1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133
|
# -*- coding: utf-8 -*-
import binascii
import ctypes
import datetime
import json
import math
import os
import pathlib
import re
import struct
import subprocess as sp
import sys
import warnings
from collections import UserString
from copy import copy
from hashlib import md5
from weakref import WeakValueDictionary
from DisplayCAL.util_dict import dict_sort
if sys.platform == "win32":
import winreg
try:
import win32api
import win32gui
except ImportError:
pass
try:
from DisplayCAL import colord
except ImportError:
class Colord:
Colord = None
def quirk_manufacturer(self, manufacturer):
return manufacturer
def which(self, executable, paths=None):
return None
colord = Colord()
from DisplayCAL import colormath
from DisplayCAL import edid
from DisplayCAL import imfile
from DisplayCAL.defaultpaths import iccprofiles, iccprofiles_home
from DisplayCAL.encoding import get_encodings
from DisplayCAL.options import test_input_curve_clipping
from DisplayCAL.util_list import intlist
if sys.platform not in ("darwin", "win32"):
from DisplayCAL.defaultpaths import xdg_config_dirs, xdg_config_home
from DisplayCAL.edid import get_edid
from DisplayCAL.util_x import get_display
try:
from DisplayCAL import xrandr
except ImportError:
xrandr = None
from DisplayCAL.util_os import dlopen, which
elif sys.platform == "win32":
from DisplayCAL import util_win
if sys.getwindowsversion() < (6,):
# WCS only available under Vista and later
mscms = None
else:
from DisplayCAL.win_handles import (
get_process_handles,
get_handle_name,
get_handle_type,
)
mscms = util_win._get_mscms_windll()
win_ver = util_win.win_ver()
win10_1903 = (
win_ver[0].startswith("Windows 10") and win_ver[2] >= "Version 1903"
)
# Gamut volumes in cubic colorspace units (L*a*b*) as reported by Argyll's
# iccgamut
GAMUT_VOLUME_SRGB = 833675.435316 # rel. col.
GAMUT_VOLUME_ADOBERGB = 1209986.014983 # rel. col.%
GAMUT_VOLUME_SMPTE431_P3 = 1176953.485921 # rel. col.
# http://msdn.microsoft.com/en-us/library/dd371953%28v=vs.85%29.aspx
COLOR_PROFILE_SUBTYPE = {
"NONE": 0x0000,
"RGB_WORKING_SPACE": 0x0001,
"PERCEPTUAL": 0x0002,
"ABSOLUTE_COLORIMETRIC": 0x0004,
"RELATIVE_COLORIMETRIC": 0x0008,
"SATURATION": 0x0010,
"CUSTOM_WORKING_SPACE": 0x0020,
}
# http://msdn.microsoft.com/en-us/library/dd371955%28v=vs.85%29.aspx (wrong)
# http://msdn.microsoft.com/en-us/library/windows/hardware/ff546018%28v=vs.85%29.aspx (ok)
COLOR_PROFILE_TYPE = {"ICC": 0, "DMP": 1, "CAMP": 2, "GMMP": 3}
WCS_PROFILE_MANAGEMENT_SCOPE = {"SYSTEM_WIDE": 0, "CURRENT_USER": 1}
ERROR_PROFILE_NOT_ASSOCIATED_WITH_DEVICE = 2015
DEBUG = False
ENC, FS_ENC = get_encodings()
CMMS = {
b"argl": "ArgyllCMS",
b"ADBE": "Adobe",
b"ACMS": "Agfa",
b"Agfa": "Agfa",
b"APPL": "Apple",
b"appl": "Apple",
b"CCMS": "ColorGear",
b"UCCM": "ColorGear Lite",
b"DL&C": "Digital Light & Color",
b"EFI ": "EFI",
b"FF ": "Fuji Film",
b"HCMM": "Harlequin RIP",
b"LgoS": "LogoSync",
b"HDM ": "Heidelberg",
b"Lino": "Linotype",
b"lino": "Linotype",
b"lcms": "Little CMS",
b"KCMS": "Kodak",
b"MCML": "Konica Minolta",
b"MSFT": "Microsoft",
b"SIGN": "Mutoh",
b"RGMS": "DeviceLink",
b"SICC": "SampleICC",
b"32BT": "the imaging factory",
b"WTG ": "Ware to Go",
b"zc00": "Zoran",
}
ENCODINGS = {
"mac": {
141: "africaans",
36: "albanian",
85: "amharic",
12: "arabic",
51: "armenian",
68: "assamese",
134: "aymara",
49: "azerbaijani-cyrllic",
50: "azerbaijani-arabic",
129: "basque",
67: "bengali",
137: "dzongkha",
142: "breton",
44: "bulgarian",
77: "burmese",
46: "byelorussian",
78: "khmer",
130: "catalan",
92: "chewa",
33: "simpchinese",
19: "tradchinese",
18: "croatian",
38: "czech",
7: "danish",
4: "dutch",
0: "roman",
94: "esperanto",
27: "estonian",
30: "faeroese",
31: "farsi",
13: "finnish",
34: "flemish",
1: "french",
140: "galician",
144: "scottishgaelic",
145: "manxgaelic",
52: "georgian",
2: "german",
14: "greek-monotonic",
148: "greek-polytonic",
133: "guarani",
69: "gujarati",
10: "hebrew",
21: "hindi",
26: "hungarian",
15: "icelandic",
81: "indonesian",
143: "inuktitut",
35: "irishgaelic",
146: "irishgaelic-dotsabove",
3: "italian",
11: "japanese",
138: "javaneserom",
73: "kannada",
61: "kashmiri",
48: "kazakh",
90: "kiryarwanda",
54: "kirghiz",
91: "rundi",
23: "korean",
60: "kurdish",
79: "lao",
131: "latin",
28: "latvian",
24: "lithuanian",
43: "macedonian",
93: "malagasy",
83: "malayroman-latin",
84: "malayroman-arabic",
72: "malayalam",
16: "maltese",
66: "marathi",
53: "moldavian",
57: "mongolian",
58: "mongolian-cyrillic",
64: "nepali",
9: "norwegian",
71: "oriya",
87: "oromo",
59: "pashto",
25: "polish",
8: "portuguese",
70: "punjabi",
132: "quechua",
37: "romanian",
32: "russian",
29: "sami",
65: "sanskrit",
42: "serbian",
62: "sindhi",
76: "sinhalese",
39: "slovak",
40: "slovenian",
88: "somali",
6: "spanish",
139: "sundaneserom",
89: "swahili",
5: "swedish",
82: "tagalog",
55: "tajiki",
74: "tamil",
135: "tatar",
75: "telugu",
22: "thai",
63: "tibetan",
86: "tigrinya",
147: "tongan",
17: "turkish",
56: "turkmen",
136: "uighur",
45: "ukrainian",
20: "urdu",
47: "uzbek",
80: "vietnamese",
128: "welsh",
41: "yiddish",
}
}
COLORANTS = {
0: {"description": "unknown", "channels": ()},
1: {
"description": "ITU-R BT.709",
"channels": ((0.64, 0.33), (0.3, 0.6), (0.15, 0.06)),
},
2: {
"description": "SMPTE RP145-1994",
"channels": ((0.63, 0.34), (0.31, 0.595), (0.155, 0.07)),
},
3: {
"description": "EBU Tech.3213-E",
"channels": ((0.64, 0.33), (0.29, 0.6), (0.15, 0.06)),
},
4: {
"description": "P22",
"channels": ((0.625, 0.34), (0.28, 0.605), (0.155, 0.07)),
},
}
GEOMETRY = {0: "unknown", 1: "0/45 or 45/0", 2: "0/d or d/0"}
ILLUMINANTS = {
0: "unknown",
1: "D50",
2: "D65",
3: "D93",
4: "F2",
5: "D55",
6: "A",
7: "E",
8: "F8",
}
OBSERVERS = {0: "unknown", 1: "CIE 1931", 2: "CIE 1964"}
MANUFACTURERS = {
b"ADBE": "Adobe Systems Incorporated",
b"APPL": "Apple Computer, Inc.",
b"agfa": "Agfa Graphics N.V.",
b"argl": "ArgyllCMS", # Not registered
b"DCAL": "DisplayCAL", # Not registered
b"bICC": "basICColor GmbH",
b"DL&C": "Digital Light & Color",
b"EPSO": "Seiko Epson Corporation",
b"HDM ": "Heidelberger Druckmaschinen AG",
b"HP ": "Hewlett-Packard",
b"KODA": "Kodak",
b"lcms": "Little CMS",
b"MONS": "Monaco Systems Inc.",
b"MSFT": "Microsoft Corporation",
b"qato": "QUATOGRAPHIC Technology GmbH",
b"XRIT": "X-Rite",
}
PLATFORM = {
b"APPL": "Apple",
b"MSFT": "Microsoft",
b"SGI ": "Silicon Graphics",
b"SUNW": "Sun Microsystems",
}
PROFILE_CLASS = {
b"scnr": "Input device profile",
b"mntr": "Display device profile",
b"prtr": "Output device profile",
b"link": "DeviceLink profile",
b"spac": "Color space Conversion profile",
b"abst": "Abstract profile",
b"nmcl": "Named color profile",
}
TAGS = {
"A2B0": "Device to PCS: Intent 0",
"A2B1": "Device to PCS: Intent 1",
"A2B2": "Device to PCS: Intent 2",
"B2A0": "PCS to device: Intent 0",
"B2A1": "PCS to device: Intent 1",
"B2A2": "PCS to device: Intent 2",
"CIED": "Characterization measurement values", # Non-standard
"DevD": "Characterization device values", # Non-standard
"arts": "Absolute to media relative transform", # Non-standard (Argyll)
"bkpt": "Media black point",
"bTRC": "Blue tone response curve",
"bXYZ": "Blue matrix column",
"chad": "Chromatic adaptation transform",
"ciis": "Colorimetric intent image state",
"clro": "Colorant order",
"cprt": "Copyright",
"desc": "Description",
"dmnd": "Device manufacturer name",
"dmdd": "Device model name",
"gamt": "Out of gamut tag",
"gTRC": "Green tone response curve",
"gXYZ": "Green matrix column",
"kTRC": "Gray tone response curve",
"lumi": "Luminance",
"meas": "Measurement type",
"mmod": "Make and model",
"ncl2": "Named colors",
"pseq": "Profile sequence description",
"rTRC": "Red tone response curve",
"rXYZ": "Red matrix column",
"targ": "Characterization target",
"tech": "Technology",
"vcgt": "Video card gamma table",
"view": "Viewing conditions",
"vued": "Viewing conditions description",
"wtpt": "Media white point",
}
TECH = {
"fscn": "Film scanner",
"dcam": "Digital camera",
"rscn": "Reflective scanner",
"ijet": "Ink jet printer",
"twax": "Thermal wax printer",
"epho": "Electrophotographic printer",
"esta": "Electrostatic printer",
"dsub": "Dye sublimation printer",
"rpho": "Photographic paper printer",
"fprn": "Film writer",
"vidm": "Video monitor",
"vidc": "Video camera",
"pjtv": "Projection television",
"CRT ": "Cathode ray tube display",
"PMD ": "Passive matrix display",
"AMD ": "Active matrix display",
"KPCD": "Photo CD",
"imgs": "Photographic image setter",
"grav": "Gravure",
"offs": "Offset lithography",
"silk": "Silkscreen",
"flex": "Flexography",
"mpfs": "Motion picture film scanner",
"mpfr": "Motion picture film recorder",
"dmpc": "Digital motion picture camera",
"dcpj": "Digital cinema projector",
}
CIIS = {
"scoe": "Scene colorimetry estimates",
"sape": "Scene appearance estimates",
"fpce": "Focal plane colorimetry estimates",
"rhoc": "Reflection hardcopy original colorimetry",
"rpoc": "Reflection print output colorimetry",
}
def legacy_PCSLab_dec_to_uInt16(L, a, b):
# ICCv2 (legacy) PCS L*a*b* encoding
# Only used by LUT16Type and namedColor2Type in ICCv4
return [
v * (652.80, 256, 256)[i] + (0, 32768, 32768)[i]
for i, v in enumerate((L, a, b))
]
def legacy_PCSLab_uInt16_to_dec(L_uInt16, a_uInt16, b_uInt16):
# ICCv2 (legacy) PCS L*a*b* encoding
# Only used by LUT16Type and namedColor2Type in ICCv4
return [
(v - (0, 32768, 32768)[i]) / (65280.0, 32768.0, 32768.0)[i] * (100, 128, 128)[i]
for i, v in enumerate((L_uInt16, a_uInt16, b_uInt16))
]
def create_RGB_A2B_XYZ(input_curves, clut, logfn=print):
"""Create RGB device A2B from input curve XYZ values and cLUT
Note that input curves and cLUT should already be adapted to D50.
