 33 and 17 res cLUTs too
def cLUT65_to_VidRGB(v, size=65):
if v <= 236.0 / 256:
# Scale up to near black point
return v * 256.0 / 255
else:
return 1 - (1 - v) * (1 - 236.0 / 255) / (1 - 236.0 / 256)
def VidRGB_to_cLUT65(v, size=65):
if v <= 236.0 / 255.0:
return v * 255.0 / 256
else:
return 1 - (1 - v) * (1 - 236.0 / 256) / (1 - 236.0 / 255)
def VidRGB_to_eeColor(v):
return v * 255.0 / 256.0
def eeColor_to_VidRGB(v):
return v * 256.0 / 255.0
def DIN992Lab(L99, a99, b99, kCH=1.0, kE=1.0):
C99, H99 = DIN99familyab2DIN99CH(a99, b99)
return DIN99familyLCH2Lab(
L99, C99, H99, 0, 105.51, 0.0158, 16, 0.7, 1 / (0.045 * kCH * kE), 0.045, kE, 0
)
def DIN99b2Lab(L99, a99, b99):
C99, H99 = DIN99familyab2DIN99CH(a99, b99)
return DIN99familyLCH2Lab(L99, C99, H99, 0, 303.67, 0.0039, 26, 0.83, 23, 0.075)
def DIN99o2Lab(L99, a99, b99, kCH=1.0, kE=1.0):
C99, H99 = DIN99familyab2DIN99CH(a99, b99)
return DIN99familyLCH2Lab(
L99, C99, H99, 0, 303.67, 0.0039, 26, 0.83, 1 / (0.0435 * kCH * kE), 0.075, kE
)
def DIN99bLCH2Lab(L99, C99, H99):
return DIN99familyLCH2Lab(L99, C99, H99, 0, 303.67, 0.0039, 26, 0.83, 23, 0.075)
def DIN99c2Lab(L99, a99, b99, whitepoint=None):
C99, H99 = DIN99familyab2DIN99CH(a99, b99)
return DIN99familyLCH2Lab(
L99, C99, H99, 0.1, 317.651, 0.0037, 0, 0.94, 23, 0.066, whitepoint
)
def DIN99d2Lab(L99, a99, b99, whitepoint=None):
C99, H99 = DIN99familyab2DIN99CH(a99, b99)
return DIN99familyLCH2Lab(
L99, C99, H99, 0.12, 325.221, 0.0036, 50, 1.14, 22.5, 0.06, whitepoint
)
def DIN99dLCH2Lab(L99, C99, H99, whitepoint=None):
return DIN99familyLCH2Lab(
L99, C99, H99, 0.12, 325.221, 0.0036, 50, 1.14, 22.5, 0.06, whitepoint
)
def DIN99familyLCH2Lab(
L99, C99, H99, x, l1, l2, deg, f1, c1, c2, whitepoint=None, kE=1.0, hdeg=None
):
G = (math.exp(C99 / c1) - 1) / c2
if hdeg is None:
hdeg = deg
H99 -= hdeg
L, a, b = DIN99familyLHCG2Lab(L99, H99, C99, G, kE, l1, l2, deg, f1)
if x:
whitepoint99d = XYZ2DIN99cdXYZ(*get_whitepoint(whitepoint, 100), x=x)
X, Y, Z = Lab2XYZ(L, a, b, whitepoint99d, scale=100)
X, Y, Z = DIN99cdXYZ2XYZ(X, Y, Z, x)
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return L, a, b
def DIN99cdXYZ2XYZ(X, Y, Z, x):
X = (X + x * Z) / (1 + x)
return X, Y, Z
def DIN99familyLHCG2Lab(L99, H99, C99, G, kE, l1, l2, deg, f1):
L = (math.exp((L99 * kE) / l1) - 1) / l2
h99ef = H99 * math.pi / 180
e = G * math.cos(h99ef)
f = G * math.sin(h99ef)
rad = deg * math.pi / 180
a = e * math.cos(rad) - (f / f1) * math.sin(rad)
b = e * math.sin(rad) + (f / f1) * math.cos(rad)
return L, a, b
def DIN99familyCH2DIN99ab(C99, H99):
h99ef = H99 * math.pi / 180
return C99 * math.cos(h99ef), C99 * math.sin(h99ef)
def DIN99familyab2DIN99CH(a99, b99):
C99 = math.sqrt(math.pow(a99, 2) + math.pow(b99, 2))
if a99 > 0:
if b99 >= 0:
h99ef = math.atan2(b99, a99)
else:
h99ef = 2 * math.pi + math.atan2(b99, a99)
elif a99 < 0:
h99ef = math.atan2(b99, a99)
else:
if b99 > 0:
h99ef = math.pi / 2
elif b99 < 0:
h99ef = (3 * math.pi) / 2
else:
h99ef = 0.0
H99 = h99ef * 180 / math.pi
return C99, H99
def HSI2RGB(H, S, I, scale=1.0):
H *= 360
h = H
if 120 < H <= 240:
h -= 120
elif 240 < H <= 360:
h -= 240
f = math.cos(math.radians(h)) / math.cos(math.radians(60 - h))
a = I + I * S * f
b = I + I * S * (1 - f)
c = I - I * S
if H <= 120:
R = a
G = b
B = c
elif H <= 240:
G = a
B = b
R = c
else:
B = a
R = b
G = c
return tuple(v * scale for v in (R, G, B))
def HSL2RGB(H, S, L, scale=1.0):
return tuple(v * scale for v in colorsys.hls_to_rgb(H, L, S))
def HSV2RGB(H, S, V, scale=1.0):
return tuple(v * scale for v in colorsys.hsv_to_rgb(H, S, V))
def get_DBL_MIN():
t = "0.0"
i = 10
n = 0
while True:
if i > 1:
i -= 1
else:
t += "0"
i = 9
if float(t + str(i)) == 0.0:
if n > 1:
break
n += 1
t += str(i)
i = 10
else:
if n > 1:
n -= 1
DBL_MIN = float(t + str(i))
return DBL_MIN
DBL_MIN = get_DBL_MIN()
def LCHab2Lab(L, C, H):
a = C * math.cos(H * math.pi / 180.0)
b = C * math.sin(H * math.pi / 180.0)
return L, a, b
def Lab2DIN99(L, a, b, kCH=1.0, kE=1.0):
L99, C99, H99 = Lab2DIN99LCH(L, a, b, kCH, kE)
a99, b99 = DIN99familyCH2DIN99ab(C99, H99)
return L99, a99, b99
def Lab2DIN99b(L, a, b, kE=1.0):
L99, C99, H99 = Lab2DIN99bLCH(L, a, b, kE)
a99, b99 = DIN99familyCH2DIN99ab(C99, H99)
return L99, a99, b99
def Lab2DIN99o(L, a, b, kCH=1.0, kE=1.0):
L99, C99, H99 = Lab2DIN99oLCH(L, a, b, kCH, kE)
a99, b99 = DIN99familyCH2DIN99ab(C99, H99)
return L99, a99, b99
def Lab2DIN99c(L, a, b, kE=1.0, whitepoint=None):
X, Y, Z = Lab2XYZ(L, a, b, whitepoint, scale=100)
return XYZ2DIN99c(X, Y, Z, whitepoint)
def Lab2DIN99d(L, a, b, kE=1.0, whitepoint=None):
X, Y, Z = Lab2XYZ(L, a, b, whitepoint, scale=100)
return XYZ2DIN99d(X, Y, Z, whitepoint)
def Lab2DIN99LCH(L, a, b, kCH=1.0, kE=1.0):
return Lab2DIN99familyLCH(
L, a, b, 105.51, 0.0158, 16, 0.7, 1 / (0.045 * kCH * kE), 0.045, kE, 0
)
def Lab2DIN99bLCH(L, a, b, kE=1.0):
return Lab2DIN99familyLCH(L, a, b, 303.67, 0.0039, 26, 0.83, 23, 0.075)
def Lab2DIN99oLCH(L, a, b, kCH=1.0, kE=1.0):
return Lab2DIN99familyLCH(
L, a, b, 303.67, 0.0039, 26, 0.83, 1 / (0.0435 * kCH * kE), 0.075, kE
)
def Lab2DIN99familyLCH(L, a, b, l1, l2, deg, f1, c1, c2, kE=1.0, hdeg=None):
L99, G, h99ef, rad = Lab2DIN99familyLGhrad(L, a, b, kE, l1, l2, deg, f1)
C99 = c1 * math.log(1 + c2 * G)
if hdeg is None:
hdeg = deg
H99 = h99ef * 180 / math.pi + hdeg
return L99, C99, H99
def Lab2DIN99familyLGhrad(L, a, b, kE, l1, l2, deg, f1):
L99 = (1.0 / kE) * l1 * math.log(1 + l2 * L)
rad = deg * math.pi / 180
if rad:
ar = math.cos(rad) # a rotation term
br = math.sin(rad) # b rotation term
e = a * ar + b * br
f = f1 * (b * ar - a * br)
else:
e = a
f = f1 * b
G = math.sqrt(math.pow(e, 2) + math.pow(f, 2))
h99ef = math.atan2(f, e)
return L99, G, h99ef, rad
def Lab2LCHab(L, a, b):
C = math.sqrt(math.pow(a, 2) + math.pow(b, 2))
H = 180.0 * math.atan2(b, a) / math.pi
if H < 0.0:
H += 360.0
return L, C, H
def Lab2Luv(L, a, b, whitepoint=None, scale=100):
X, Y, Z = Lab2XYZ(L, a, b, whitepoint, scale)
return XYZ2Luv(X, Y, Z, whitepoint)
def Lab2RGB(
L,
a,
b,
rgb_space=None,
scale=1.0,
round_=False,
clamp=True,
whitepoint=None,
whitepoint_source=None,
noadapt=False,
cat="Bradford",
):
"""Convert from Lab to RGB"""
X, Y, Z = Lab2XYZ(L, a, b, whitepoint)
if not noadapt:
rgb_space = get_rgb_space(rgb_space)
X, Y, Z = adapt(X, Y, Z, whitepoint_source, rgb_space[1], cat)
return XYZ2RGB(X, Y, Z, rgb_space, scale, round_, clamp)
def Lab2XYZ(L, a, b, whitepoint=None, scale=1.0):
"""Convert from Lab to XYZ.
The input L value needs to be in the nominal range [0.0, 100.0] and
other input values scaled accordingly.
The output XYZ values are in the nominal range [0.0, scale].
whitepoint can be string (e.g. "D50"), a tuple of XYZ coordinates or
color temperature as float or int. Defaults to D50 if not set.