"""
if len(input_curves) != 3:
raise ValueError(f"Wrong number of input curves: {len(input_curves)}")
white_XYZ = clut[-1][-1]
clutres = len(clut[0])
itable = LUT16Type(None, "A2B0")
itable.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
# Input curve interpolation
# Normlly the input curves would either be linear (= 1:1 mapping to
# cLUT) or the respective tone response curve.
# We use a overall linear curve that is 'bent' in <clutres> intervals
# to accomodate the non-linear TRC. Thus, we can get away with much
# fewer cLUT grid points.
# Use higher interpolation size than actual number of curve entries
steps = 2**15 + 1
maxv = steps - 1.0
fwd = []
bwd = []
for i, input_curve in enumerate(input_curves):
if isinstance(input_curve, (tuple, list)):
linear = [v / (len(input_curve) - 1.0) for v in range(len(input_curve))]
fwd.append(colormath.Interp(linear, input_curve, use_numpy=True))
bwd.append(colormath.Interp(input_curve, linear, use_numpy=True))
else:
# Gamma
fwd.append(lambda v, p=input_curve: colormath.specialpow(v, p))
bwd.append(lambda v, p=input_curve: colormath.specialpow(v, 1.0 / p))
itable.input.append([])
itable.output.append([0, 65535])
logfn("cLUT input curve segments:", clutres)
for i in range(3):
maxi = bwd[i](white_XYZ[1])
segment = 1.0 / (clutres - 1.0) * maxi
iv = 0.0
prevpow = fwd[i](0.0)
nextpow = fwd[i](segment)
prevv = 0
pprevpow = 0
clipped = nextpow <= prevpow
xp = []
for j in range(steps):
v = (j / maxv) * maxi
if v > iv + segment:
iv += segment
prevpow = nextpow
nextpow = fwd[i](iv + segment)
clipped = nextpow <= prevpow
logfn(
"#{:d} {}".format(int(iv * (clutres - 1)), "XYZ"[i]),
f"prev {prevpow:.6f}",
f"next {nextpow:.6f}",
"clip",
clipped,
)
if not clipped:
prevs = 1.0 - (v - iv) / segment
nexts = (v - iv) / segment
vv = prevs * prevpow + nexts * nextpow
prevv = v
pprevpow = prevpow
else:
# Linearly interpolate
vv = colormath.convert_range(v, prevv, 1, prevpow, 1)
out = bwd[i](vv)
xp.append(out)
# Fill input curves from interpolated values
interp = colormath.Interp(xp, list(range(steps)), use_numpy=True)
entries = 2049
threshold = bwd[i](pprevpow)
k = None
for j in range(entries):
n = j / (entries - 1.0)
v = interp(n) / maxv
if clipped and n + (1 / (entries - 1.0)) > threshold:
# Linear interpolate shaper for last n cLUT steps to prevent
# clipping in shaper
if k is None:
k = j
ov = v
v = min(ov + (1.0 - ov) * ((j - k) / (entries - k - 1.0)), 1.0)
# Slope limit for 16-bit encoding
itable.input[i].append(max(v, j / 65535.0) * 65535)
# Fill cLUT
clut = list(clut)
itable.clut = []
step = 1.0 / (clutres - 1.0)
for R in range(clutres):
for G in range(clutres):
row = list(clut.pop(0))
itable.clut.append([])
for B in range(clutres):
X, Y, Z = row.pop(0)
itable.clut[-1].append(
[max(v / white_XYZ[1] * 32768, 0) for v in (X, Y, Z)]
)
return itable
def create_synthetic_clut_profile(
rgb_space,
description,
XYZbp=None,
white_Y=1.0,
clutres=9,
entries=2049,
cat="Bradford",
):
"""Create a synthetic cLUT profile from a colorspace definition"""
profile = ICCProfile()
profile.version = 2.2 # Match ArgyllCMS
profile.tags.desc = TextDescriptionType(b"", "desc")
profile.tags.desc.ASCII = description
profile.tags.cprt = TextType(b"text\0\0\0\0Public domain\0", "cprt")
profile.tags.wtpt = XYZType(profile=profile)
(
profile.tags.wtpt.X,
profile.tags.wtpt.Y,
profile.tags.wtpt.Z,
) = colormath.get_whitepoint(rgb_space[1])
profile.tags.arts = chromaticAdaptionTag()
profile.tags.arts.update(colormath.get_cat_matrix(cat))
itable = profile.tags.A2B0 = LUT16Type(None, "A2B0", profile)
itable.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
otable = profile.tags.B2A0 = LUT16Type(None, "B2A0", profile)
Xr, Yr, Zr = colormath.adapt(
*colormath.RGB2XYZ(1, 0, 0, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
Xg, Yg, Zg = colormath.adapt(
*colormath.RGB2XYZ(0, 1, 0, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
Xb, Yb, Zb = colormath.adapt(
*colormath.RGB2XYZ(0, 0, 1, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
m1 = colormath.Matrix3x3(((Xr, Xg, Xb), (Yr, Yg, Yb), (Zr, Zg, Zb))).inverted()
scale = 1 + (32767 / 32768.0)
m3 = colormath.Matrix3x3(((scale, 0, 0), (0, scale, 0), (0, 0, scale)))
otable.matrix = m1 * m3
# Input curve interpolation
# Normlly the input curves would either be linear (= 1:1 mapping to
# cLUT) or the respective tone response curve.
# We use a overall linear curve that is 'bent' in <clutres> intervals
# to accomodate the non-linear TRC. Thus, we can get away with much
# fewer cLUT grid points.
# Use higher interpolation size than actual number of curve entries
steps = 2**15 + 1
maxv = steps - 1.0
gammas = rgb_space[0]
if not isinstance(gammas, (list, tuple)):
gammas = [gammas]
for i, gamma in enumerate(gammas):
maxi = colormath.specialpow(white_Y, 1.0 / gamma)
segment = 1.0 / (clutres - 1.0) * maxi
iv = 0.0
prevpow = 0.0
nextpow = colormath.specialpow(segment, gamma)
xp = []
for j in range(steps):
v = (j / maxv) * maxi
if v > iv + segment:
iv += segment
prevpow = nextpow
nextpow = colormath.specialpow(iv + segment, gamma)
prevs = 1.0 - (v - iv) / segment
nexts = (v - iv) / segment
vv = prevs * prevpow + nexts * nextpow
out = colormath.specialpow(vv, 1.0 / gamma)
xp.append(out)
interp = colormath.Interp(xp, list(range(steps)), use_numpy=True)
# Create input curves
itable.input.append([])
otable.input.append([])
for j in range(4096):
otable.input[i].append(
colormath.specialpow(j / 4095.0 * white_Y, 1.0 / gamma) * 65535
)
# Fill input curves from interpolated values
for j in range(entries):
v = j / (entries - 1.0)
itable.input[i].append(interp(v) / maxv * 65535)
# Fill remaining input curves from first input curve and create output curves
for i in range(3):
if len(itable.input) < 3:
itable.input.append(itable.input[0])
otable.input.append(otable.input[0])
itable.output.append([0, 65535])
otable.output.append([0, 65535])
# Create and fill cLUT
itable.clut = []
step = 1.0 / (clutres - 1.0)
for R in range(clutres):
for G in range(clutres):
itable.clut.append([])
for B in range(clutres):
X, Y, Z = colormath.adapt(
*colormath.RGB2XYZ(
*[v * step * maxi for v in (R, G, B)], rgb_space=rgb_space
),
whitepoint_source=rgb_space[1],
cat=cat,
)
X, Y, Z = colormath.blend_blackpoint(X, Y, Z, None, XYZbp)
itable.clut[-1].append([max(v / white_Y * 32768, 0) for v in (X, Y, Z)])
otable.clut = []
for R in range(2):
for G in range(2):
otable.clut.append([])
for B in range(2):
otable.clut[-1].append([v * 65535 for v in (R, G, B)])
return profile
def create_synthetic_smpte2084_clut_profile(
rgb_space,
description,
black_cdm2=0,
white_cdm2=400,
master_black_cdm2=0,
master_white_cdm2=10000,
use_alternate_master_white_clip=True,
content_rgb_space="DCI P3",
rolloff=True,
clutres=33,
mode="HSV_ICtCp",
sat=1.0,
hue=0.5,
forward_xicclu=None,
backward_xicclu=None,
generate_B2A=False,
worker=None,
logfile=None,
cat="Bradford",
):
"""Create a synthetic cLUT profile with the SMPTE 2084 TRC from a colorspace
definition
mode: The gamut mapping mode when rolling off. Valid values:
"HSV_ICtCp" (default, recommended)
"ICtCp"
"XYZ" (not recommended, unpleasing hue shift)
"HSV" (not recommended, saturation loss)
"RGB" (not recommended, saturation loss, pleasing hue shift)
The roll-off saturation and hue preservation can be controlled.