Based on formula from http://brucelindbloom.com/Eqn_Lab_to_XYZ.html
"""
fy = (L + 16) / 116.0
fx = a / 500.0 + fy
fz = fy - b / 200.0
if math.pow(fx, 3.0) > LSTAR_E:
xr = math.pow(fx, 3.0)
else:
xr = (116.0 * fx - 16) / LSTAR_K
if L > LSTAR_K * LSTAR_E:
yr = math.pow((L + 16) / 116.0, 3.0)
else:
yr = L / LSTAR_K
if math.pow(fz, 3.0) > LSTAR_E:
zr = math.pow(fz, 3.0)
else:
zr = (116.0 * fz - 16) / LSTAR_K
Xr, Yr, Zr = get_whitepoint(whitepoint, scale)
X = xr * Xr
Y = yr * Yr
Z = zr * Zr
return X, Y, Z
def Lab2xyY(L, a, b, whitepoint=None, scale=1.0):
X, Y, Z = Lab2XYZ(L, a, b, whitepoint, scale)
return XYZ2xyY(X, Y, Z, whitepoint)
def Luv2LCHuv(L, u, v):
C = math.sqrt(math.pow(u, 2) + math.pow(v, 2))
H = 180.0 * math.atan2(v, u) / math.pi
if H < 0.0:
H += 360.0
return L, C, H
def Luv2RGB(
L, u, v, rgb_space=None, scale=1.0, round_=False, clamp=True, whitepoint=None
):
"""Convert from Luv to RGB"""
X, Y, Z = Luv2XYZ(L, u, v, whitepoint)
return XYZ2RGB(X, Y, Z, rgb_space, scale, round_, clamp)
def u_v_2xy(u, v):
"""Convert from u'v' to xy"""
x = (9.0 * u) / (6 * u - 16 * v + 12)
y = (4 * v) / (6 * u - 16 * v + 12)
return x, y
def Luv2XYZ(L, u, v, whitepoint=None, scale=1.0):
"""Convert from Luv to XYZ"""
Xr, Yr, Zr = get_whitepoint(whitepoint)
Y = math.pow((L + 16.0) / 116.0, 3) if L > LSTAR_K * LSTAR_E else L / LSTAR_K
uo = (4.0 * Xr) / (Xr + 15.0 * Yr + 3.0 * Zr)
vo = (9.0 * Yr) / (Xr + 15.0 * Yr + 3.0 * Zr)
a = (1.0 / 3.0) * (((52.0 * L) / (u + 13 * L * uo)) - 1)
b = -5.0 * Y
c = -(1.0 / 3.0)
d = Y * (((39.0 * L) / (v + 13 * L * vo)) - 5)
X = (d - b) / (a - c)
Z = X * a + b
return tuple([v * scale for v in (X, Y, Z)])
def RGB2HSI(R, G, B, scale=1.0):
I = (R + G + B) / 3.0
if I:
S = 1 - min(R, G, B) / I
else:
S = 0
if not R == G == B:
H = math.atan2(math.sqrt(3) * (G - B), 2 * R - G - B) / math.pi / 2
if H < 0:
H += 1.0
if H > 1:
H -= 1.0
else:
H = 0
return H * scale, S * scale, I * scale
def RGB2HSL(R, G, B, scale=1.0):
H, L, S = colorsys.rgb_to_hls(R, G, B)
return tuple(v * scale for v in (H, S, L))
def RGB2HSV(R, G, B, scale=1.0):
return tuple(v * scale for v in colorsys.rgb_to_hsv(R, G, B))
def LinearRGB2ICtCp(R, G, B, oetf=lambda FD: specialpow(FD, 1.0 / -2084)):
"""Rec. 2020 linear RGB to non-linear ICtCp"""
# http://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf
LMS = LinearRGB2LMS_matrix * (R, G, B)
L_, M_, S_ = (oetf(FD) for FD in LMS)
I, Ct, Cp = L_M_S_2ICtCp_matrix * (L_, M_, S_)
return I, Ct, Cp
def ICtCp2LinearRGB(I, Ct, Cp, eotf=lambda v: specialpow(v, -2084)):
"""Non-linear ICtCp to Rec. 2020 linear RGB"""
# http://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf
L_M_S_ = ICtCp2L_M_S__matrix * (I, Ct, Cp)
L, M, S = (eotf(v) for v in L_M_S_)
R, G, B = LMS2LinearRGB_matrix * (L, M, S)
return R, G, B
def RGB2ICtCp(
R,
G,
B,
rgb_space="Rec. 2020",
eotf=lambda v: specialpow(v, -2084),
clamp=False,
oetf=lambda E: specialpow(E, 1.0 / -2084),
):
"""R'G'B' to ICtCp"""
X, Y, Z = RGB2XYZ(R, G, B, rgb_space, eotf=eotf)
return XYZ2ICtCp(X, Y, Z, clamp, oetf)
def ICtCp2RGB(
I,
Ct,
Cp,
rgb_space="Rec. 2020",
eotf=lambda v: specialpow(v, -2084),
clamp=False,
oetf=lambda E: specialpow(E, 1.0 / -2084),
):
"""ICtCp to R'G'B'"""
X, Y, Z = ICtCp2XYZ(I, Ct, Cp, eotf)
return XYZ2RGB(X, Y, Z, rgb_space, clamp=clamp, oetf=oetf)
def XYZ2ICtCp(X, Y, Z, clamp=False, oetf=lambda E: specialpow(E, 1.0 / -2084)):
R, G, B = XYZ2RGB(X, Y, Z, "Rec. 2020", clamp=clamp, oetf=lambda v: v)
return LinearRGB2ICtCp(R, G, B, oetf)
def ICtCp2XYZ(I, Ct, Cp, eotf=lambda v: specialpow(v, -2084)):
R, G, B = ICtCp2LinearRGB(I, Ct, Cp, eotf)
return RGB2XYZ(R, G, B, "Rec. 2020", eotf=lambda v: v)
def RGB2Lab(R, G, B, rgb_space=None, whitepoint=None, noadapt=False, cat="Bradford"):
X, Y, Z = RGB2XYZ(R, G, B, rgb_space, scale=100)
if not noadapt:
rgb_space = get_rgb_space(rgb_space)
X, Y, Z = adapt(X, Y, Z, rgb_space[1], whitepoint, cat)
return XYZ2Lab(X, Y, Z, whitepoint=whitepoint)
def RGB2XYZ(R, G, B, rgb_space=None, scale=1.0, eotf=None):
"""Convert from RGB to XYZ.
Use optional RGB colorspace definition, which can be a named colorspace
(e.g. "CIE RGB") or must be a tuple in the following format:
(gamma, whitepoint, red, green, blue)
whitepoint can be a string (e.g. "D50"), a tuple of XYZ coordinates,
or a color temperatur in degrees K (float or int). Gamma should be a float.
The RGB primaries red, green, blue should be lists or tuples of xyY
coordinates (only x and y will be used, so Y can be zero or None).
If no colorspace is given, it defaults to sRGB.
Based on formula from http://brucelindbloom.com/Eqn_RGB_to_XYZ.html
Implementation Notes:
1. The transformation matrix [M] is calculated from the RGB reference
primaries as discussed here:
http://brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html
2. The gamma values for many common RGB color spaces may be found here:
http://brucelindbloom.com/WorkingSpaceInfo.html#Specifications
3. Your input RGB values may need to be scaled before using the above.
For example, if your values are in the range [0, 255], you must first
divide each by 255.0.
4. The output XYZ values are in the nominal range [0.0, scale].
5. The XYZ values will be relative to the same reference white as the
RGB system. If you want XYZ relative to a different reference white,
you must apply a chromatic adaptation transform
[http://brucelindbloom.com/Eqn_ChromAdapt.html] to the XYZ color to
convert it from the reference white of the RGB system to the desired
reference white.
6. Sometimes the more complicated special case of sRGB shown above is
replaced by a "simplified" version using a straight gamma function
with gamma = 2.2.
"""
trc, whitepoint, rxyY, gxyY, bxyY, matrix = get_rgb_space(rgb_space)
RGB = [R, G, B]
is_trc = isinstance(trc, (list, tuple))
for i, v in enumerate(RGB):
if is_trc:
gamma = trc[i]
else:
gamma = trc
if eotf:
RGB[i] = eotf(v)
elif isinstance(gamma, (list, tuple)):
RGB[i] = interp(
v, [n / float(len(gamma) - 1) for n in range(len(gamma))], gamma
)
else:
RGB[i] = specialpow(v, gamma)
XYZ = matrix * RGB
return tuple(v * scale for v in XYZ)
def RGB2xyY(R, G, B, rgb_space=None, scale=1.0, eotf=None):
"""Convert RGB to xyY"""
return XYZ2xyY(
*RGB2XYZ(R, G, B, rgb_space, scale, eotf),
whitepoint=RGB2XYZ(1, 1, 1, rgb_space, scale, eotf),
)
def RGB2YCbCr(R, G, B, rgb_space="NTSC 1953", bits=8, fullrange=False):
"""R'G'B' to Y'CbCr quantized to n bits"""
return YPbPr2YCbCr(*RGB2YPbPr(R, G, B, rgb_space), bits=bits, fullrange=fullrange)
def RGB2YPbPr(R, G, B, rgb_space="NTSC 1953"):
"""R'G'B' to Y'PbPr"""
return RGB2YPbPr_matrix(rgb_space) * (R, G, B)
def RGB2YPbPr_matrix(rgb_space="NTSC 1953"):
(trc, whitepoint, (rx, ry, rY), (gx, gy, gY), (bx, by, bY), matrix) = get_rgb_space(
rgb_space
)
if matrix == get_rgb_space("NTSC 1953")[-1]:
ndigits = 3
else:
ndigits = 4
KR = round((matrix * (1, 0, 0))[1], ndigits)
KB = round((matrix * (0, 0, 1))[1], ndigits)
KG = 1.0 - KR - KB
Pb_scale = (1 - KB) / 0.5
Pr_scale = (1 - KR) / 0.5
return Matrix3x3(
[
[KR, KG, KB],
[-KR / Pb_scale, -KG / Pb_scale, 0.5],
[0.5, -KG / Pr_scale, -KB / Pr_scale],
]
)
def YCbCr2YPbPr(Y, Cb, Cr, bits=8, fullrange=False):
"""Y'CbCr to Y'PbPr"""
bitlevels = 2**bits
if not fullrange:
Yblack = 16
Ywhite = 235
Cmax = 240
else:
Yblack = 0
Ywhite = 255
Cmax = 255
Yscale = (Ywhite - Yblack) / 256.0 * bitlevels
Y -= Yblack / 256.0 * bitlevels
Y /= Yscale
Cneutral = 128 / 256.0 * bitlevels
Cscale = (Cmax - Yblack) / 256.0 * bitlevels
Pb = Cb - Cneutral
Pb /= Cscale
Pr = Cr - Cneutral
Pr /= Cscale
return Y, Pb, Pr
def YCbCr2RGB(
Y,
Cb,
Cr,
rgb_space="NTSC 1953",
bits=8,
fullrange=False,
scale=1.0,
round_=False,
clamp=True,
):
"""Y'CbCr to R'G'B'"""
Y, Pb, Pr = YCbCr2YPbPr(Y, Cb, Cr, bits, fullrange)
return YPbPr2RGB(Y, Pb, Pr, rgb_space, scale, round_, clamp)
def YPbPr2RGB(Y, Pb, Pr, rgb_space="NTSC 1953", scale=1.0, round_=False, clamp=True):
"""Y'PbPr to R'G'B'"""
RGB = RGB2YPbPr_matrix(rgb_space).inverted() * (Y, Pb, Pr)
for i in range(3):
if clamp:
RGB[i] = min(1.0, max(0.0, RGB[i]))
RGB[i] *= scale
if round_ is not False:
RGB[i] = round(RGB[i], round_)
return RGB
def YPbPr2YCbCr(Y, Pb, Pr, bits=8, fullrange=False):
"""Y'PbPr to Y'CbCr quantized to n bits"""
bitlevels = 2**bits
if not fullrange:
Yblack = 16
Ywhite = 235
Cmax = 240
else:
Yblack = 0
Ywhite = 255
Cmax = 255
Yscale = (Ywhite - Yblack) / 256.0 * bitlevels
Y = Yblack / 256.0 * bitlevels + Yscale * Y
Cneutral = 128 / 256.0 * bitlevels
Cscale = (Cmax - Yblack) / 256.0 * bitlevels
Cb = Cneutral + Cscale * Pb
Cr = Cneutral + Cscale * Pr
# In fullrange mode, Cb and Cr can reach 255.5, so we need to clamp
# Follow ITU-T Rec. T.871 (JPEG)
Y, Cb, Cr = (min(max(int(round(v)), 0), bitlevels - 1) for v in (Y, Cb, Cr))
return Y, Cb, Cr
def RGBsaturation(R, G, B, saturation, rgb_space=None):
"""(De)saturate a RGB color in CIE xy and return the RGB and xyY values"""
whitepoint = RGB2XYZ(1, 1, 1, rgb_space=rgb_space)
X, Y, Z = RGB2XYZ(R, G, B, rgb_space=rgb_space)
XYZ, xyY = XYZsaturation(X, Y, Z, saturation, whitepoint)
return XYZ2RGB(*XYZ, rgb_space=rgb_space), xyY
def XYZsaturation(X, Y, Z, saturation, whitepoint=None):
"""(De)saturate a XYZ color in CIE xy and return the RGB and xyY values"""
wx, wy, wY = XYZ2xyY(*get_whitepoint(whitepoint))
x, y, Y = XYZ2xyY(X, Y, Z)
x, y, Y = xyYsaturation(x, y, Y, wx, wy, saturation)
return xyY2XYZ(x, y, Y), (x, y, Y)
def xyYsaturation(x, y, Y, wx, wy, saturation):
"""(De)saturate a color in CIE xy and return the RGB and xyY values"""
return wx + (x - wx) * saturation, wy + (y - wy) * saturation, Y
def convert_range(v, oldmin=0, oldmax=1, newmin=0, newmax=1):
oldrange = float(oldmax - oldmin)
newrange = newmax - newmin
return (((v - oldmin) * newrange) / oldrange) + newmin
def rgb_to_xyz_matrix(rx, ry, gx, gy, bx, by, whitepoint=None, scale=1.0):
"""Create and return an RGB to XYZ matrix."""
whitepoint = get_whitepoint(whitepoint, scale)
Xr, Yr, Zr = xyY2XYZ(rx, ry, scale)
Xg, Yg, Zg = xyY2XYZ(gx, gy, scale)
Xb, Yb, Zb = xyY2XYZ(bx, by, scale)
Sr, Sg, Sb = (
Matrix3x3(((Xr, Xg, Xb), (Yr, Yg, Yb), (Zr, Zg, Zb))).inverted() * whitepoint
)
return Matrix3x3(
(
(Sr * Xr, Sg * Xg, Sb * Xb),
(Sr * Yr, Sg * Yg, Sb * Yb),
(Sr * Zr, Sg * Zg, Sb * Zb),
)
)
def find_primaries_wp_xy_rgb_space_name(xy, rgb_space_names=None, digits=4):
"""Given primaries and whitepoint xy as list, find matching RGB space by
comparing primaries and whitepoint (fuzzy match rounded to n digits) and
return its name (or None if no match)
"""
for _i, rgb_space_name in enumerate(rgb_space_names or iter(rgb_spaces.keys())):
if not rgb_space_names and rgb_space_name in (
"ECI RGB",
"ECI RGB v2",
"SMPTE 240M",
"sRGB",
):
# Skip in favor of base color space (i.e. NTSC 1953, SMPTE-C and
# Rec. 709)
continue
if get_rgb_space_primaries_wp_xy(rgb_space_name, digits)[: len(xy)] == xy:
return rgb_space_name
def get_rgb_space(rgb_space=None, scale=1.0):
"""Return gamma, whitepoint, primaries and RGB -> XYZ matrix"""
if not rgb_space:
rgb_space = "sRGB"
if isinstance(rgb_space, str):
rgb_space = rgb_spaces[rgb_space]
cachehash = tuple(map(id, rgb_space[:5])), scale
if cachehash in get_rgb_space.cache:
return get_rgb_space.cache[cachehash]
gamma = rgb_space[0] or rgb_spaces["sRGB"][0]
whitepoint = get_whitepoint(rgb_space[1] or rgb_spaces["sRGB"][1], scale)
rx, ry, rY = rxyY = rgb_space[2] or rgb_spaces["sRGB"][2]
gx, gy, gY = gxyY = rgb_space[3] or rgb_spaces["sRGB"][3]
bx, by, bY = bxyY = rgb_space[4] or rgb_spaces["sRGB"][4]
matrix = rgb_to_xyz_matrix(rx, ry, gx, gy, bx, by, whitepoint, scale)
rgb_space = gamma, whitepoint, rxyY, gxyY, bxyY, matrix
get_rgb_space.cache[cachehash] = rgb_space
return rgb_space
def get_rgb_space_primaries_wp_xy(rgb_space=None, digits=4):
"""Given RGB space, get primaries and whitepoint xy, optionally rounded to n
digits (default 4)
"""
rgb_space = get_rgb_space(rgb_space)
xy = []
for i in range(3):
xy.extend(rgb_space[2:][i][:2])
xy.extend(XYZ2xyY(*get_whitepoint(rgb_space[1]))[:2])
if digits:
xy = [round(v, digits) for v in xy]
return xy
get_rgb_space.cache = {}
def get_standard_illuminant(
illuminant_name="D50",
priority=("ISO 11664-2:2007", "ICC", "ASTM E308-01", "Wyszecki & Stiles", None),
scale=1.0,
):
"""Return a standard illuminant as XYZ coordinates."""
cachehash = illuminant_name, tuple(priority), scale
if cachehash in get_standard_illuminant.cache:
return get_standard_illuminant.cache[cachehash]
illuminant = None
for standard_name in priority:
if standard_name not in standard_illuminants:
raise ValueError('Unrecognized standard "%s"' % standard_name)
illuminant = standard_illuminants.get(standard_name).get(
illuminant_name.upper(), None
)
if illuminant:
illuminant = illuminant["X"] * scale, 1.0 * scale, illuminant["Z"] * scale
get_standard_illuminant.cache[cachehash] = illuminant
return illuminant
raise ValueError('Unrecognized illuminant "%s"' % illuminant_name)
get_standard_illuminant.cache = {}
def get_whitepoint(whitepoint=None, scale=1.0, planckian=False):
"""Return a whitepoint as XYZ coordinates"""
if isinstance(whitepoint, (list, tuple)):
return whitepoint
if not whitepoint:
whitepoint = "D50"
cachehash = whitepoint, scale, planckian
if cachehash in get_whitepoint.cache:
return get_whitepoint.cache[cachehash]
if isinstance(whitepoint, str):
whitepoint = get_standard_illuminant(whitepoint)
elif isinstance(whitepoint, (float, int)):
cct = whitepoint
if planckian:
whitepoint = planckianCT2XYZ(cct)
if not whitepoint:
raise ValueError(
"Planckian color temperature %s out of range (1667, 25000)" % cct
)
else:
whitepoint = CIEDCCT2XYZ(cct)
if not whitepoint:
raise ValueError(
"Daylight color temperature %s out of range (2500, 25000)" % cct
)
if scale > 1.0 and whitepoint[1] == 100:
scale = 1.0
whitepoint = tuple(v * scale for v in whitepoint)
get_whitepoint.cache[cachehash] = whitepoint
return whitepoint
get_whitepoint.cache = {}
def make_monotonically_increasing(iterable, passes=0, window=None):
"""Given an iterable or sequence, make the values strictly monotonically
increasing (no repeated successive values) by linear interpolation.
If iterable is a dict, keep the keys of the original.
If passes is non-zero, apply moving average smoothing to the values
before making them monotonically increasing.
"""
if isinstance(iterable, dict):
keys = list(iterable.keys())
values = list(iterable.values())
else:
if hasattr(iterable, "next"):
values = list(iterable)
else:
values = iterable
keys = range(len(values))
if passes:
values = smooth_avg(values, passes, window)
sequence = list(zip(keys, values))
numvalues = len(sequence)
s_new = []
y_min = sequence[0][1]
while sequence:
x, y = sequence.pop()
if (not s_new or y < s_new[0][1]) and (y > y_min or not sequence):
s_new.insert(0, (x, y))
sequence = s_new
# Interpolate to original size
x_new = [item[0] for item in sequence]
y = [item[1] for item in sequence]
values = []
for i in range(numvalues):
values.append(interp(i, x_new, y))
if isinstance(iterable, dict):
# Add in original keys
return iterable.__class__(list(zip(keys, values)))
return values
def matmul(XYZ, m1, m2):
XYZ = m1 * (m2 * XYZ)
return XYZ
def planckianCT2XYZ(T, scale=1.0):
"""Convert from planckian temperature to XYZ.
T = temperature in Kelvin.
"""
xyY = planckianCT2xyY(T, scale)
if xyY:
return xyY2XYZ(*xyY)
def planckianCT2xyY(T, scale=1.0):
"""Convert from planckian temperature to xyY.
T = temperature in Kelvin.
Formula from http://en.wikipedia.org/wiki/Planckian_locus
"""
if 1667 <= T <= 4000:
x = (
-0.2661239 * (math.pow(10, 9) / math.pow(T, 3))
- 0.2343580 * (math.pow(10, 6) / math.pow(T, 2))
+ 0.8776956 * (math.pow(10, 3) / T)
+ 0.179910
)
elif 4000 <= T <= 25000:
x = (
-3.0258469 * (math.pow(10, 9) / math.pow(T, 3))
+ 2.1070379 * (math.pow(10, 6) / math.pow(T, 2))
+ 0.2226347 * (math.pow(10, 3) / T)
+ 0.24039
)
else:
return None
if 1667 <= T <= 2222:
y = (
-1.1063814 * math.pow(x, 3)
- 1.34811020 * math.pow(x, 2)
+ 2.18555832 * x
- 0.20219683
)
elif 2222 <= T <= 4000:
y = (
-0.9549476 * math.pow(x, 3)
- 1.37418593 * math.pow(x, 2)
+ 2.09137015 * x
- 0.16748867
)
elif 4000 <= T <= 25000:
y = (
3.0817580 * math.pow(x, 3)
- 5.87338670 * math.pow(x, 2)
+ 3.75112997 * x
- 0.37001483
)
return x, y, scale
def xyY2CCT(x, y, Y=1.0):
"""Convert from xyY to correlated color temperature."""
return XYZ2CCT(*xyY2XYZ(x, y, Y))
def xyY2Lab(x, y, Y=1.0, whitepoint=None):
X, Y, Z = xyY2XYZ(x, y, Y)
return XYZ2Lab(X, Y, Z, whitepoint)
def xyY2Lu_v_(x, y, Y=1.0, whitepoint=None):
X, Y, Z = xyY2XYZ(x, y, Y)
return XYZ2Lu_v_(X, Y, Z, whitepoint)
def xyY2RGB(x, y, Y, rgb_space=None, scale=1.0, round_=False, clamp=True):
"""Convert from xyY to RGB"""
X, Y, Z = xyY2XYZ(x, y, Y)
return XYZ2RGB(X, Y, Z, rgb_space, scale, round_, clamp)
def xyY2XYZ(x, y, Y=1.0):
"""Convert from xyY to XYZ.
Based on formula from http://brucelindbloom.com/Eqn_xyY_to_XYZ.html
Implementation Notes:
1. Watch out for the case where y = 0. In that case, X = Y = Z = 0 is
returned.
2. The output XYZ values are in the nominal range [0.0, Y[xyY]].
"""
if y == 0:
return 0, 0, 0
X = float(x * Y) / y
Z = float((1 - x - y) * Y) / y
return X, Y, Z
def LERP(a, b, c):
"""LERP(a,b,c) = linear interpolation macro.
Is 'a' when c == 0.0 and 'b' when c == 1.0
"""
return (b - a) * c + a
def XYZ2CCT(X, Y, Z):
"""Convert from XYZ to correlated color temperature.
Derived from ANSI C implementation by Bruce Lindbloom
http://brucelindbloom.com/Eqn_XYZ_to_T.html
Return: correlated color temperature if successful, else None.
Description:
This is an implementation of Robertson's method of computing the
correlated color temperature of an XYZ color. It can compute correlated
color temperatures in the range [1666.7K, infinity].
Reference:
"Color Science: Concepts and Methods, Quantitative Data and Formulae",
Second Edition, Gunter Wyszecki and W. S. Stiles, John Wiley & Sons,
1982, pp. 227, 228.