sat: Saturation preservation factor [0.0, 1.0]
0.0 = Favor luminance preservation over saturation
1.0 = Favor saturation preservation over luminance
hue: Selective hue preservation factor [0.0, 1.0]
0.0 = Allow hue shift for redorange/orange/yellowgreen towards
yellow to preserve more saturation and detail
1.0 = Preserve hue
"""
if not rolloff:
raise NotImplementedError("rolloff needs to be True")
return create_synthetic_hdr_clut_profile(
"PQ",
rgb_space,
description,
black_cdm2,
white_cdm2,
master_black_cdm2,
master_white_cdm2,
use_alternate_master_white_clip,
1.2, # Not used for PQ
5.0, # Not used for PQ
1.0, # Not used for PQ
content_rgb_space,
clutres,
mode,
sat,
hue,
forward_xicclu,
backward_xicclu,
generate_B2A,
worker,
logfile,
cat,
)
def create_synthetic_hdr_clut_profile(
hdr_format,
rgb_space,
description,
black_cdm2=0,
white_cdm2=400,
master_black_cdm2=0, # Not used for HLG
master_white_cdm2=10000, # Not used for HLG
use_alternate_master_white_clip=True, # Not used for HLG
system_gamma=1.2, # Not used for PQ
ambient_cdm2=5, # Not used for PQ
maxsignal=1.0, # Not used for PQ
content_rgb_space="DCI P3",
clutres=33,
mode="HSV_ICtCp", # Not used for HLG
sat=1.0, # Not used for HLG
hue=0.5, # Not used for HLG
forward_xicclu=None,
backward_xicclu=None,
generate_B2A=False,
worker=None,
logfile=None,
cat="Bradford",
):
"""Create a synthetic HDR cLUT profile from a colorspace definition"""
rgb_space = colormath.get_rgb_space(rgb_space)
content_rgb_space = colormath.get_rgb_space(content_rgb_space)
if hdr_format == "PQ":
bt2390 = colormath.BT2390(
black_cdm2,
white_cdm2,
master_black_cdm2,
master_white_cdm2,
use_alternate_master_white_clip,
)
# Preserve detail in saturated colors if mastering display peak < 10K cd/m2
# XXX: Effect is detrimental to contrast at low target peak, and looks
# artificial for BT.2390-4. Don't use for now.
preserve_saturated_detail = False # master_white_cdm2 < 10000
if preserve_saturated_detail:
bt2390s = colormath.BT2390(black_cdm2, white_cdm2, master_black_cdm2, 10000)
maxv = white_cdm2 / 10000.0
eotf = lambda v: colormath.specialpow(v, -2084)
oetf = eotf_inverse = lambda v: colormath.specialpow(v, 1.0 / -2084)
eetf = bt2390.apply
# Apply a slight power to the segments to optimize encoding
encpow = min(max(bt2390.omaxi * (5 / 3.0), 1.0), 1.5)
def encf(v):
if v < bt2390.mmaxi:
v = colormath.convert_range(v, 0, bt2390.mmaxi, 0, 1)
v = colormath.specialpow(v, 1.0 / encpow, 2)
return colormath.convert_range(v, 0, 1, 0, bt2390.mmaxi)
else:
return v
def encf_inverse(v):
if v < bt2390.mmaxi:
v = colormath.convert_range(v, 0, bt2390.mmaxi, 0, 1)
v = colormath.specialpow(v, encpow, 2)
return colormath.convert_range(v, 0, 1, 0, bt2390.mmaxi)
else:
return v
elif hdr_format == "HLG":
# Note: Unlike the PQ black level lift, we apply HLG black offset as
# separate final step, not as part of the HLG EOTF
hlg = colormath.HLG(0, white_cdm2, system_gamma, ambient_cdm2, rgb_space)
if maxsignal < 1:
# Adjust EOTF so that EOTF[maxsignal] gives (approx) white_cdm2
while hlg.eotf(maxsignal) * hlg.white_cdm2 < white_cdm2:
hlg.white_cdm2 += 1
lscale = 1.0 / hlg.oetf(1.0, True)
hlg.white_cdm2 *= lscale
if lscale < 1 and logfile:
logfile.write(
f"Nominal peak luminance after scaling = {hlg.white_cdm2:.2f}\n"
)
Ymax = hlg.eotf(maxsignal)
maxv = 1.0
eotf = hlg.eotf
eotf_inverse = lambda v: hlg.eotf(v, True)
oetf = hlg.oetf
eetf = lambda v: v
encf = lambda v: v
else:
raise NotImplementedError(f"Unknown HDR format {repr(hdr_format)}")
tonemap = eetf(1) != 1
profile = ICCProfile()
profile.version = 2.2 # Match ArgyllCMS
profile.tags.desc = TextDescriptionType(b"", "desc")
profile.tags.desc.ASCII = description
profile.tags.cprt = TextType(b"text\0\0\0\0Public domain\0", "cprt")
profile.tags.wtpt = XYZType(profile=profile)
(
profile.tags.wtpt.X,
profile.tags.wtpt.Y,
profile.tags.wtpt.Z,
) = colormath.get_whitepoint(rgb_space[1])
profile.tags.arts = chromaticAdaptionTag()
profile.tags.arts.update(colormath.get_cat_matrix(cat))
itable = profile.tags.A2B0 = LUT16Type(None, "A2B0", profile)
itable.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
# HDR RGB
debugtable0 = profile.tags.DBG0 = LUT16Type(None, "DBG0", profile)
debugtable0.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
# Display RGB
debugtable1 = profile.tags.DBG1 = LUT16Type(None, "DBG1", profile)
debugtable1.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
# Display XYZ
debugtable2 = profile.tags.DBG2 = LUT16Type(None, "DBG2", profile)
debugtable2.matrix = colormath.Matrix3x3([(1, 0, 0), (0, 1, 0), (0, 0, 1)])
if generate_B2A:
otable = profile.tags.B2A0 = LUT16Type(None, "B2A0", profile)
Xr, Yr, Zr = colormath.adapt(
*colormath.RGB2XYZ(1, 0, 0, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
Xg, Yg, Zg = colormath.adapt(
*colormath.RGB2XYZ(0, 1, 0, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
Xb, Yb, Zb = colormath.adapt(
*colormath.RGB2XYZ(0, 0, 1, rgb_space=rgb_space),
whitepoint_source=rgb_space[1],
cat=cat,
)
m1 = colormath.Matrix3x3(((Xr, Xg, Xb), (Yr, Yg, Yb), (Zr, Zg, Zb)))
m2 = m1.inverted()
scale = 1 + (32767 / 32768.0)
m3 = colormath.Matrix3x3(((scale, 0, 0), (0, scale, 0), (0, 0, scale)))
otable.matrix = m2 * m3
# Input curve interpolation
# Normlly the input curves would either be linear (= 1:1 mapping to
# cLUT) or the respective tone response curve.
# We use a overall linear curve that is 'bent' in <clutres> intervals
# to accomodate the non-linear TRC. Thus, we can get away with much
# fewer cLUT grid points.
# Use higher interpolation size than actual number of curve entries
steps = 2**15 + 1
maxstep = steps - 1.0
segment = 1.0 / (clutres - 1.0)
iv = 0.0
prevpow = eotf(eetf(0))
# Apply a slight power to segments to optimize encoding
nextpow = eotf(eetf(encf(segment)))
prevv = 0
pprevpow = [0]
clipped = False
xp = []
if generate_B2A:
oxp = []
for j in range(steps):
v = j / maxstep
if v > iv + segment:
iv += segment
prevpow = nextpow
# Apply a slight power to segments to optimize encoding
nextpow = eotf(eetf(encf(iv + segment)))
if nextpow > prevpow or test_input_curve_clipping:
prevs = 1.0 - (v - iv) / segment
nexts = (v - iv) / segment
vv = prevs * prevpow + nexts * nextpow
prevv = v
if prevpow > pprevpow[-1]:
pprevpow.append(prevpow)
else:
clipped = True
# Linearly interpolate
vv = colormath.convert_range(v, prevv, 1, prevpow, 1)
out = eotf_inverse(vv)
xp.append(out)
if generate_B2A:
oxp.append(eotf(eetf(v)) / maxv)
interp = colormath.Interp(xp, list(range(steps)), use_numpy=True)
if generate_B2A:
ointerp = colormath.Interp(oxp, list(range(steps)), use_numpy=True)
# Save interpolation input values for diagnostic purposes
profile.tags.kTRC = CurveType()
interp_inverse = colormath.Interp(list(range(steps)), xp, use_numpy=True)
profile.tags.kTRC[:] = [
interp_inverse(colormath.convert_range(v, 0, 2048, 0, maxstep)) * 65535
for v in range(2049)
]
# Create input and output curves
for _i in range(3):
itable.input.append([])
itable.output.append([0, 65535])
debugtable0.input.append([0, 65535])
debugtable0.output.append([0, 65535])
debugtable1.input.append([0, 65535])
debugtable1.output.append([0, 65535])
debugtable2.input.append([0, 65535])
debugtable2.output.append([0, 65535])
if generate_B2A:
otable.input.append([])
otable.output.append([0, 65535])
# Generate device-to-PCS shaper curves from interpolated values
if logfile:
logfile.write("Generating device-to-PCS shaper curves...\n")
entries = 1025
prevperc = 0
if generate_B2A:
endperc = 1
else:
endperc = 2
threshold = eotf_inverse(pprevpow[-2])
k = None
end = eotf_inverse(pprevpow[-1])
l = entries - 1
if end > threshold:
for j in range(entries):
n = j / (entries - 1.0)
if eetf(n) > end:
l = j - 1
break
for j in range(entries):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
n = j / (entries - 1.0)
v = interp(eetf(n)) / maxstep
if hdr_format == "PQ":
# threshold = 1.0 - segment * math.ceil((1.0 - bt2390.mmaxi) *
# (clutres - 1.0) + 1)
# check = n >= threshold
check = tonemap and eetf(n + (1 / (entries - 1.0))) > threshold
elif hdr_format == "HLG":
check = maxsignal < 1 and n >= maxsignal
if check and not test_input_curve_clipping:
# Linear interpolate shaper for last n cLUT steps to prevent
# clipping in shaper
if k is None:
k = j
ov = v
ev = interp(eetf(l / (entries - 1.0))) / maxstep
# v = min(ov + (1.0 - ov) * ((j - k) / (entries - k - 1.0)), 1.0)
v = min(colormath.convert_range(j, k, l, ov, ev), n)
for i in range(3):
itable.input[i].append(v * 65535)
perc = math.floor(n * endperc)
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
startperc = perc
if generate_B2A:
# Generate PCS-to-device shaper curves from interpolated values
if logfile:
logfile.write("\rGenerating PCS-to-device shaper curves...\n")
logfile.write(f"\r{perc:.0f}%")
for j in range(4096):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
n = j / 4095.0
v = ointerp(n) / maxstep * 65535
for i in range(3):
otable.input[i].append(v)
perc = startperc + math.floor(n)
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
startperc = perc
# Scene RGB -> HDR tone mapping -> HDR XYZ -> backward lookup -> display RGB
itable.clut = []
debugtable0.clut = []
debugtable1.clut = []
debugtable2.clut = []
clutmax = clutres - 1.0
step = 1.0 / clutmax
count = 0
# Lpt is the preferred mode for chroma blending. Some preliminary visual
# comparison has shown it does overall the best job preserving hue and
# saturation (blue hues superior to IPT). DIN99d is the second best,
# but vibrant red turns slightly orange when desaturated (DIN99d has best
# blue saturation preservation though).
blendmode = "Lpt"
IPT_white_XYZ = colormath.get_cat_matrix("IPT").inverted() * (1, 1, 1)
Cmode = ("all", "primaries_secondaries")[0]
RGB_in = []
HDR_ICtCp = []
HDR_RGB = []
HDR_XYZ = []
HDR_min_I = []
logmsg = "\rGenerating lookup table"
if hdr_format == "PQ" and tonemap:
logmsg += " and applying HDR tone mapping"
endperc = 25
else:
endperc = 50
if logfile:
logfile.write(f"{logmsg}...\n")
logfile.write(f"\r{perc:.0f}%")
# Selective hue preservation for redorange/orange
# (otherwise shift towards yellow to preserve more saturation and detail)
# Hue angles (RGB):
# red, yellow, yellow, green, red
hinterp = colormath.Interp(
[0, 0.166666, 0.166666, 1], [1, hue, 1, 1], use_numpy=True
)
# Saturation adjustment for yellow/green/cyan
# Hue angles (RGB):
# red, orange, yellow, green, cyan, cyan/blue, red
sinterp = colormath.Interp(
[0, 0.083333, 0.166666, 0.333333, 0.5, 0.583333, 1],
[1, 1, 0.5, 0.5, 0.5, 1, 1],
use_numpy=True,
)
for R in range(clutres):
for G in range(clutres):
for B in range(clutres):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
# Apply a slight power to the segments to optimize encoding
RGB = [encf(v * step) for v in (R, G, B)]
RGB_in.append(tuple(RGB))
if DEBUG and R == G == B:
print("RGB {:5.3f} {:5.3f} {:5.3f}".format(*RGB), end=" ")
# RGB_sum = sum(RGB)
if hdr_format == "PQ" and mode in (
"HSV",
"HSV_ICtCp",
"ICtCp",
"RGB_ICtCp",
):
# Record original hue angle, saturation and value
H, S, V = colormath.RGB2HSV(*RGB)
if hdr_format == "PQ" and mode in ("HSV_ICtCp", "ICtCp", "RGB_ICtCp"):
I1, Ct1, Cp1 = colormath.RGB2ICtCp(
*RGB, rgb_space=rgb_space, eotf=eotf, oetf=eotf_inverse
)
if DEBUG and R == G == B:
print(
f"-> ICtCp {I1:5.3f} {Ct1:5.3f} {Cp1:5.3f}",
end=" ",
)
I2 = eetf(I1)
if preserve_saturated_detail and S:
sf = S
I2 *= 1 - sf
I2 += bt2390s.apply(I1) * sf
if hdr_format == "HLG":
X, Y, Z = hlg.RGB2XYZ(*RGB)
if Y:
Y1 = Y
I1 = hlg.eotf(Y, True)
I2 = min(I1, maxsignal)
Y2 = hlg.eotf(I2)
Y3 = Y2 / Ymax
X, Y, Z = (v / Y * Y3 if Y else v for v in (X, Y, Z))
if R == G == B and logfile and DEBUG:
logfile.write(
f"\rE {Y1:.4f} -> E' {I1:.4f} -> roll-off -> "
f"{I2:.4f} -> E {Y2:.4f} -> "
f"scale ({Y3 / Y2:.0%}) -> {Y3:.4f}\n"
)
elif mode == "XYZ":
X, Y, Z = colormath.RGB2XYZ(*RGB, rgb_space=rgb_space, eotf=eotf)
if Y:
I1 = colormath.specialpow(Y, 1.0 / -2084)
I2 = eetf(I1)
Y2 = colormath.specialpow(I2, -2084)
X, Y, Z = (v / Y * Y2 for v in (X, Y, Z))
else:
I1 = I2 = 0
elif mode in ("HSV", "HSV_ICtCp", "ICtCp", "RGB", "RGB_ICtCp"):
if mode in ("HSV", "RGB"):
I1 = max(RGB)
if mode in ("HSV", "HSV_ICtCp", "ICtCp", "RGB_ICtCp"):
# Allow hue shift based on hue angle
hf = hinterp(H)
# Saturation adjustment
cf = sinterp(H)
for i, v in enumerate(RGB):
RGB[i] = eetf(v)
if preserve_saturated_detail and S:
sf = S
RGB[i] *= 1 - sf
RGB[i] += bt2390s.apply(v) * sf
RGB_shifted = RGB # Potentially hue shifted RGB
if mode in ("HSV", "HSV_ICtCp"):
HSV = list(colormath.RGB2HSV(*RGB_shifted))
if mode == "HSV":
# Allow hue shift based on hue angle
H = H * hf + HSV[0] * (1 - hf)
# Set hue angle
HSV[0] = H
RGB = colormath.HSV2RGB(*HSV)
if mode in ("HSV", "RGB"):
I2 = max(RGB)
elif mode == "YRGB":
LinearRGB = [eotf(v) for v in RGB]
I1 = (
0.2627 * LinearRGB[0]
+ 0.678 * LinearRGB[1]
+ 0.0593 * LinearRGB[2]
)
I2 = eotf(eetf(eotf_inverse(I1)))
if I1:
min_I = I2 / I1
else:
min_I = 1
RGB = [eotf_inverse(min_I * v) for v in LinearRGB]
if (
hdr_format == "PQ"
and mode in ("HSV_ICtCp", "ICtCp", "RGB_ICtCp", "XYZ")
and I1
and I2
):