"""
rt = [ # reciprocal temperature (K)
DBL_MIN,
10.0e-6,
20.0e-6,
30.0e-6,
40.0e-6,
50.0e-6,
60.0e-6,
70.0e-6,
80.0e-6,
90.0e-6,
100.0e-6,
125.0e-6,
150.0e-6,
175.0e-6,
200.0e-6,
225.0e-6,
250.0e-6,
275.0e-6,
300.0e-6,
325.0e-6,
350.0e-6,
375.0e-6,
400.0e-6,
425.0e-6,
450.0e-6,
475.0e-6,
500.0e-6,
525.0e-6,
550.0e-6,
575.0e-6,
600.0e-6,
]
uvt = [
[0.18006, 0.26352, -0.24341],
[0.18066, 0.26589, -0.25479],
[0.18133, 0.26846, -0.26876],
[0.18208, 0.27119, -0.28539],
[0.18293, 0.27407, -0.30470],
[0.18388, 0.27709, -0.32675],
[0.18494, 0.28021, -0.35156],
[0.18611, 0.28342, -0.37915],
[0.18740, 0.28668, -0.40955],
[0.18880, 0.28997, -0.44278],
[0.19032, 0.29326, -0.47888],
[0.19462, 0.30141, -0.58204],
[0.19962, 0.30921, -0.70471],
[0.20525, 0.31647, -0.84901],
[0.21142, 0.32312, -1.0182],
[0.21807, 0.32909, -1.2168],
[0.22511, 0.33439, -1.4512],
[0.23247, 0.33904, -1.7298],
[0.24010, 0.34308, -2.0637],
[0.24792, 0.34655, -2.4681], # Note: 0.24792 is a corrected value
# for the error found in W&S as 0.24702
[0.25591, 0.34951, -2.9641],
[0.26400, 0.35200, -3.5814],
[0.27218, 0.35407, -4.3633],
[0.28039, 0.35577, -5.3762],
[0.28863, 0.35714, -6.7262],
[0.29685, 0.35823, -8.5955],
[0.30505, 0.35907, -11.324],
[0.31320, 0.35968, -15.628],
[0.32129, 0.36011, -23.325],
[0.32931, 0.36038, -40.770],
[0.33724, 0.36051, -116.45],
]
if (X < 1.0e-20 and Y < 1.0e-20 and Z < 1.0e-20) or X + 15.0 * Y + 3.0 * Z == 0:
return None # protect against possible divide-by-zero failure
us = (4.0 * X) / (X + 15.0 * Y + 3.0 * Z)
vs = (6.0 * Y) / (X + 15.0 * Y + 3.0 * Z)
dm = 0.0
i = 0
while i < 31:
di = (vs - uvt[i][1]) - uvt[i][2] * (us - uvt[i][0])
if i > 0 and ((di < 0.0 <= dm) or (di >= 0.0 > dm)):
break # found lines bounding (us, vs) : i-1 and i
dm = di
i += 1
if i == 31:
# bad XYZ input, color temp would be less than minimum of 1666.7
# degrees, or too far towards blue
return None
di = di / math.sqrt(1.0 + uvt[i][2] * uvt[i][2])
dm = dm / math.sqrt(1.0 + uvt[i - 1][2] * uvt[i - 1][2])
p = dm / (dm - di) # p = interpolation parameter, 0.0 : i-1, 1.0 : i
p = 1.0 / (LERP(rt[i - 1], rt[i], p))
return p
def XYZ2DIN99(X, Y, Z, whitepoint=None):
X, Y, Z = (max(v, 0) for v in (X, Y, Z))
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return Lab2DIN99(L, a, b)
def XYZ2DIN99b(X, Y, Z, whitepoint=None):
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return Lab2DIN99b(L, a, b)
def XYZ2DIN99o(X, Y, Z, whitepoint=None):
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return Lab2DIN99o(L, a, b)
def XYZ2DIN99bLCH(X, Y, Z, whitepoint=None):
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return Lab2DIN99bLCH(L, a, b)
def XYZ2DIN99oLCH(X, Y, Z, whitepoint=None):
L, a, b = XYZ2Lab(X, Y, Z, whitepoint)
return Lab2DIN99oLCH(L, a, b)
def XYZ2DIN99c(X, Y, Z, whitepoint=None):
return XYZ2DIN99cd(X, Y, Z, 0.1, 317.651, 0.0037, 0, 0.94, 23, 0.066, whitepoint)
def XYZ2DIN99cd(X, Y, Z, x, l1, l2, deg, f1, c1, c2, whitepoint=None):
L99, C99, H99 = XYZ2DIN99cdLCH(X, Y, Z, x, l1, l2, deg, f1, c1, c2, whitepoint)
a99, b99 = DIN99familyCH2DIN99ab(C99, H99)
return L99, a99, b99
def XYZ2DIN99cdLCH(X, Y, Z, x, l1, l2, deg, f1, c1, c2, whitepoint=None):
X, Y, Z = XYZ2DIN99cdXYZ(X, Y, Z, x)
whitepoint99d = XYZ2DIN99cdXYZ(*get_whitepoint(whitepoint, 100), x=x)
L, a, b = XYZ2Lab(X, Y, Z, whitepoint99d)
return Lab2DIN99familyLCH(L, a, b, l1, l2, deg, f1, c1, c2)
def XYZ2DIN99cdXYZ(X, Y, Z, x):
X = (1 + x) * X - x * Z
return X, Y, Z
def XYZ2DIN99d(X, Y, Z, whitepoint=None):
return XYZ2DIN99cd(X, Y, Z, 0.12, 325.221, 0.0036, 50, 1.14, 22.5, 0.06, whitepoint)
def XYZ2DIN99dLCH(X, Y, Z, whitepoint=None):
return XYZ2DIN99cdLCH(
X, Y, Z, 0.12, 325.221, 0.0036, 50, 1.14, 22.5, 0.06, whitepoint
)
def XYZ2IPT(X, Y, Z):
XYZ2LMS_matrix = get_cat_matrix("IPT")
LMS = XYZ2LMS_matrix * (X, Y, Z)
for i, component in enumerate(LMS):
if component >= 0:
LMS[i] **= 0.43
else:
LMS[i] = -((-component) ** 0.43)
return LMS2IPT_matrix * LMS
def IPT2XYZ(I, P, T):
XYZ2LMS_matrix = get_cat_matrix("IPT")
LMS2XYZ_matrix = XYZ2LMS_matrix.inverted()
LMS = IPT2LMS_matrix * (I, P, T)
for i, component in enumerate(LMS):
if component >= 0:
LMS[i] **= 1 / 0.43
else:
LMS[i] = -((-component) ** (1 / 0.43))
return LMS2XYZ_matrix * LMS
def XYZ2Lab(X, Y, Z, whitepoint=None, scale=100):
"""Convert from XYZ to Lab.
The input Y value needs to be in the nominal range [0.0, scale] and
other input values scaled accordingly.
The output L value is in the nominal range [0.0, 100.0].
whitepoint can be string (e.g. "D50"), a tuple of XYZ coordinates or
color temperature as float or int. Defaults to D50 if not set.
Based on formula from http://brucelindbloom.com/Eqn_XYZ_to_Lab.html
"""
Xr, Yr, Zr = get_whitepoint(whitepoint, scale)
xr = X / Xr
yr = Y / Yr
zr = Z / Zr
fx = cbrt(xr) if xr > LSTAR_E else (LSTAR_K * xr + 16) / 116.0
fy = cbrt(yr) if yr > LSTAR_E else (LSTAR_K * yr + 16) / 116.0
fz = cbrt(zr) if zr > LSTAR_E else (LSTAR_K * zr + 16) / 116.0
L = 116 * fy - 16
a = 500 * (fx - fy)
b = 200 * (fy - fz)
return L, a, b
def XYZ2Lpt(X, Y, Z, whitepoint=None):
"""Convert from XYZ to Lpt
This is a modern update to L*a*b*, based on IPT space.
Differences to L*a*b* and IPT:
- Using inverse CIE 2012 2degree LMS to XYZ matrix instead of
Hunt-Pointer-Estevez Von Kries chromatic adapation in LMS space.
- Using L* compression rather than IPT pure 0.43 power.
- Tweaked LMS' to IPT matrix to account for change in XYZ to LMS matrix.
- Output scaled to L*a*b* type ranges, to maintain 1 JND scale.
- L* value is not a non-linear Y value.
The input Y value needs to be in the nominal range [0.0, 100.0] and
other input values scaled accordingly.
The output L value is in the nominal range [0.0, 100.0].
whitepoint can be string (e.g. "D50"), a tuple of XYZ coordinates or
color temperature as float or int. Defaults to D50 if not set.
"""
# Adapted from Argyll/icc/icc.c
xyz2lms = get_cat_matrix("CIE2012_2")
wlms = xyz2lms * get_whitepoint(whitepoint, 100)
lms = xyz2lms * (X, Y, Z)
for j in range(3):
lms[j] /= wlms[j]
if lms[j] > 0.008856451586:
lms[j] = pow(lms[j], 1.0 / 3.0)
else:
lms[j] = 7.787036979 * lms[j] + 16.0 / 116.0
lms[j] = 116.0 * lms[j] - 16.0
return LMS2Lpt_matrix * lms
def Lpt2XYZ(L, p, t, whitepoint=None, scale=1.0):
"""Convert from Lpt to XYZ
This is a modern update to L*a*b*, based on IPT space.
Differences to L*a*b* and IPT:
- Using inverse CIE 2012 2degree LMS to XYZ matrix instead of
Hunt-Pointer-Estevez Von Kries chromatic adapation in LMS space.
- Using L* compression rather than IPT pure 0.43 power.
- Tweaked LMS' to IPT matrix to account for change in XYZ to LMS matrix.
- Output scaled to L*a*b* type ranges, to maintain 1 JND scale.
- L* value is not a non-linear Y value.
The input L* value needs to be in the nominal range [0.0, 100.0] and
other input values scaled accordingly.
The output XYZ values are in the nominal range [0.0, 1.0].
whitepoint can be string (e.g. "D50"), a tuple of XYZ coordinates or
color temperature as float or int. Defaults to D50 if not set.
"""
# Adapted from Argyll/icc/icc.c
xyz2lms = get_cat_matrix("CIE2012_2")
lms2xyz = xyz2lms.inverted()
wlms = xyz2lms * get_whitepoint(whitepoint, scale)
lms = Lpt2LMS_matrix * (L, p, t)
for j in range(3):
lms[j] = (lms[j] + 16.0) / 116.0
if lms[j] > 24.0 / 116.0:
lms[j] = pow(lms[j], 3.0)
else:
lms[j] = (lms[j] - 16.0 / 116.0) / 7.787036979
lms[j] *= wlms[j]
return lms2xyz * lms
def XYZ2Lu_v_(X, Y, Z, whitepoint=None):
"""Convert from XYZ to CIE Lu'v'"""
if X + Y + Z == 0:
# We can't check for X == Y == Z == 0 because they may actually add up
# to 0, thus resulting in ZeroDivisionError later
L, u_, v_ = XYZ2Lu_v_(*get_whitepoint(whitepoint))
return 0.0, u_, v_
Xr, Yr, Zr = get_whitepoint(whitepoint, 100)
yr = Y / Yr
L = 116.0 * cbrt(yr) - 16.0 if yr > LSTAR_E else LSTAR_K * yr
u_ = (4.0 * X) / (X + 15.0 * Y + 3.0 * Z)
v_ = (9.0 * Y) / (X + 15.0 * Y + 3.0 * Z)
return L, u_, v_
def XYZ2Luv(X, Y, Z, whitepoint=None):
"""Convert from XYZ to Luv"""
if X + Y + Z == 0:
# We can't check for X == Y == Z == 0 because they may actually add up
# to 0, thus resulting in ZeroDivisionError later
L, u, v = XYZ2Luv(*get_whitepoint(whitepoint))
return 0.0, u, v
Xr, Yr, Zr = get_whitepoint(whitepoint, 100)
yr = Y / Yr
L = 116.0 * cbrt(yr) - 16.0 if yr > LSTAR_E else LSTAR_K * yr
u_ = (4.0 * X) / (X + 15.0 * Y + 3.0 * Z)
v_ = (9.0 * Y) / (X + 15.0 * Y + 3.0 * Z)
u_r = (4.0 * Xr) / (Xr + 15.0 * Yr + 3.0 * Zr)
v_r = (9.0 * Yr) / (Xr + 15.0 * Yr + 3.0 * Zr)
u = 13.0 * L * (u_ - u_r)
v = 13.0 * L * (v_ - v_r)
return L, u, v
def XYZ2RGB(X, Y, Z, rgb_space=None, scale=1.0, round_=False, clamp=True, oetf=None):
"""Convert from XYZ to RGB.