if mode != "ICtCp" or (forward_xicclu and backward_xicclu):
# Don't desaturate colors which are lighter after
# roll-off if mode is not ICtCp or if doing
# display-based desaturation
dsat = 1.0
else:
# Desaturate colors which are lighter after roll-off
# if mode is ICtCp and not doing display-based
# desaturation
dsat = I1 / I2
min_I = min(dsat, I2 / I1)
else:
min_I = 1
if hdr_format == "PQ" and mode in ("HSV_ICtCp", "ICtCp", "RGB_ICtCp"):
if DEBUG and R == G == B:
print(f"* {min_I:5.3f}", "->", end=" ")
Ct2, Cp2 = (min_I * v for v in (Ct1, Cp1))
if DEBUG and R == G == B:
print(f"{I2:5.3f} {Ct2:5.3f} {Cp2:5.3f}", "->", end=" ")
if hdr_format == "HLG":
pass
elif mode == "XYZ":
X, Y, Z = colormath.XYZsaturation(X, Y, Z, min_I, rgb_space[1])[0]
RGB = colormath.XYZ2RGB(X, Y, Z, rgb_space, oetf=eotf_inverse)
elif mode == "ICtCp":
X, Y, Z = colormath.ICtCp2XYZ(I2, Ct2, Cp2)
RGB = colormath.XYZ2RGB(
X, Y, Z, rgb_space, clamp=False, oetf=eotf_inverse
)
if DEBUG and R == G == B:
print("RGB {:5.3f} {:5.3f} {:5.3f}".format(*RGB))
HDR_RGB.append(RGB)
if hdr_format == "HLG":
pass
elif mode not in ("XYZ", "ICtCp"):
X, Y, Z = colormath.RGB2XYZ(*RGB, rgb_space=rgb_space, eotf=eotf)
if hdr_format == "PQ" and mode in ("HSV_ICtCp", "ICtCp", "RGB_ICtCp"):
# Use hue and chroma from ICtCp
I, Ct, Cp = colormath.XYZ2ICtCp(X, Y, Z)
L, C, H = colormath.Lab2LCHab(I * 100, Ct * 100, Cp * 100)
L2, C2, H2 = colormath.Lab2LCHab(I2 * 100, Ct2 * 100, Cp2 * 100)
# Allow hue shift based on hue angle
I3, Ct3, Cp3 = colormath.RGB2ICtCp(
*RGB_shifted, rgb_space=rgb_space, eotf=eotf, oetf=eotf_inverse
)
L3, C3, H3 = colormath.Lab2LCHab(I3 * 100, Ct3 * 100, Cp3 * 100)
L = L * hf + L3 * (1 - hf)
C = C * hf + C3 * (1 - hf)
H2 = H2 * hf + H3 * (1 - hf)
# Saturation adjustment
C = colormath.convert_range(I1, I2, 1, C2, min(C2, C) * cf)
I, Ct2, Cp2 = (v / 100.0 for v in colormath.LCHab2Lab(L, C, H2))
Ct, Cp = Ct2, Cp2
if I1 > I2:
f = colormath.convert_range(I1, I2, 1, 1, 0)
Ct2, Cp2 = (v * f for v in (Ct2, Cp2))
if mode in ("HSV_ICtCp", "RGB_ICtCp"):
f = colormath.convert_range(sum(RGB_in[-1]), 0, 3, 1, sat)
Ct2 = Ct * f + Ct2 * (1 - f)
Cp2 = Cp * f + Cp2 * (1 - f)
I2 = I * f + I2 * (1 - f)
X, Y, Z = colormath.ICtCp2XYZ(I2, Ct2, Cp2)
RGB_ICtCp_XYZ = list((X, Y, Z))
else:
# RGB_ICtCp_XYZ = [v / maxv for v in (X, Y, Z)]
RGB_ICtCp_XYZ = [X, Y, Z]
# X, Y, Z = (v / maxv for v in (X, Y, Z))
HDR_XYZ.append((RGB_in[-1], [X, Y, Z], RGB_ICtCp_XYZ))
HDR_min_I.append(min_I)
count += 1
perc = startperc + math.floor(
count / clutres**3.0 * (endperc - startperc)
)
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
if hdr_format == "PQ" and tonemap:
from DisplayCAL.multiprocess import cpu_count, pool_slice
num_cpus = cpu_count()
num_workers = num_cpus
if num_cpus > 2:
num_workers -= 1
num_batches = clutres // 6
HDR_XYZ = sum(
pool_slice(
_mp_hdr_tonemap,
HDR_XYZ,
(rgb_space, maxv, sat, cat),
{},
num_workers,
worker and worker.thread_abort,
logfile,
num_batches,
perc,
),
[],
)
prevperc = startperc = perc = 75
else:
prevperc = startperc = perc = 50
for i, item in enumerate(HDR_XYZ):
if not item: # Aborted
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
(RGB, (X, Y, Z), RGB_ICtCp_XYZ) = item
I, Ct, Cp = colormath.XYZ2ICtCp(X, Y, Z, oetf=eotf_inverse)
X, Y, Z = (v / maxv for v in (X, Y, Z))
HDR_ICtCp.append((I, Ct, Cp))
# Adapt to D50
X, Y, Z = colormath.adapt(X, Y, Z, whitepoint_source=rgb_space[1], cat=cat)
if max(X, Y, Z) * 32768 > 65535 or min(X, Y, Z) < 0 or round(Y, 6) > 1:
# This should not happen
print(
f"#{i}",
"RGB {:.3f} {:.3f} {:.3f}".format(*RGB),
f"XYZ {X:.6f} {Y:.6f} {Z:.6f}",
"not in range [0,1]",
)
HDR_XYZ[i] = (X, Y, Z)
perc = startperc + math.floor(i / clutres**3.0 * (100 - startperc))
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
prevperc = startperc = perc = 0
if forward_xicclu and backward_xicclu and logfile:
logfile.write("\rDoing backward lookup...\n")
logfile.write(f"\r{perc:.0f}%")
count = 0
for _i, (X, Y, Z) in enumerate(HDR_XYZ):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
if forward_xicclu and backward_xicclu and Cmode != "primaries_secondaries":
# HDR XYZ -> backward lookup -> display RGB
backward_xicclu((X, Y, Z))
count += 1
perc = startperc + math.floor(count / clutres**3.0 * (100 - startperc))
if (
logfile
and perc > prevperc
and backward_xicclu.__class__.__name__ == "Xicclu"
):
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
prevperc = startperc = perc = 0
Cdiff = []
Cmax = {}
Cdmax = {}
if forward_xicclu and backward_xicclu:
# Display RGB -> forward lookup -> display XYZ
backward_xicclu.close()
try:
display_RGB = backward_xicclu.get()
except Exception:
if forward_xicclu:
# Make sure resources are not held in use
forward_xicclu.exit()
raise
finally:
backward_xicclu.exit()
if logfile:
logfile.write("\rDoing forward lookup...\n")
logfile.write(f"\r{perc:.0f}%")
# Smooth
row = 0
for col_0 in range(clutres):
for col_1 in range(clutres):
debugtable1.clut.append([])
for col_2 in range(clutres):
RGBdisp = display_RGB[row]
debugtable1.clut[-1].append(
[min(max(v * 65535, 0), 65535) for v in RGBdisp]
)
row += 1
debugtable1.smooth()
display_RGB = []
for block in debugtable1.clut:
for row in block:
display_RGB.append([v / 65535.0 for v in row])
for i, (R, G, B) in enumerate(display_RGB):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
forward_xicclu((R, G, B))
perc = startperc + math.floor((i + 1) / clutres**3.0 * (100 - startperc))
if (
logfile
and perc > prevperc
and forward_xicclu.__class__.__name__ == "Xicclu"
):
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
prevperc = startperc = perc = 0
if Cmode == "primaries_secondaries":
# Compare to chroma of content primaries/secondaries to determine
# general chroma compression factor
forward_xicclu((0, 0, 1))
forward_xicclu((0, 1, 0))
forward_xicclu((1, 0, 0))
forward_xicclu((0, 1, 1))
forward_xicclu((1, 0, 1))
forward_xicclu((1, 1, 0))
forward_xicclu.close()
display_XYZ = forward_xicclu.get()
if Cmode == "primaries_secondaries":
for i in range(6):
if i == 0:
# Blue
j = clutres - 1
elif i == 1:
# Green
j = clutres**2 - clutres
elif i == 2:
# Red
j = clutres**3 - clutres**2
elif i == 3:
# Cyan
j = clutres**2 - 1
elif i == 4:
# Magenta
j = clutres**3 - clutres**2 + clutres - 1
elif i == 5:
# Yellow
j = clutres**3 - clutres
R, G, B = RGB_in[j]
XYZsrc = HDR_XYZ[j]
XYZdisp = display_XYZ[-(6 - i)]
XYZc = colormath.RGB2XYZ(R, G, B, content_rgb_space, eotf=eotf)
XYZc = colormath.adapt(
*XYZc, whitepoint_source=content_rgb_space[1], cat=cat
)
L, C, H = colormath.XYZ2DIN99dLCH(*(v * 100 for v in XYZc))
Ld, Cd, Hd = colormath.XYZ2DIN99dLCH(*(v * 100 for v in XYZdisp))
Cdmaxk = tuple(map(round, (Ld, Hd)))
if C > Cmax.get(Cdmaxk, -1):
Cmax[Cdmaxk] = C
Cdiff.append(min(Cd / C, 1.0))
if Cd > Cdmax.get(Cdmaxk, -1):
Cdmax[Cdmaxk] = Cd
print(f"RGB in {R:5.2f} {G:5.2f} {B:5.2f}")
print(
"Content BT2020 XYZ (DIN99d) {:5.2f} {:5.2f} {:5.2f}".format(
*(v * 100 for v in XYZc)
)
)
print(f"Content BT2020 LCH (DIN99d) {L:5.2f} {C:5.2f} {H:5.2f}")
print(
"Display XYZ {:5.2f} {:5.2f} {:5.2f}".format(
*(v * 100 for v in XYZdisp)
)
)
print(f"Display LCH (DIN99d) {Ld:5.2f} {Cd:5.2f} {Hd:5.2f}")
if logfile:
logfile.write(
"\r{} chroma compression factor: {:6.4f}\n".format(
{0: "B", 1: "G", 2: "R", 3: "C", 4: "M", 5: "Y"}[i],
Cdiff[-1],
)
)
# Tweak so that it gives roughly 0.91 for a Rec. 709 target
general_compression_factor = (sum(Cdiff) / len(Cdiff)) * 0.99
else:
display_RGB = False
display_XYZ = False
display_LCH = []
if Cmode != "primaries_secondaries" and display_XYZ:
# Determine compression factor by comparing display to content
# colorspace in BT.2020
if logfile:
logfile.write("\rDetermining chroma compression factors...\n")
logfile.write(f"\r{perc:.0f}%")
for i, XYZsrc in enumerate(HDR_XYZ):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
if display_XYZ:
XYZdisp = display_XYZ[i]
# # Adjust luminance from destination to source
# Ydisp = XYZdisp[1]
# if Ydisp:
# XYZdisp = [v / Ydisp * XYZsrc[1] for v in XYZdisp]
else:
XYZdisp = XYZsrc
X, Y, Z = (v * maxv for v in XYZsrc)
X, Y, Z = colormath.adapt(
X, Y, Z, whitepoint_destination=content_rgb_space[1], cat=cat
)
R, G, B = colormath.XYZ2RGB(X, Y, Z, content_rgb_space, oetf=eotf_inverse)
XYZc = colormath.RGB2XYZ(R, G, B, content_rgb_space, eotf=eotf)
XYZc = colormath.adapt(
*XYZc,
whitepoint_source=content_rgb_space[1],
whitepoint_destination=rgb_space[1],
cat=cat,
)
RGBc_r2020 = colormath.XYZ2RGB(
*XYZc, rgb_space=rgb_space, oetf=eotf_inverse
)
XYZc_r2020 = colormath.RGB2XYZ(*RGBc_r2020, rgb_space=rgb_space, eotf=eotf)
if blendmode == "ICtCp":
I, Ct, Cp = colormath.XYZ2ICtCp(*XYZc_r2020, oetf=eotf_inverse)
L, C, H = colormath.Lab2LCHab(I * 100, Cp * 100, Ct * 100)
XYZdispa = colormath.adapt(
*XYZdisp, whitepoint_destination=rgb_space[1], cat=cat
)
Id, Ctd, Cpd = colormath.XYZ2ICtCp(
*(v * maxv for v in XYZdispa), oetf=eotf_inverse
)
Ld, Cd, Hd = colormath.Lab2LCHab(Id * 100, Cpd * 100, Ctd * 100)
elif blendmode == "IPT":
XYZc_r2020 = colormath.adapt(
*XYZc_r2020,
whitepoint_source=rgb_space[1],
whitepoint_destination=IPT_white_XYZ,
cat=cat,
)
I, CP, CT = colormath.XYZ2IPT(*XYZc_r2020)
L, C, H = colormath.Lab2LCHab(I * 100, CP * 100, CT * 100)
XYZdispa = colormath.adapt(
*XYZdisp, whitepoint_destination=IPT_white_XYZ, cat=cat
)
Id, Pd, Td = colormath.XYZ2IPT(*XYZdispa)
Ld, Cd, Hd = colormath.Lab2LCHab(Id * 100, Pd * 100, Td * 100)
elif blendmode == "Lpt":
XYZc_r2020 = colormath.adapt(
*XYZc_r2020, whitepoint_source=rgb_space[1], cat=cat
)
L, p, t = colormath.XYZ2Lpt(*(v / maxv * 100 for v in XYZc_r2020))
L, C, H = colormath.Lab2LCHab(L, p, t)
Ld, pd, td = colormath.XYZ2Lpt(*(v * 100 for v in XYZdisp))
Ld, Cd, Hd = colormath.Lab2LCHab(Ld, pd, td)
elif blendmode == "XYZ":
XYZc_r2020 = colormath.adapt(
*XYZc_r2020, whitepoint_source=rgb_space[1], cat=cat
)
wx, wy = colormath.XYZ2xyY(*colormath.get_whitepoint())[:2]
x, y, Y = colormath.XYZ2xyY(*XYZc_r2020)
x -= wx
y -= wy
L, C, H = colormath.Lab2LCHab(*(v * 100 for v in (Y, x, y)))
x, y, Y = colormath.XYZ2xyY(*XYZdisp)
x -= wx
y -= wy
Ld, Cd, Hd = colormath.Lab2LCHab(*(v * 100 for v in (Y, x, y)))
else:
# DIN99d
XYZc_r202099 = colormath.adapt(
*XYZc_r2020, whitepoint_source=rgb_space[1], cat=cat
)
L, C, H = colormath.XYZ2DIN99dLCH(
*(v / maxv * 100 for v in XYZc_r202099)
)
Ld, Cd, Hd = colormath.XYZ2DIN99dLCH(*(v * 100 for v in XYZdisp))
Cdmaxk = tuple(map(round, (Ld, Hd), (2, 2)))
if C > Cmax.get(Cdmaxk, -1):
Cmax[Cdmaxk] = C
if C:
# print(f"{Cd:6.3f} {C:6.3f}")
Cdiff.append(min(Cd / C, 1.0))
# if Cdiff[-1] < 0.0001:
# raise RuntimeError(f"#{i} RGB {R:5.3f} {G:5.3f} {B:5.3f} Cdiff {Cdiff[-1]:5.3f}")
else:
Cdiff.append(1.0)
display_LCH.append((Ld, Cd, Hd))
if Cd > Cdmax.get(Cdmaxk, -1):
Cdmax[Cdmaxk] = Cd
if DEBUG:
print("RGB in {:5.2f} {:5.2f} {:5.2f}".format(*RGB_in[i]))
print(f"RGB out {R:5.2f} {G:5.2f} {B:5.2f}")
print(
"Content BT2020 XYZ {:5.2f} {:5.2f} {:5.2f}".format(
*(v / maxv * 100 for v in XYZc_r2020)
)
)
print(f"Content BT2020 LCH {L:5.2f} {C:5.2f} {H:5.2f}")
print(
"Display XYZ {:5.2f} {:5.2f} {:5.2f}".format(
*(v * 100 for v in XYZdisp)
)
)
print(f"Display LCH {Ld:5.2f} {Cd:5.2f} {Hd:5.2f}")
perc = startperc + math.floor(i / clutres**3.0 * (80 - startperc))
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
startperc = perc
general_compression_factor = sum(Cdiff) / len(Cdiff)
if display_XYZ:
Cmaxv = max(Cmax.values())
Cdmaxv = max(Cdmax.values())
if logfile and display_LCH and Cmode == "primaries_secondaries":
logfile.write(
f"\rChroma compression factor: {general_compression_factor:6.4f}\n"
)
# Chroma compress to display XYZ
if logfile:
if display_XYZ:
logfile.write("\rApplying chroma compression and filling cLUT...\n")
else:
logfile.write("\rFilling cLUT...\n")
logfile.write(f"\r{perc:.0f}%")
row = 0
oog_count = 0
# if forward_xicclu:
# forward_xicclu.spawn()
# if backward_xicclu:
# backward_xicclu.spawn()
for col_0 in range(clutres):
for col_1 in range(clutres):
itable.clut.append([])
debugtable0.clut.append([])
if not display_RGB:
debugtable1.clut.append([])
debugtable2.clut.append([])
for col_2 in range(clutres):
if worker and worker.thread_abort:
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
raise Exception("aborted")
R, G, B = HDR_RGB[row]
I, Ct, Cp = HDR_ICtCp[row]
X, Y, Z = HDR_XYZ[row]
min_I = HDR_min_I[row]
if not (col_0 == col_1 == col_2) and display_XYZ:
# Desaturate based on compression factor
if display_LCH:
blend = 1
else:
# Blending threshold: Don't desaturate dark colors
# (< 26 cd/m2). Preserves more "pop"
thresh_I = 0.381
blend = min_I * min(
max((I - thresh_I) / (0.5081 - thresh_I), 0), 1
)
if blend:
if blendmode == "XYZ":
wx, wy = colormath.XYZ2xyY(*colormath.get_whitepoint())[:2]
x, y, Y = colormath.XYZ2xyY(X, Y, Z)
x -= wx
y -= wy
L, C, H = colormath.Lab2LCHab(*(v * 100 for v in (Y, x, y)))
elif blendmode == "ICtCp":
L, C, H = colormath.Lab2LCHab(I * 100, Cp * 100, Ct * 100)
elif blendmode == "DIN99d":
XYZ = X, Y, Z
L, C, H = colormath.XYZ2DIN99dLCH(*[v * 100 for v in XYZ])
elif blendmode == "IPT":
XYZ = colormath.adapt(
X, Y, Z, whitepoint_destination=IPT_white_XYZ, cat=cat
)
I, CP, CT = colormath.XYZ2IPT(*XYZ)
L, C, H = colormath.Lab2LCHab(I * 100, CP * 100, CT * 100)
elif blendmode == "Lpt":
XYZ = X, Y, Z
L, p, t = colormath.XYZ2Lpt(*[v * 100 for v in XYZ])
L, C, H = colormath.Lab2LCHab(L, p, t)
if blendmode:
if display_LCH:
Ld, Cd, Hd = display_LCH[row]
# Cdmaxk = tuple(map(round, (Ld, Hd), (2, 2)))
# # Lookup HDR max chroma for given display
# # luminance and hue
# HCmax = Cmax[Cdmaxk]
# if C and HCmax:
# # Lookup display max chroma for given display
# # luminance and hue
# HCdmax = Cdmax[Cdmaxk]
# # Display max chroma in 0..1 range
# maxCc = min(HCdmax / HCmax, 1.0)
# KSCc = 1.5 * maxCc - 0.5
# # HDR chroma in 0..1 range
# Cc1 = min(C / HCmax, 1.0)
# if Cc1 >= KSCc <= 1 and maxCc > KSCc >= 0:
# # Roll-off chroma
# Cc2 = bt2390.apply(
# Cc1, KSCc, maxCc, 1.0, 0, normalize=False
# )
# C = HCmax * Cc2
# else:
# # Use display chroma as-is (clip)
# if debug:
# print(
# "CLUT grid point "
# f"{int(col_0):d} {int(col_1):d} {int(col_2):d}: "
# f"C {C:6.4f} Cd {Cd:6.4f} "
# f"HCmax {HCmax:6.4f} "
# f"maxCc {maxCc:6.4f} "
# f"KSCc {KSCc:6.4f} "
# f"Cc1 {Cc1:6.4f}"
# )
# C = Cd
if C:
C *= min(Cd / C, 1.0)
C *= min(Ld / L, 1.0)
else:
Cc = general_compression_factor
Cc **= C / Cmaxv
C = C * (1 - blend) + (C * Cc) * blend
if blendmode == "ICtCp":
I, Cp, Ct = [
v / 100.0 for v in colormath.LCHab2Lab(L, C, H)
]
XYZ = colormath.ICtCp2XYZ(I, Ct, Cp, eotf=eotf)
X, Y, Z = (v / maxv for v in XYZ)
# Adapt to D50
X, Y, Z = colormath.adapt(
X, Y, Z, whitepoint_source=rgb_space[1], cat=cat
)
elif blendmode == "DIN99d":
L, a, b = colormath.DIN99dLCH2Lab(L, C, H)
X, Y, Z = colormath.Lab2XYZ(L, a, b)
elif blendmode == "IPT":
I, CP, CT = [
v / 100.0 for v in colormath.LCHab2Lab(L, C, H)
]
X, Y, Z = colormath.IPT2XYZ(I, CP, CT)
# Adapt to D50
X, Y, Z = colormath.adapt(
X, Y, Z, whitepoint_source=IPT_white_XYZ, cat=cat
)
elif blendmode == "Lpt":
L, p, t = colormath.LCHab2Lab(L, C, H)
X, Y, Z = colormath.Lpt2XYZ(L, p, t)
elif blendmode == "XYZ":
Y, x, y = [v / 100.0 for v in colormath.LCHab2Lab(L, C, H)]
x += wx
y += wy
X, Y, Z = colormath.xyY2XYZ(x, y, Y)
else:
print(
f"CLUT grid point {int(col_0):d} {int(col_1):d} {int(col_2):d}: "
"blend = 0"
)
# if backward_xicclu and forward_xicclu:
# backward_xicclu((X, Y, Z))
# else:
# HDR_XYZ[row] = (X, Y, Z)
# row += 1
# perc = startperc + math.floor(row / clutres ** 3.0 *
# (90 - startperc))
# if logfile and perc > prevperc:
# logfile.write(f"\r{perc:.0f}%")
# prevperc = perc
# startperc = perc
# if backward_xicclu and forward_xicclu:
# # Get XYZ clipped to display RGB
# backward_xicclu.exit()
# for R, G, B in backward_xicclu.get():
# forward_xicclu((R, G, B))
# forward_xicclu.exit()
# display_XYZ = forward_xicclu.get()
# else:
# display_XYZ = HDR_XYZ
# row = 0
# for a in range(clutres):
# for b in range(clutres):
# itable.clut.append([])
# debugtable0.clut.append([])
# for c in range(clutres):
# if worker and worker.thread_abort:
# if forward_xicclu:
# forward_xicclu.exit()
# if backward_xicclu:
# backward_xicclu.exit()
# raise Exception("aborted")
# X, Y, Z = display_XYZ[row]
itable.clut[-1].append(