Use optional RGB colorspace definition, which can be a named colorspace
(e.g. "CIE RGB") or must be a tuple in the following format:
(gamma, whitepoint, red, green, blue)
whitepoint can be a string (e.g. "D50"), a tuple of XYZ coordinates,
or a color temperatur in degrees K (float or int). Gamma should be a float.
The RGB primaries red, green, blue should be lists or tuples of xyY
coordinates (only x and y will be used, so Y can be zero or None).
If no colorspace is given, it defaults to sRGB.
Based on formula from http://brucelindbloom.com/Eqn_XYZ_to_RGB.html
Implementation Notes:
1. The transformation matrix [M] is calculated from the RGB reference
primaries as discussed here:
http://brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html
2. gamma is the gamma value of the RGB color system used. Many common ones
may be found here:
http://brucelindbloom.com/WorkingSpaceInfo.html#Specifications
3. The output RGB values are in the nominal range [0.0, scale].
4. If the input XYZ color is not relative to the same reference white as
the RGB system, you must first apply a chromatic adaptation transform
[http://brucelindbloom.com/Eqn_ChromAdapt.html] to the XYZ color to
convert it from its own reference white to the reference white of the
RGB system.
5. Sometimes the more complicated special case of sRGB shown above is
replaced by a "simplified" version using a straight gamma function with
gamma = 2.2.
"""
trc, whitepoint, rxyY, gxyY, bxyY, matrix = get_rgb_space(rgb_space)
RGB = matrix.inverted() * [X, Y, Z]
is_trc = isinstance(trc, (list, tuple))
for i, v in enumerate(RGB):
if is_trc:
gamma = trc[i]
else:
gamma = trc
if clamp:
v = min(1.0, max(0.0, v))
if oetf:
RGB[i] = oetf(v)
elif isinstance(gamma, (list, tuple)):
key = id(gamma)
if key not in XYZ2RGB.interp:
ginterp = Interp(
gamma,
[n / float(len(gamma) - 1) for n in range(len(gamma))],
use_numpy=True,
)
XYZ2RGB.interp[key] = ginterp
else:
ginterp = XYZ2RGB.interp[key]
RGB[i] = ginterp(v)
else:
RGB[i] = specialpow(v, 1.0 / gamma)
RGB[i] *= scale
if round_ is not False:
RGB[i] = round(RGB[i], round_)
return RGB
XYZ2RGB.interp = {}
def XYZ2xyY(X, Y, Z, whitepoint=None):
"""Convert from XYZ to xyY.
Based on formula from http://brucelindbloom.com/Eqn_XYZ_to_xyY.html
Implementation Notes:
1. Watch out for black, where X = Y = Z = 0. In that case, x and y are set
to the chromaticity coordinates of the reference whitepoint.
2. The output Y value is in the nominal range [0.0, Y[XYZ]].
"""
if X + Y + Z == 0:
# We can't check for X == Y == Z == 0 because they may actually add up
# to 0, thus resulting in ZeroDivisionError later
x, y, Y = XYZ2xyY(*get_whitepoint(whitepoint))
return x, y, 0.0
x = X / float(X + Y + Z)
y = Y / float(X + Y + Z)
return x, y, Y
def xy_CCT_delta(x, y, daylight=True, method=2000):
"""Return CCT and delta to locus"""
cct = xyY2CCT(x, y)
d = None
if cct:
locus = None
if daylight:
# Daylight locus
if 2500 <= cct <= 25000:
locus = CIEDCCT2XYZ(cct, 100.0)
else:
# Planckian locus
if 1667 <= cct <= 25000:
locus = planckianCT2XYZ(cct, 100.0)
if locus:
L2, a2, b2 = xyY2Lab(x, y, 100.0, locus)
d = delta(L2, 0, 0, L2, a2, b2, method)
return cct, d
def dmatrixz(nrl, nrh, ncl, nch):
# Adapted from ArgyllCMS numlib/numsup.c
# nrl # Row low index
# nrh # Row high index
# ncl # Col low index
# nch # Col high index
m = {}
if nrh < nrl: # Prevent failure for 0 dimension
nrh = nrl
if nch < ncl:
nch = ncl
rows = nrh - nrl + 1
cols = nch - ncl + 1
for i in range(rows):
m[i + nrl] = {}
for j in range(cols):
m[i][j + ncl] = 0
return m
def dvector(nl, nh):
# Adapted from ArgyllCMS numlib/numsup.c
# nl # Lowest index
# nh # Highest index
return {}
def gam_fit(gf, v):
# Adapted from ArgyllCMS xicc/xicc.c
"""gamma + input offset function handed to powell()"""
gamma = v[0]
rv = 0.0
if gamma < 0.0:
rv += 100.0 * -gamma
gamma = 1e-4
t1 = math.pow(gf.bp, 1.0 / gamma)
t2 = math.pow(gf.wp, 1.0 / gamma)
b = t1 / (t2 - t1) # Offset
a = math.pow(t2 - t1, gamma) # Gain
# Comput 50% output for this technical gamma
# (All values are without output offset being added in)
t1 = a * math.pow(0.5 + b, gamma)
t1 = t1 - gf.thyr
rv += t1 * t1
return rv
def linmin(cp, xi, di, ftol, func, fdata):
# Adapted from ArgyllCMS numlib/powell.c
"""
Line bracketing and minimisation routine.
Return value at minimum.
"""
POWELL_GOLD = 1.618034
POWELL_CGOLD = 0.3819660
POWELL_MAXIT = 100
# cp # Start point, and returned value
# xi[] # Search vector
# di # Dimensionality
# ftol # Tolerance to stop on
# func # Error function to evaluate
# fdata # Opaque data for func()
# ax, xx, bx # Search vector multipliers
# af, xf, bf # Function values at those points
# xt, XT # Trial point
XT = {}
if di <= 10:
xt = XT
else:
xt = dvector(0, di - 1) # Vector for trial point
# --------------------------
# First bracket the solution
logging.debug("linmin: Bracketing solution")
# The line is measured as startpoint + offset * search vector.
# (Search isn't symetric, but it seems to depend on cp being
# best current solution ?)
ax = 0.0
for i in range(di):
xt[i] = cp[i] + ax * xi[i]
af = func(fdata, xt)
# xx being vector offset 0.618
xx = 1.0 / POWELL_GOLD
for i in range(di):
xt[i] = cp[i] + xx * xi[i]
xf = func(fdata, xt)
logging.debug("linmin: Initial points a:%f:%f -> b:%f:%f" % (ax, af, xx, xf))
# Fix it so that we are decreasing from point a -> x
if xf > af:
tt = ax
ax = xx
xx = tt
tt = af
af = xf
xf = tt
logging.debug(
"linmin: Ordered Initial points a:%f:%f -> b:%f:%f" % (ax, af, xx, xf)
)
bx = xx + POWELL_GOLD * (xx - ax) # Guess b beyond a -> x
for i in range(di):
xt[i] = cp[i] + bx * xi[i]
bf = func(fdata, xt)
logging.debug(
"linmin: Initial bracket a:%f:%f x:%f:%f b:%f:%f" % (ax, af, xx, xf, bx, bf)
)
# While not bracketed
while xf > bf:
logging.debug("linmin: Not bracketed because xf %f > bf %f" % (xf, bf))
logging.debug(" ax = %f, xx = %f, bx = %f" % (ax, xx, bx))
# Compute ux by parabolic interpolation from a, x & b
q = (xx - bx) * (xf - af)
r = (xx - ax) * (xf - bf)
tt = q - r
if 0.0 <= tt < 1e-20: # If +ve too small
tt = 1e-20
elif 0.0 >= tt > -1e-20: # If -ve too small
tt = -1e-20
ux = xx - ((xx - bx) * q - (xx - ax) * r) / (2.0 * tt)
ulim = xx + 100.0 * (bx - xx) # Extrapolation limit
if (xx - ux) * (ux - bx) > 0.0: # u is between x and b
for i in range(di): # Evaluate u
xt[i] = cp[i] + ux * xi[i]
uf = func(fdata, xt)
if uf < bf: # Minimum is between x and b
ax = xx
af = xf
xx = ux
xf = uf
break
elif uf > xf: # Minimum is between a and u
bx = ux
bf = uf
break
# Parabolic fit didn't work, look further out in direction of b
ux = bx + POWELL_GOLD * (bx - xx)
elif (bx - ux) * (ux - ulim) > 0.0: # u is between b and limit
for i in range(di): # Evaluate u
xt[i] = cp[i] + ux * xi[i]
uf = func(fdata, xt)
if uf > bf: # Minimum is between x and u
ax = xx
af = xf
xx = bx
xf = bf
bx = ux
bf = uf
break
xx = bx
xf = bf # Continue looking
bx = ux
bf = uf
ux = bx + POWELL_GOLD * (bx - xx) # Test beyond b
elif (ux - ulim) * (ulim - bx) >= 0.0: # u is beyond limit
ux = ulim
else: # u is to left side of x ?
ux = bx + POWELL_GOLD * (bx - xx)
# Evaluate u, and move into place at b
for i in range(di):
xt[i] = cp[i] + ux * xi[i]
uf = func(fdata, xt)
ax = xx
af = xf
xx = bx
xf = bf
bx = ux
bf = uf
logging.debug(
"linmin: Got bracket a:%f:%f x:%f:%f b:%f:%f" % (ax, af, xx, xf, bx, bf)
)
# Got bracketed minimum between a -> x -> b
# ---------------------------------------
# Now use brent minimiser bewteen a and b
if True:
# a and b bracket solution
# x is best function value so far
# w is second best function value so far
# v is previous second best, or third best
# u is most recently tested point
# wx, vx, ux # Search vector multipliers
# wf
vf = 0.0
# uf # Function values at those points
de = 0.0 # Distance moved on previous step
e = 0.0 # Distance moved on 2nd previous step
# Make sure a and b are in ascending order
if ax > bx:
tt = ax
ax = bx
bx = tt
tt = af
af = bf
bf = tt
wx = vx = xx # Initial values of other center points
wf = xf = xf
for _iter in range(1, POWELL_MAXIT + 1):
mx = 0.5 * (ax + bx) # m is center of bracket values
# if ABSTOL:
# tol1 = ftol # Absolute tollerance
# else:
tol1 = ftol * abs(xx) + 1e-10
tol2 = 2.0 * tol1
logging.debug(
"linmin: Got bracket a:%f:%f x:%f:%f b:%f:%f" % (ax, af, xx, xf, bx, bf)
)
# See if we're done
if abs(xx - mx) <= (tol2 - 0.5 * (bx - ax)):
logging.debug(
"linmin: We're done because %f <= %f"
% (abs(xx - mx), tol2 - 0.5 * (bx - ax))
)
break
if abs(e) > tol1: # Do a trial parabolic fit
r = (xx - wx) * (xf - vf)
q = (xx - vx) * (xf - wf)
p = (xx - vx) * q - (xx - wx) * r
q = 2.0 * (q - r)
if q > 0.0:
p = -p
else:
q = -q
te = e # Save previous e value
e = de # Previous steps distance moved
logging.debug("linmin: Trial parabolic fit")
if (
abs(p) >= abs(0.5 * q * te)
or p <= q * (ax - xx)
or p >= q * (bx - xx)
):
# Give up on the parabolic fit, and use the golden section search
e = (
ax - xx if xx >= mx else bx - xx
) # Override previous distance moved */
de = POWELL_CGOLD * e
logging.debug("linmin: Moving to golden section search")
else: # Use parabolic fit
de = p / q # Change in xb
ux = xx + de # Trial point according to parabolic fit
if (ux - ax) < tol2 or (bx - ux) < tol2:
if (mx - xx) > 0.0: # Don't use parabolic, use tol1
de = tol1 # tol1 is +ve
else:
de = -tol1
logging.debug("linmin: Using parabolic fit")
else: # Keep using the golden section search
e = ax - xx if xx >= mx else bx - xx # Override previous distance moved
de = POWELL_CGOLD * e
logging.debug("linmin: Continuing golden section search")
if abs(de) >= tol1: # If de moves as much as tol1 would
ux = xx + de # use it
logging.debug("linmin: ux = %f = xx %f + de %f" % (ux, xx, de))
else: # else move by tol1 in direction de
if de > 0.0:
ux = xx + tol1
logging.debug("linmin: ux = %f = xx %f + tol1 %f" % (ux, xx, tol1))
else:
ux = xx - tol1
logging.debug("linmin: ux = %f = xx %f - tol1 %f" % (ux, xx, tol1))
# Evaluate function
for i in range(di):
xt[i] = cp[i] + ux * xi[i]
uf = func(fdata, xt)
if uf <= xf: # Found new best solution
if ux >= xx:
ax = xx
af = xf # New lower bracket
else:
bx = xx
bf = xf # New upper bracket
vx = wx
vf = wf # New previous 2nd best solution
wx = xx
wf = xf # New 2nd best solution from previous best
xx = ux
xf = uf # New best solution from latest
logging.debug("linmin: found new best solution")
else: # Found a worse solution
if ux < xx:
ax = ux
af = uf # New lower bracket
else:
bx = ux
bf = uf # New upper bracket
if uf <= wf or wx == xx: # New 2nd best solution, or equal best
vx = wx
vf = wf # New previous 2nd best solution
wx = ux
wf = uf # New 2nd best from latest
elif (
uf <= vf or vx == xx or vx == wx
): # New 3rd best, or equal 1st & 2nd
vx = ux
vf = uf # New previous 2nd best from latest
logging.debug("linmin: found new worse solution")
# !!! should do something if iter > POWELL_MAXIT !!!!
# Solution is at xx, xf
# Compute solution vector
for i in range(di):
cp[i] += xx * xi[i]
return xf
def powell(di, cp, s, ftol, maxit, func, fdata, prog=None, pdata=None):
# Adapted from ArgyllCMS powell.c
"""
Standard interface for powell function
return True on sucess, False on failure due to excessive iterions
Result will be in cp
"""
DBL_EPSILON = 2.2204460492503131e-016
# di # Dimentionality
# cp # Initial starting point
# s # Size of initial search area
# ftol # Tolerance of error change to stop on
# maxit # Maximum iterations allowed
# func # Error function to evaluate
# fdata # Opaque data needed by function
# prog # Optional progress percentage callback
# pdata # Opaque data needed by prog()
# dmtx # Direction vector
# sp # Sarting point before exploring all the directions
# xpt # Extrapolated point
# svec # Search vector
# retv # Returned function value at p
# stopth # Current stop threshold */
startdel = -1.0 # Initial change in function value
# curdel # Current change in function value
pc = 0 # Percentage complete
dmtx = dmatrixz(0, di - 1, 0, di - 1) # Zero filled
spt = dvector(0, di - 1)
xpt = dvector(0, di - 1)
svec = dvector(0, di - 1)
# Create initial direction matrix by
# placing search start on diagonal
for i in range(di):
dmtx[i][i] = s[i]
# Save the starting point
spt[i] = cp[i]
if prog: # Report initial progress
prog(pdata, pc)
# Initial function evaluation
retv = func(fdata, cp)
# Iterate untill we converge on a solution, or give up.
for iter in range(1, maxit):
# lretv # Last function return value
ibig = 0 # Index of biggest delta
del_ = 0.0 # Biggest function value decrease
# pretv # Previous function return value
pretv = retv # Save return value at top of iteration
# Loop over all directions in the set
for i in range(di):
logging.debug("Looping over direction %d" % i)
for j in range(di): # Extract this direction to make search vector
svec[j] = dmtx[j][i]
# Minimize in that direction
lretv = retv
retv = linmin(cp, svec, di, ftol, func, fdata)
# Record bigest function decrease, and dimension it occured on
if abs(lretv - retv) > del_:
del_ = abs(lretv - retv)
ibig = i
# if ABSTOL:
# stopth = ftol # Absolute tollerance
# else
stopth = ftol * 0.5 * (abs(pretv) + abs(retv) + DBL_EPSILON)
curdel = abs(pretv - retv)
if startdel < 0.0:
startdel = curdel
elif curdel > 0 and startdel > 0:
tt = (
100.0
* math.pow(
(math.log(curdel) - math.log(startdel))
/ (math.log(stopth) - math.log(startdel)),
4.0,
)
+ 0.5
)
if pc < tt < 100:
pc = tt
if prog: # Report initial progress
prog(pdata, pc)
# If we have had at least one change of direction and
# reached a suitable tollerance, then finish
if iter > 1 and curdel <= stopth:
logging.debug(
"Reached stop tollerance because curdel %f <= stopth "
"%f" % (curdel, stopth)
)
break
logging.debug("Not stopping because curdel %f > stopth %f" % (curdel, stopth))
for i in range(di):
svec[i] = cp[i] - spt[i] # Average direction moved after minimization round
xpt[i] = cp[i] + svec[i] # Extrapolated point after round of minimization
spt[i] = cp[i] # New start point for next round
# Function value at extrapolated point
lretv = func(fdata, xpt)
if lretv < pretv: # If extrapolation is an improvement
t1 = pretv - retv - del_
t2 = pretv - lretv
t = 2.0 * (pretv - 2.0 * retv + lretv) * t1 * t1 - del_ * t2 * t2
if t < 0.0:
# Move to the minimum of the new direction
retv = linmin(cp, svec, di, ftol, func, fdata)
for i in range(di): # Save the new direction
dmtx[i][ibig] = svec[i] # by replacing best previous
if prog: # Report final progress
prog(pdata, 100)
if iter < maxit:
return True
logging.debug("powell: returning False due to excessive iterations")
return False # Failed due to execessive iterations
def xicc_tech_gamma(egamma, off, outoffset=0.0):
# Adapted from ArgyllCMS xicc.c
"""
Given the effective gamma and the output offset Y,
return the technical gamma needed for the correct 50% response.
"""
gf = gam_fits()
op = {}
sa = {}
if off <= 0.0:
return egamma
# We set up targets without outo being added
outo = off * outoffset # Offset acounted for in output
gf.bp = off - outo # Black value for 0 % input
gf.wp = 1.0 - outo # White value for 100% input
gf.thyr = math.pow(0.5, egamma) - outo # Advetised 50% target
op[0] = egamma
sa[0] = 0.1
if not powell(1, op, sa, 1e-6, 500, gam_fit, gf):
logging.warning("Computing effective gamma and input offset is inaccurate")
return op[0]
class gam_fits:
# Adapted from ArgyllCMS xicc/xicc.c
def __init__(self, wp=1.0, thyr=0.2, bp=0.0):
self.wp = wp # 100% input target
self.thyr = thyr # 50% input target
self.bp = bp # 0% input target
class Interp:
def __init__(self, xp, fp, left=None, right=None, use_numpy=False):
if use_numpy:
# Use numpy for speed
import numpy
xp = numpy.array(xp)
fp = numpy.array(fp)
self.numpy = numpy
self.xp = xp
self.fp = fp
self.left = left
self.right = right
self.lookup = {}
self.use_numpy = use_numpy
def __call__(self, x):
if x not in self.lookup:
self.lookup[x] = self._interp(x)
return self.lookup[x]
def _interp(self, x):
if self.use_numpy:
import numpy
return self.numpy.interp(x, self.xp, self.fp, self.left, self.right)
else:
return interp(x, self.xp, self.fp, self.left, self.right)
class BT1886:
# Adapted from ArgyllCMS xicc/xicc.c
"""BT.1886 like transfer function"""
def __init__(self, matrix, XYZbp, outoffset=0.0, gamma=2.4, apply_trc=True):
"""Setup BT.1886 for the given target
If apply_trc is False, apply only the black point blending portion of
BT.1886 mapping. Note that this will only work correctly for an output
offset of 1.0
"""
if not apply_trc and outoffset < 1:
raise ValueError("Output offset must be 1.0 when not applying gamma")
self.bwd_matrix = matrix.inverted()
self.fwd_matrix = matrix
self.gamma = gamma
Lab = XYZ2Lab(*[v * 100 for v in XYZbp])
# For bp blend
self.outL = Lab[0]
# a* b* correction needed
self.tab = list(Lab)
self.tab[0] = 0 # 0 because bt1886 maps L to target
if XYZbp[1] < 0:
XYZbp = list(XYZbp)
XYZbp[1] = 0.0
# Offset acounted for in output
self.outo = XYZbp[1] * outoffset
# Balance of offset accounted for in input
ino = XYZbp[1] - self.outo
# Input offset black to 1/pow
bkipow = math.pow(ino, 1.0 / self.gamma)
# Input offset white to 1/pow
wtipow = math.pow(1.0 - self.outo, 1.0 / self.gamma)
# non-linear Y that makes input offset proportion of black point
self.ingo = bkipow / (wtipow - bkipow)
# Scale to make input of 1 map to 1.0 - self.outo
self.outsc = pow(wtipow - bkipow, self.gamma)
self.apply_trc = apply_trc
def apply(self, X, Y, Z):
"""Apply BT.1886 black offset and gamma curve to the XYZ out of the input profile.
Do this in the colorspace defined by the input profile matrix lookup,
so it will be relative XYZ. We assume that BT.1886 does a Rec709 to gamma
viewing adjustment, on top of any source profile transfer curve
(i.e. BT.1886 viewing adjustment is assumed to be the mismatch between
Rec709 curve and the output offset pure 2.4 gamma curve)
"""
logging.debug("bt1886 XYZ in %f %f %f" % (X, Y, Z))
out = self.bwd_matrix * (X, Y, Z)
logging.debug("bt1886 RGB in %f %f %f" % (out[0], out[1], out[2]))
for j in range(3):
vv = out[j]
if self.apply_trc:
# Convert linear light to Rec709 transfer curve
if vv < 0.018:
vv = 4.5 * vv
else:
vv = 1.099 * math.pow(vv, 0.45) - 0.099
# Apply input offset
vv = vv + self.ingo
# Apply power and scale
if vv > 0.0:
if self.apply_trc:
vv = self.outsc * math.pow(vv, self.gamma)
else:
vv *= self.outsc
# Apply output portion of offset
vv += self.outo
out[j] = vv
out = self.fwd_matrix * out
logging.debug("bt1886 RGB bt.1886 %f %f %f" % (out[0], out[1], out[2]))
out = list(XYZ2Lab(*[v * 100 for v in out]))
logging.debug("bt1886 Lab after Y adj. %f %f %f" % (out[0], out[1], out[2]))
# Blend ab to required black point offset self.tab[] as L approaches black.
vv = (out[0] - self.outL) / (100.0 - self.outL) # 0 at bp, 1 at wp
vv = 1.0 - vv
if vv < 0.0:
vv = 0.0
elif vv > 1.0:
vv = 1.0
vv = math.pow(vv, 40.0)
out[0] += vv * self.tab[0]
out[1] += vv * self.tab[1]
out[2] += vv * self.tab[2]
logging.debug("bt1886 Lab after wp adj. %f %f %f" % (out[0], out[1], out[2]))
out = Lab2XYZ(*out)
logging.debug("bt1886 XYZ out %f %f %f" % (out[0], out[1], out[2]))
return out
class BT2390:
"""Roll-off for SMPTE 2084 (PQ) according to Report ITU-R BT.2390-2 HDR TV"""
def __init__(
self,
black_cdm2,
white_cdm2,
master_black_cdm2=0,
master_white_cdm2=10000,
use_alternate_master_white_clip=True,
):
"""Master black and white level are used to tweak the roll-off and clip.
If use_alternate_master_white_clip is True, do not follow BT.2390 for
the mastering white adjustment (allows to preserve more detail in
rolled-off highlights)
"""
self.black_cdm2 = black_cdm2
self.white_cdm2 = white_cdm2
self.master_black_cdm2 = master_black_cdm2
self.master_white_cdm2 = master_white_cdm2
self.ominv = black_cdm2 / 10000.0 # Lmin
self.omini = specialpow(self.ominv, 1.0 / -2084) # Original minLum
self.omaxv = white_cdm2 / 10000.0 # Lmax
self.omaxi = specialpow(self.omaxv, 1.0 / -2084) # Original maxLum
self.oKS = 1.5 * self.omaxi - 0.5
# BT.2390-2
self.mminv = master_black_cdm2 / 10000.0 # LB
self.mmini = specialpow(self.mminv, 1.0 / -2084)
self.mmaxv = master_white_cdm2 / 10000.0 # LW
mmaxi = specialpow(self.mmaxv, 1.0 / -2084)
if use_alternate_master_white_clip:
self.maxci = (mmaxi - self.mmini) / (1 - self.mmini)
self.mmaxi = 1.0
else:
self.maxci = 1.0
self.mmaxi = mmaxi
self.mini = (self.omini - self.mmini) / (
self.mmaxi - self.mmini
) # Normalized minLum
self.minv = specialpow(self.mini, -2084)
self.maxi = (self.omaxi - self.mmini) / (
self.mmaxi - self.mmini
) # Normalized maxLum
self.maxv = specialpow(self.maxi, -2084)
self.KS = 1.5 * self.maxi - 0.5
if self.maxi <= self.maxci < 1:
E2 = self.P(self.maxci, self.KS, self.maxi)
diff = self.maxci - E2
self.s = (self.maxci - self.maxi) / diff
def P(self, B, KS, maxi, maxci=1.0):
T = (B - KS) / (1 - KS)
E2 = (
(2 * T**3 - 3 * T**2 + 1) * KS
+ (T**3 - 2 * T**2 + T) * (1 - KS)
+ (-2 * T**3 + 3 * T**2) * maxi
)
if maxci < 1:
# (Old) Clipping for better target display peak luminance usage
# XXX: Only kept for backwards compatibility
s = min(((B - KS) / (maxci - KS)) ** 4, 1)
E2 = E2 * (1 - s) + maxi * s
return E2
def apply(
self,
v,
KS=None,
maxi=None,
maxci=None,
mini=None,
mmaxi=None,
mmini=None,
bpc=False,
normalize=True,
):
"""Apply roll-off (E' in, E' out)
maxci if < 1.0 applies alterante clip.
"""
if KS is None:
KS = self.KS
if maxi is None:
maxi = self.maxi
if mini is None:
mini = self.mini
if mmaxi is None:
mmaxi = self.mmaxi
if mmini is None:
mmini = self.mmini
if maxci is None:
maxci = self.maxci
if normalize and mmini is not None and mmaxi is not None:
# Normalize PQ values based on mastering display black/white levels
E1 = min(max((v - mmini) / (mmaxi - mmini), 0), 1.0)
else:
E1 = v
# BT.2390-3 suggests P[E1] if KS <= E1 <=1, but this results in
# division by zero if KS = 1. The correct way is to check for
# KS < E1 <=1
if KS < E1 <= 1:
E2 = self.P(E1, KS, maxi)
if maxi <= maxci < 1:
# (New) Clipping for better target display peak luminance usage
s = self.s
diff = E1 - E2
E2 = min(E1 - diff * s, maxi)
elif maxci < 1:
E2 = min(E1, maxci)
else:
E2 = E1
# BT.2390-3 suggests 0 <= E2 <= 1, but this results in a discontinuity
# if KS < 0 (high LB > Lmin, low Lmax, high LW). To avoid this, check
# for E2 <= 1 instead
if mini and E2 <= 1:
# Apply black level lift
minLum = mini
# maxLum = maxi
b = minLum
# BT.2390-3 suggests E2 + b * (1 - E2) ** 4, but this clips, if
# minLum > 0.25, due to a 'dip' in the function. The solution is to
# adjust the exponent according to minLum. For minLum <= 0.25
# (< 5.15 cd/m2), this will give the same result as 'pure' BT.2390-3
if b >= 0:
# Only for positive b i.e. minLum >= LB
p = min(1.0 / b, 4)
else:
# For negative b i.e. minLum < LB
p = 4
E3 = E2 + b * (1 - E2) ** p
# If maxLum < 1, and the input value reaches maxLum, the resulting
# output value will be higher than maxLum after applying the black
# level lift (note that this is *not* a side effect of the above
# exponent adjustment). Undo this by re-scaling to the nominal output
# range [minLum, maxLum].
if maxi < 1:
# Only re-scale if maxLum < 1. Note that maxLum can be > 1
# if Lmax > LW despite E2 <= 1
E3 = convert_range(E3, b, maxi + b * (1 - maxi) ** p, b, maxi)
else:
E3 = E2
if bpc:
E3 = convert_range(E3, mini, maxi, 0, maxi)
if normalize and mmini is not None and mmaxi is not None:
# Invert the normalization of the PQ values
E3 = E3 * (mmaxi - mmini) + mmini
return max(E3, 0)
class Matrix3x3(list):
"""Simple 3x3 matrix"""
def __init__(self, matrix=None):
super(Matrix3x3, self).__init__()
if matrix:
self.update(matrix)
else:
self._reset()
def update(self, matrix):
if len(matrix) != 3:
raise ValueError("Invalid number of rows for 3x3 matrix: %i" % len(matrix))
self._reset()
while len(self):
self.pop()
for row in matrix:
if len(row) != 3:
raise ValueError(
"Invalid number of columns for 3x3 matrix: %i" % len(row)
)
self.append([])
for column in row:
self[-1].append(column)
def _reset(self):
self._inverted = None
self._transposed = None
self._rounded = {}
self._applied = {}
def __add__(self, matrix):
instance = self.__class__()
instance.update(
[
[
self[0][0] + matrix[0][0],
self[0][1] + matrix[0][1],
self[0][2] + matrix[0][2],
],
[
self[1][0] + matrix[1][0],
self[1][1] + matrix[1][1],
self[1][2] + matrix[1][2],
],
[
self[2][0] + matrix[2][0],
self[2][1] + matrix[2][1],
self[2][2] + matrix[2][2],
],
]
)
return instance
def __iadd__(self, matrix):
# inplace
self.update(self.__add__(matrix))
return self
def __imul__(self, matrix):
# inplace
self.update(self.__mul__(matrix))
return self
def __mul__(self, matrix):
if not isinstance(matrix[0], (list, tuple)):
return [
matrix[0] * self[0][0]
+ matrix[1] * self[0][1]
+ matrix[2] * self[0][2],
matrix[0] * self[1][0]
+ matrix[1] * self[1][1]
+ matrix[2] * self[1][2],
matrix[0] * self[2][0]
+ matrix[1] * self[2][1]
+ matrix[2] * self[2][2],
]
instance = self.__class__()
instance.update(
[
[
self[0][0] * matrix[0][0]
+ self[0][1] * matrix[1][0]
+ self[0][2] * matrix[2][0],
self[0][0] * matrix[0][1]
+ self[0][1] * matrix[1][1]
+ self[0][2] * matrix[2][1],
self[0][0] * matrix[0][2]
+ self[0][1] * matrix[1][2]
+ self[0][2] * matrix[2][2],
],
[
self[1][0] * matrix[0][0]
+ self[1][1] * matrix[1][0]
+ self[1][2] * matrix[2][0],
self[1][0] * matrix[0][1]
+ self[1][1] * matrix[1][1]
+ self[1][2] * matrix[2][1],
self[1][0] * matrix[0][2]
+ self[1][1] * matrix[1][2]
+ self[1][2] * matrix[2][2],
],
[
self[2][0] * matrix[0][0]
+ self[2][1] * matrix[1][0]
+ self[2][2] * matrix[2][0],
self[2][0] * matrix[0][1]
+ self[2][1] * matrix[1][1]
+ self[2][2] * matrix[2][1],
self[2][0] * matrix[0][2]
+ self[2][1] * matrix[1][2]
+ self[2][2] * matrix[2][2],
],
]
)
return instance
def adjoint(self):
return self.cofactors().transposed()
def applied(self, fn):
"""Apply function to every element, return new matrix"""
if fn in self._applied:
return self._applied[fn]
matrix = self.__class__()
for row in self:
matrix.append([])
for column in row:
matrix[-1].append(fn(column))
self._applied[fn] = matrix
return matrix
def cofactors(self):
instance = self.__class__()
instance.update(
[
[
(self[1][1] * self[2][2] - self[1][2] * self[2][1]),
-1 * (self[1][0] * self[2][2] - self[1][2] * self[2][0]),
(self[1][0] * self[2][1] - self[1][1] * self[2][0]),
],
[
-1 * (self[0][1] * self[2][2] - self[0][2] * self[2][1]),
(self[0][0] * self[2][2] - self[0][2] * self[2][0]),
-1 * (self[0][0] * self[2][1] - self[0][1] * self[2][0]),
],
[
(self[0][1] * self[1][2] - self[0][2] * self[1][1]),
-1 * (self[0][0] * self[1][2] - self[1][0] * self[0][2]),
(self[0][0] * self[1][1] - self[0][1] * self[1][0]),
],
]
)
return instance
def determinant(self):
return (
self[0][0] * self[1][1] * self[2][2]
+ self[1][0] * self[2][1] * self[0][2]
+ self[0][1] * self[1][2] * self[2][0]
) - (
self[2][0] * self[1][1] * self[0][2]
+ self[1][0] * self[0][1] * self[2][2]
+ self[2][1] * self[1][2] * self[0][0]
)
def invert(self):
# inplace
self.update(self.inverted())
def inverted(self):
if self._inverted:
return self._inverted
determinant = self.determinant()
matrix = self.adjoint()
instance = self.__class__()
instance.update(
[
[
matrix[0][0] / determinant,
matrix[0][1] / determinant,
matrix[0][2] / determinant,
],
[
matrix[1][0] / determinant,
matrix[1][1] / determinant,
matrix[1][2] / determinant,
],
[
matrix[2][0] / determinant,
matrix[2][1] / determinant,
matrix[2][2] / determinant,
],
]
)
self._inverted = instance
return instance
def rounded(self, digits=3):
if digits in self._rounded:
return self._rounded[digits]
matrix = self.__class__()
for row in self:
matrix.append([])
for column in row:
matrix[-1].append(round(column, digits))
self._rounded[digits] = matrix
return matrix
def transpose(self):
self.update(self.transposed())
def transposed(self):
if self._transposed:
return self._transposed
instance = self.__class__()
instance.update(
[
[self[0][0], self[1][0], self[2][0]],
[self[0][1], self[1][1], self[2][1]],
[self[0][2], self[1][2], self[2][2]],
]
)
self._transposed = instance
return instance
class NumberTuple(tuple):
def __repr__(self):
return "(%s)" % ", ".join(str(value) for value in self)
def round(self, digits=4):
return self.__class__(round(value, digits) for value in self)
# Chromatic adaption transform matrices
# Bradford, von Kries (= HPE normalized to D65) from http://brucelindbloom.com/Eqn_ChromAdapt.html
# CAT02 from http://en.wikipedia.org/wiki/CIECAM02#CAT02
# HPE normalized to illuminant E, CAT97s from http://en.wikipedia.org/wiki/LMS_color_space#CAT97s
# CMCCAT2000, Sharp from 'Computational colour science using MATLAB'
# ISBN 0470845627, http://books.google.com/books?isbn=0470845627
# Cross-verification of the matrix numbers has been done using various sources,
# most notably 'Chromatic Adaptation Performance of Different RGB Sensors'
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.918&rep=rep1&type=pdf
cat_matrices = {
"Bradford": Matrix3x3(
[
[0.89510, 0.26640, -0.16140],
[-0.75020, 1.71350, 0.03670],
[0.03890, -0.06850, 1.02960],
]
),
"CAT02": Matrix3x3(
[[0.7328, 0.4296, -0.1624], [-0.7036, 1.6975, 0.0061], [0.0030, 0.0136, 0.9834]]
),
# Brill & Süsstrunk modification also found in ArgyllCMS
"CAT02BS": Matrix3x3(
[[0.7328, 0.4296, -0.1624], [-0.7036, 1.6975, 0.0061], [0.0000, 0.0000, 1.0000]]
),
"CAT97s": Matrix3x3(
[
[0.8562, 0.3372, -0.1934],
[-0.8360, 1.8327, 0.0033],
[0.0357, -0.0469, 1.0112],
]
),
"CMCCAT2000": Matrix3x3(
[[0.7982, 0.3389, -0.1371], [-0.5918, 1.5512, 0.0406], [0.0008, 0.0239, 0.9753]]
),
# Hunt-Pointer-Estevez, equal-energy illuminant
"HPE E": Matrix3x3(
[
[0.38971, 0.68898, -0.07868],
[-0.22981, 1.18340, 0.04641],
[0.00000, 0.00000, 1.00000],
]
),
# Süsstrunk et al.15 optimized spectrally sharpened matrix
"Sharp": Matrix3x3(
[
[1.2694, -0.0988, -0.1706],
[-0.8364, 1.8006, 0.0357],
[0.0297, -0.0315, 1.0018],
]
),
# 'Von Kries' as found on Bruce Lindbloom's site:
# Hunt-Pointer-Estevez normalized to D65
# (maybe I should call it that instead of 'Von Kries'
# to avoid ambiguity?)
"HPE D65": Matrix3x3(
[
[0.40024, 0.70760, -0.08081],
[-0.22630, 1.16532, 0.04570],
[0.00000, 0.00000, 0.91822],
]
),
"XYZ scaling": Matrix3x3([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
"IPT": Matrix3x3(
[[0.4002, 0.7075, -0.0807], [-0.2280, 1.1500, 0.0612], [0.0000, 0.0000, 0.9184]]
),
# Inverse CIE 2012 2deg LMS to XYZ matrix from Argyll/icc/icc.c
"CIE2012_2": Matrix3x3(
[
[0.2052445519046028, 0.8334486497310412, -0.0386932016356441],
[-0.4972221301804286, 1.4034846060306130, 0.0937375241498157],
[0.0000000000000000, 0.0000000000000000, 1.0000000000000000],
]
),
# Bianco and Schettini (2010)
"BS": Matrix3x3(
[
[0.8752, 0.2787, -0.1539],
[-0.8904, 1.8709, 0.0195],
[-0.0061, 0.0162, 0.9899],
]
),
# Bianco and Schettini (2010) with positivity constraint
"BS-PC": Matrix3x3(
[
[0.6489, 0.3915, -0.0404],
[-0.3775, 1.3055, 0.0720],
[-0.0271, 0.0888, 0.9383],
]
),
}
LMS2IPT_matrix = Matrix3x3(
[[0.4000, 0.4000, 0.2000], [4.4550, -4.8510, 0.3960], [0.8056, 0.3572, -1.1628]]
)
IPT2LMS_matrix = LMS2IPT_matrix.inverted()
LinearRGB2LMS_matrix = Matrix3x3(
[
[1688 / 4096.0, 2146 / 4096.0, 262 / 4096.0],
[683 / 4096.0, 2951 / 4096.0, 462 / 4096.0],
[99 / 4096.0, 309 / 4096.0, 3688 / 4096.0],
]
)
LMS2LinearRGB_matrix = LinearRGB2LMS_matrix.inverted()
L_M_S_2ICtCp_matrix = Matrix3x3(
[
[0.5, 0.5, 0],
[6610 / 4096.0, -13613 / 4096.0, 7003 / 4096.0],
[17933 / 4096.0, -17390 / 4096.0, -543 / 4096.0],
]
)
ICtCp2L_M_S__matrix = L_M_S_2ICtCp_matrix.inverted()
# Tweaked LMS to IPT matrix to account for CIE 2012 2deg XYZ to LMS matrix
# From Argyll/icc/icc.c
LMS2Lpt_matrix = Matrix3x3(
[
[0.6585034777870502, 0.1424555300344579, 0.1990409921784920],
[5.6413505933276049, -6.1697985811414187, 0.5284479878138138],
[1.6370552576322106, 0.0192823194340315, -1.6563375770662419],
]
)
Lpt2LMS_matrix = LMS2Lpt_matrix.inverted()
standard_illuminants = {
# 1st level is the standard name => illuminant definitions
# 2nd level is the illuminant name => CIE XYZ coordinates
# (Y should always assumed to be 1.0 and is not explicitly defined)
None: {"E": {"X": 1.00000, "Z": 1.00000}},
"ASTM E308-01": {
"A": {"X": 1.09850, "Z": 0.35585},
"C": {"X": 0.98074, "Z": 1.18232},
"D50": {"X": 0.96422, "Z": 0.82521},
"D55": {"X": 0.95682, "Z": 0.92149},
"D65": {"X": 0.95047, "Z": 1.08883},
"D75": {"X": 0.94972, "Z": 1.22638},
"F2": {"X": 0.99186, "Z": 0.67393},
"F7": {"X": 0.95041, "Z": 1.08747},
"F11": {"X": 1.00962, "Z": 0.64350},
},
"ICC": {"D50": {"X": 0.9642, "Z": 0.8249}, "D65": {"X": 0.9505, "Z": 1.0890}},
"ISO 11664-2:2007": {
"D65": {"X": xyY2XYZ(0.3127, 0.329)[0], "Z": xyY2XYZ(0.3127, 0.329)[2]}
},
"Wyszecki & Stiles": {
"A": {"X": 1.09828, "Z": 0.35547},
"B": {"X": 0.99072, "Z": 0.85223},
"C": {"X": 0.98041, "Z": 1.18103},
"D55": {"X": 0.95642, "Z": 0.92085},
"D65": {"X": 0.95017, "Z": 1.08813},
"D75": {"X": 0.94939, "Z": 1.22558},
},
}
# CIE 1931 2-deg chromaticity coordinates
# http://www.cvrl.org/offercsvccs.php
cie1931_2_xy = [
(0.175560, 0.005294),
(0.175161, 0.005256),
(0.174821, 0.005221),
(0.174510, 0.005182),
(0.174112, 0.004964),
(0.174008, 0.004981),
(0.173801, 0.004915),
(0.173560, 0.004923),
(0.173337, 0.004797),
(0.173021, 0.004775),
(0.172577, 0.004799),
(0.172087, 0.004833),
(0.171407, 0.005102),
(0.170301, 0.005789),
(0.168878, 0.006900),
(0.166895, 0.008556),
(0.164412, 0.010858),
(0.161105, 0.013793),
(0.156641, 0.017705),
(0.150985, 0.022740),
(0.143960, 0.029703),
(0.135503, 0.039879),
(0.124118, 0.057803),
(0.109594, 0.086843),
(0.091294, 0.132702),
(0.068706, 0.200723),
(0.045391, 0.294976),
(0.023460, 0.412703),
(0.008168, 0.538423),
(0.003859, 0.654823),
(0.013870, 0.750186),
(0.038852, 0.812016),
(0.074302, 0.833803),
(0.114161, 0.826207),
(0.154722, 0.805864),
(0.192876, 0.781629),
(0.229620, 0.754329),
(0.265775, 0.724324),
(0.301604, 0.692308),
(0.337363, 0.658848),
(0.373102, 0.624451),
(0.408736, 0.589607),
(0.444062, 0.554714),
(0.478775, 0.520202),
(0.512486, 0.486591),
(0.544787, 0.454434),
(0.575151, 0.424232),
(0.602933, 0.396497),
(0.627037, 0.372491),
(0.648233, 0.351395),
(0.665764, 0.334011),
(0.680079, 0.319747),
(0.691504, 0.308342),
(0.700606, 0.299301),
(0.707918, 0.292027),
(0.714032, 0.285929),
(0.719033, 0.280935),
(0.723032, 0.276948),
(0.725992, 0.274008),
(0.728272, 0.271728),
(0.729969, 0.270031),
(0.731089, 0.268911),
(0.731993, 0.268007),
(0.732719, 0.267281),
(0.733417, 0.266583),
(0.734047, 0.265953),
(0.734390, 0.265610),
(0.734592, 0.265408),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734548, 0.265452),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
(0.734690, 0.265310),
]
optimalcolors_Lab = [
(52.40, 95.40, 10.58),
(52.33, 91.23, 38.56),
(52.31, 89.09, 65.80),
(52.30, 88.24, 89.93),
(59.11, 84.13, 101.46),
(66.02, 75.66, 113.09),
(72.36, 64.33, 123.65),
(78.27, 50.88, 132.94),
(83.64, 36.33, 140.63),
(88.22, 22.05, 145.02),
(92.09, 8.49, 143.95),
(90.38, -4.04, 141.05),
(87.54, -23.02, 136.16),
(85.18, -37.06, 132.16),
(82.10, -52.65, 126.97),
(85.53, -65.59, 122.51),
(82.01, -81.46, 116.55),
(77.35, -97.06, 108.72),
(74.76, -122.57, 90.91),
(68.33, -134.27, 80.11),
(63.07, -152.99, 56.41),
(54.57, -159.74, 42.75),
(44.43, -162.58, 27.45),
(46.92, -162.26, 13.87),
(48.53, -144.04, -4.73),
(49.50, -115.82, -25.38),
(59.18, -85.50, -47.00),
(59.33, -68.64, -58.79),
(59.41, -52.73, -69.57),
(50.80, -25.33, -84.08),
(42.05, 8.67, -98.57),
(33.79, 43.74, -111.63),
(26.63, 74.31, -121.90),
(20.61, 98.44, -128.77),
(14.87, 117.34, -131.97),
(9.74, 127.16, -129.59),
(5.20, 125.79, -120.43),
(7.59, 122.01, -116.33),
(10.21, 117.89, -111.81),
(26.35, 115.11, -100.95),
(40.68, 115.59, -87.47),
(39.37, 115.48, -78.51),
(46.49, 114.84, -66.24),
(53.49, 111.63, -54.17),
(52.93, 107.54, -38.16),
(52.58, 101.53, -16.45),
(52.40, 95.40, 10.58),
]
def debug_caches():
for cache in (
"XYZ2RGB.interp",
"wp_adaption_matrix.cache",
"get_rgb_space.cache",
"get_standard_illuminant.cache",
"get_whitepoint.cache",
):
cn, ck = cache.split(".")
c = getattr(globals()[cn], ck)
count = 0
seen = {}
for k in c:
v = c[k]
for kk in c:
vv = c[kk]
# Check for equality, not identity
if k != kk and v == vv and kk not in seen:
count += 1
seen[kk] = True
print(cache, len(c), "entries", max(count - 1, 0), "duplicates")
if count > 1:
for k in c:
v = c[k]
print(k, v)
if "--debug-caches" in sys.argv[1:]:
import atexit
atexit.register(debug_caches)
def test():
for i in range(4):
if i == 0:
wp = "native"
elif i == 1:
wp = "D50"
XYZ = get_standard_illuminant(wp)
elif i == 2:
wp = "D65"
XYZ = get_standard_illuminant(wp)
elif i == 3:
XYZ = get_standard_illuminant("D65", ("ASTM E308-01",))
wp = " ".join([str(v) for v in XYZ])
print(
(
"RGB and corresponding XYZ (nominal range 0.0 - 1.0) with whitepoint %s"
% wp
)
)
for name in rgb_spaces:
spc = rgb_spaces[name]
if i == 0:
XYZ = CIEDCCT2XYZ(spc[1])
spc = spc[0], XYZ, spc[2], spc[3], spc[4]
print(
"%s 1.0, 1.0, 1.0 = XYZ" % name,
[str(round(v, 4)) for v in RGB2XYZ(1.0, 1.0, 1.0, spc)],
)
print(
"%s 1.0, 0.0, 0.0 = XYZ" % name,
[str(round(v, 4)) for v in RGB2XYZ(1.0, 0.0, 0.0, spc)],
)
print(
"%s 0.0, 1.0, 0.0 = XYZ" % name,
[str(round(v, 4)) for v in RGB2XYZ(0.0, 1.0, 0.0, spc)],
)
print(
"%s 0.0, 0.0, 1.0 = XYZ" % name,
[str(round(v, 4)) for v in RGB2XYZ(0.0, 0.0, 1.0, spc)],
)
print("")
if __name__ == "__main__":
test()
|