[min(max(v * 32768, 0), 65535) for v in (X, Y, Z)]
)
debugtable0.clut[-1].append(
[min(max(v * 65535, 0), 65535) for v in (R, G, B)]
)
if not display_RGB:
debugtable1.clut[-1].append([0, 0, 0])
if display_XYZ:
XYZdisp = display_XYZ[row]
else:
XYZdisp = [0, 0, 0]
debugtable2.clut[-1].append(
[min(max(v * 65535, 0), 65535) for v in XYZdisp]
)
row += 1
perc = startperc + math.floor(row / clutres**3.0 * (100 - startperc))
if logfile and perc > prevperc:
logfile.write(f"\r{perc:.0f}%")
prevperc = perc
prevperc = startperc = perc = 0
if DEBUG:
print("Num OOG:", oog_count)
if generate_B2A:
if logfile:
logfile.write("\rGenerating PCS-to-device table...\n")
otable.clut = []
count = 0
for R in range(clutres):
for G in range(clutres):
otable.clut.append([])
for B in range(clutres):
RGB = [v * step for v in (R, G, B)]
X, Y, Z = colormath.RGB2XYZ(*RGB, rgb_space=rgb_space, eotf=eotf)
if hdr_format == "PQ":
I1, Ct1, Cp1 = colormath.XYZ2ICtCp(X, Y, Z)
I2 = eetf(I1)
Ct2, Cp2 = (min(I1 / I2, I2 / I1) * v for v in (Ct1, Cp1))
RGB = colormath.ICtCp2RGB(I1, Ct2, Cp2, rgb_space)
else:
RGB = hlg.XYZ2RGB(X, Y, Z)
if (
max(X, Y, Z) * 32768 > 65535
or min(X, Y, Z) < 0
or round(Y, 6) > 1
or max(RGB) > 1
or min(RGB) < 0
):
print(
f"#{count:d}",
"RGB {:.3f} {:.3f} {:.3f}".format(*RGB),
f"XYZ {X:.6f} {Y:.6f} {Z:.6f}",
"not in range [0,1]",
)
otable.clut[-1].append([min(max(v, 0), 1) * 65535 for v in RGB])
count += 1
if logfile:
logfile.write("\n")
if forward_xicclu:
forward_xicclu.exit()
if backward_xicclu:
backward_xicclu.exit()
if hdr_format == "HLG" and black_cdm2:
# Apply black offset
XYZbp = colormath.get_whitepoint(scale=black_cdm2 / float(white_cdm2))
if logfile:
logfile.write("Applying black offset...\n")
profile.tags.A2B0.apply_black_offset(
XYZbp, logfile=logfile, thread_abort=worker and worker.thread_abort
)
return profile
def create_synthetic_hlg_clut_profile(
rgb_space,
description,
black_cdm2=0,
white_cdm2=400,
system_gamma=1.2,
ambient_cdm2=5,
maxsignal=1.0,
content_rgb_space="DCI P3",
rolloff=True,
clutres=33,
mode="HSV_ICtCp",
forward_xicclu=None,
backward_xicclu=None,
generate_B2A=True,
worker=None,
logfile=None,
cat="Bradford",
):
"""Create a synthetic cLUT profile with the HLG TRC from a colorspace
definition
mode: The gamut mapping mode when rolling off. Valid values:
"RGB_ICtCp" (default, recommended)
"ICtCp"
"XYZ" (not recommended, unpleasing hue shift)
"HSV" (not recommended, saturation loss)
"RGB" (not recommended, saturation loss, pleasing hue shift)
"""
if not rolloff:
raise NotImplementedError("rolloff needs to be True")
return create_synthetic_hdr_clut_profile(
"HLG",
rgb_space,
description,
black_cdm2,
white_cdm2,
0, # Not used for HLG
10000, # Not used for HLG
True, # Not used for HLG
system_gamma,
ambient_cdm2,
maxsignal,
content_rgb_space,
clutres,
mode, # Not used for HLG
1.0, # Sat - Not used for HLG
0.5, # Hue - Not used for HLG
forward_xicclu,
backward_xicclu,
generate_B2A,
worker,
logfile,
cat,
)
def _colord_get_display_profile(display_no=0, path_only=False, use_cache=True):
"""Use a brute force way of getting display profile."""
edid_ = get_edid(display_no)
device_ids = []
if edid_:
# Try a range of possible device IDs
dife = colord.device_id_from_edid
device_ids = [
dife(edid_, quirk=False, query=True),
dife(edid_, quirk=True, truncate_edid_strings=True),
dife(edid_, quirk=True, use_serial_32=False),
dife(edid_, quirk=True, use_serial_32=False, truncate_edid_strings=True),
dife(edid_, quirk=True),
dife(edid_, quirk=False, truncate_edid_strings=True),
dife(edid_, quirk=False, use_serial_32=False),
dife(edid_, quirk=False, use_serial_32=False, truncate_edid_strings=True),
# Try with manufacturer omitted
dife(edid_, omit_manufacturer=True),
dife(edid_, truncate_edid_strings=True, omit_manufacturer=True),
dife(edid_, use_serial_32=False, omit_manufacturer=True),
dife(
edid_,
use_serial_32=False,
truncate_edid_strings=True,
omit_manufacturer=True,
),
]
else:
# Fall back to XrandR name
try:
from DisplayCAL import RealDisplaySizeMM as RDSMM
except ImportError as exception:
warnings.warn(str(exception), Warning)
return
display = RDSMM.get_display(display_no)
if display:
xrandr_name = display.get("xrandr_name")
if xrandr_name:
edid_ = {"monitor_name": xrandr_name}
device_ids = [f"xrandr-{xrandr_name.decode()}"]
elif os.getenv("XDG_SESSION_TYPE") == "wayland":
# Preliminary Wayland support under non-GNOME desktops.
# This still needs a lot of work.
device_ids = colord.get_display_device_ids()
if device_ids and display_no < len(device_ids):
edid_ = {
"monitor_name": device_ids[display_no].split("xrandr-", 1).pop()
}
device_ids = [device_ids[display_no]]
if edid_:
for device_id in dict.fromkeys(device_ids).keys():
if device_id:
try:
profile = colord.get_default_profile(device_id)
profile_path = profile.properties.get("Filename")
except colord.CDObjectQueryError:
# Device ID was not found, try next one
continue
except colord.CDError as exception:
warnings.warn(str(exception), Warning)
except colord.DBusException as exception:
warnings.warn(str(exception), Warning)
else:
if profile_path:
if "hash" in edid_:
colord.device_ids[edid_["hash"]] = device_id
if path_only:
print(
"Got profile from colord for display "
f"{int(display_no):d} ({device_id}):",
profile_path,
)
return profile_path
return ICCProfile(profile_path, use_cache=use_cache)
break
def _ucmm_get_display_profile(display_no, name, path_only=False, use_cache=True):
"""Argyll UCMM."""
search = []
edid = get_edid(display_no)
if edid:
# Look for matching EDID entry first
search.append((b"EDID", b"0x" + binascii.hexlify(edid["edid"]).upper()))
# Fallback to X11 name
search.append((b"NAME", name))
for path in [xdg_config_home] + xdg_config_dirs:
color_jcnf = os.path.join(path, "color.jcnf")
if not os.path.isfile(color_jcnf):
continue
with open(color_jcnf) as f:
data = json.load(f)
displays = data.get("devices", {}).get("display")
if not isinstance(displays, dict):
continue
# Look for matching entry
for key, value in search:
for item in displays.values():
if not isinstance(item, dict):
continue
if item.get(key) != value:
continue
profile_path = item.get("ICC_PROFILE")
if path_only:
print(
"Got profile from Argyll UCMM for display "
f"{int(display_no):d} ({key} {value}):",
profile_path,
)
return profile_path
return ICCProfile(profile_path, use_cache=use_cache)
def _wcs_get_display_profile(
devicekey,
scope=WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"],
profile_type=COLOR_PROFILE_TYPE["ICC"],
profile_subtype=COLOR_PROFILE_SUBTYPE["NONE"],
profile_id=0,
path_only=False,
use_cache=True,
):
buf = ctypes.create_unicode_buffer(256)
_win10_1903_take_process_handles_snapshot()
retv = mscms.WcsGetDefaultColorProfile(
scope,
devicekey,
profile_type,
profile_subtype,
profile_id,
ctypes.sizeof(buf), # Bytes
ctypes.byref(buf),
)
_win10_1903_close_leaked_regkey_handles(devicekey)
if not retv:
raise util_win.get_windows_error(ctypes.windll.kernel32.GetLastError())
if buf.value:
if path_only:
return os.path.join(iccprofiles[0], buf.value)
return ICCProfile(buf.value, use_cache=use_cache)
def _win10_1903_take_process_handles_snapshot():
global prev_handles
prev_handles = []
if win10_1903 and DEBUG:
try:
for handle in get_process_handles():
prev_handles.append(handle.HandleValue)
except WindowsError as exception:
print("Couldn't get process handles:", exception)
def _win10_1903_close_leaked_regkey_handles(devicekey):
global prev_handles
if not win10_1903:
return
# Wcs* methods leak handles under Win10 1903. Get and close them.
# Extract substring from devicekey for matching handle name, e.g.
# Control\Class\{4d36e96e-e325-11ce-bfc1-08002be10318}
substr = "\\".join(devicekey.split("\\")[-4:-1])
try:
handles = get_process_handles()
except WindowsError as exception:
print("Couldn't get process handles:", exception)
return
for handle in handles:
try:
handle_name = get_handle_name(handle)
except WindowsError as exception:
print(f"Couldn't get name of handle 0x{handle.HandleValue:x}:", exception)
handle_name = None
if DEBUG and handle.HandleValue not in prev_handles:
try:
handle_type = get_handle_type(handle)
except WindowsError as exception:
print(
f"Couldn't get typestring of handle 0x{handle.HandleValue:x}:",
exception,
)
handle_type = None
print(
"New handle",
f"0x{handle.HandleValue:x}",
f"type 0x{handle.ObjectTypeIndex:02x} {handle_type}",
handle_name,
)
if handle_name and handle_name.endswith(substr):
print(
"Windows 10",
win_ver[2].split(" ", 1)[-1],
f"housekeeping: Closing leaked handle 0x{handle.HandleValue:x}",
handle_name,
)
try:
win32api.RegCloseKey(handle.HandleValue)
except pywintypes.error as exception:
print(f"Couldn't close handle 0x{handle.HandleValue:x}:", exception)
def _winreg_get_display_profile(
monkey, current_user=False, path_only=False, use_cache=True
):
filename = None
filenames = _winreg_get_display_profiles(monkey, current_user)
if filenames:
# last existing file in the list is active
filename = filenames.pop()
if not filename and not current_user:
# fall back to sRGB
filename = os.path.join(iccprofiles[0], "sRGB Color Space Profile.icm")
if filename:
if path_only:
return os.path.join(iccprofiles[0], filename)
return ICCProfile(filename, use_cache=use_cache)
return None
def _winreg_get_display_profiles(monkey, current_user=False):
filenames = []
try:
if current_user and sys.getwindowsversion() >= (6,):
# Vista / Windows 7 ONLY
# User has to place a check in 'use my settings for this device'
# in the color management control panel at least once to cause
# this key to be created, otherwise it won't exist
subkey = "\\".join(
[
"Software",
"Microsoft",
"Windows NT",
"CurrentVersion",
"ICM",
"ProfileAssociations",
"Display",
]
+ monkey
)
key = winreg.OpenKey(winreg.HKEY_CURRENT_USER, subkey)
else:
subkey = "\\".join(
["SYSTEM", "CurrentControlSet", "Control", "Class"] + monkey
)
key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, subkey)
numsubkeys, numvalues, mtime = winreg.QueryInfoKey(key)
for i in range(numvalues):
name, value, type_ = winreg.EnumValue(key, i)
if name != "ICMProfile" or not value:
continue
if type_ == winreg.REG_BINARY:
# Win2k/XP
# convert to list of strings
value = value.decode("utf-16").split("\0")
elif type_ == winreg.REG_MULTI_SZ:
# Vista / Windows 7
# nothing to be done, _winreg returns a list of strings
pass
if not isinstance(value, list):
value = [value]
while "" in value:
value.remove("")
filenames.extend(value)
winreg.CloseKey(key)
except WindowsError as exception:
if exception.args[0] == 2:
# Key does not exist
pass
else:
raise
return [
filename
for filename in filenames
if os.path.isfile(os.path.join(iccprofiles[0], filename))
]
def get_display_profile(
display_no=0,
x_hostname=None,
x_display=None,
x_screen=None,
path_only=False,
devicekey=None,
use_active_display_device=True,
use_registry=True,
):
"""Return ICC Profile for display n or None."""
if sys.platform == "win32":
return get_display_profile_windows(
display_no, path_only, devicekey, use_active_display_device, use_registry
)
elif sys.platform == "darwin":
return get_display_profile_macos(display_no, path_only)
else:
return get_display_profile_linux(
display_no, x_hostname, x_display, x_screen, path_only
)
def get_display_profile_windows(
display_no=0,
path_only=False,
devicekey=None,
use_active_display_device=True,
use_registry=True,
):
"""Return ICC Profile for the given display under Windows."""
profile = None
if "win32api" not in sys.modules:
raise ImportError("pywin32 not available")
if not devicekey:
# The ordering will work as long as Argyll continues using
# EnumDisplayMonitors
monitors = util_win.get_real_display_devices_info()
moninfo = monitors[display_no]
if not mscms and not devicekey:
# Via GetICMProfile. Sucks royally in a multi-monitor setup
# where one monitor is disabled, because it'll always get
# the profile of the first monitor regardless if that is the active
# one or not. Yuck. Also, in this case it does not reflect runtime
# changes to profile assignments. Double yuck.
buflen = ctypes.c_ulong(260)
dc = win32gui.CreateDC(moninfo["Device"], None, None)
try:
buf = ctypes.create_unicode_buffer(buflen.value)
if ctypes.windll.gdi32.GetICMProfileW(
dc,
ctypes.byref(buflen),
ctypes.byref(buf), # WCHARs
):
if path_only:
profile = buf.value
else:
profile = ICCProfile(buf.value, use_cache=True)
finally:
win32gui.DeleteDC(dc)
else:
if devicekey:
device = None
elif use_active_display_device:
# This would be the correct way. Unfortunately that is not
# what other apps (or Windows itself) do.
device = util_win.get_active_display_device(moninfo["Device"])
else:
# This is wrong, but it's what other apps use. Matches
# GetICMProfile sucky behavior i.e. should return the same
# profile, but atleast reflects runtime changes to profile
# assignments.
device = util_win.get_first_display_device(moninfo["Device"])
if device:
devicekey = device.DeviceKey
if devicekey:
if mscms:
# Via WCS
if util_win.per_user_profiles_isenabled(devicekey=devicekey):
scope = WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
else:
scope = WCS_PROFILE_MANAGEMENT_SCOPE["SYSTEM_WIDE"]
if not use_registry:
# NOTE: WcsGetDefaultColorProfile causes the whole system
# to hitch if the profile of the active display device is
# queried. Windows bug?
return _wcs_get_display_profile(
str(devicekey), scope, path_only=path_only
)
else:
scope = None
# Via registry
monkey = devicekey.split("\\")[-2:] # pun totally intended
# Current user scope
current_user = scope == WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
if current_user:
profile = _winreg_get_display_profile(monkey, True, path_only=path_only)
else:
# System scope
profile = _winreg_get_display_profile(monkey, path_only=path_only)
return profile
def get_display_profile_macos(display_no=0, path_only=False):
"""Return ICC Profile for the given display under macOS."""
from platform import mac_ver
from DisplayCAL.util_mac import osascript
if intlist(mac_ver()[0].split(".")) >= [10, 6]:
options = ["Image Events"]
else:
options = ["ColorSyncScripting"]
for option in options:
# applescript: one-based index
applescript = [
f'tell app "{option}"',
"set displayProfile to location of display profile of "
f"display {int(display_no + 1):d}",
"return POSIX path of displayProfile",
"end tell",
]
retcode, output, errors = osascript(applescript)
if retcode == 0 and output.strip():
filename = output.strip("\n").decode(FS_ENC)
if path_only:
profile = filename
else:
profile = ICCProfile(filename, use_cache=True)
elif errors.strip():
raise IOError(errors.strip())
return profile
def get_display_profile_linux(
display_no=0,
x_hostname=None,
x_display=None,
x_screen=None,
path_only=False,
):
"""Return ICC Profile for the given display under Linux."""
options = ["_ICC_PROFILE"]
try:
from DisplayCAL import RealDisplaySizeMM as RDSMM
except ImportError as exception:
warnings.warn(str(exception), Warning)
display = get_display()
else:
display = RDSMM.get_x_display(display_no)
if display:
if x_hostname is None:
x_hostname = display[0]
if x_display is None:
x_display = display[1]
if x_screen is None:
x_screen = display[2]
x_display_name = f"{x_hostname}:{x_display}.{x_screen}"
for option in options:
# Linux
# Try colord
if colord.which("colormgr") and (
profile := (_colord_get_display_profile(display_no, path_only=path_only))
):
return profile
if path_only:
# No way to figure out the profile path from X atom, so use
# Argyll's UCMM if libcolordcompat.so is not present
if dlopen("libcolordcompat.so"):
# UCMM configuration might be stale, ignore
return
profile = _ucmm_get_display_profile(display_no, x_display_name, path_only)
return profile
# Try XrandR
if (
xrandr
and RDSMM
and option == "_ICC_PROFILE"
and None not in (x_hostname, x_display, x_screen)
):
with xrandr.XDisplay(x_display_name) as display:
if DEBUG:
print("Using XrandR")
for i, atom_id in enumerate(
[
RDSMM.get_x_icc_profile_output_atom_id(display_no),
RDSMM.get_x_icc_profile_atom_id(display_no),
]
):
if not atom_id:
continue
if i == 0:
meth = display.get_output_property
what = RDSMM.GetXRandROutputXID(display_no)
else:
meth = display.get_window_property
what = display.root_window(0)
try:
property = meth(what, atom_id)
except ValueError as exception:
warnings.warn(str(exception), Warning)
else:
if property and (
profile := ICCProfile(
b"".join(bytes(chr(n), "UTF-8") for n in property),
use_cache=True,
)
):
return profile
if DEBUG:
if i == 0:
print("Couldn't get _ICC_PROFILE XrandR output property")
print("Using X11")
else:
print("Couldn't get _ICC_PROFILE X atom")
return
# Read up to 8 MB of any X properties
if DEBUG:
print("Using xprop")
xprop = which("xprop")
if not xprop:
return
atom = "{}{}".format(option, "" if display_no == 0 else f"_{display_no}")
tgt_proc = sp.Popen(
[
xprop,
"-display",
f"{x_hostname}:{x_display}.{x_screen}",
"-len",
"8388608",
"-root",
"-notype",
atom,
],
stdin=sp.PIPE,
stdout=sp.PIPE,
stderr=sp.PIPE,
)
stdout, stderr = [data.strip(b"\n") for data in tgt_proc.communicate()]
if stdout:
raw = [item.strip() for item in stdout.split("=")]
if raw[0] == atom and len(raw) == 2:
bin = "".join([chr(int(part)) for part in raw[1].split(", ")])
profile = ICCProfile(bin, use_cache=True)
elif stderr and tgt_proc.wait() != 0:
raise IOError(stderr)
if profile:
break
return profile
def _wcs_set_display_profile(
devicekey, profile_name, scope=WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
):
"""Set the current default WCS color profile for the given device.
If the device is a display, this will also set its video card gamma ramps
to linear* if the given profile is the display's current default profile
and Windows calibration management isn't enabled.
Note that the profile needs to have been already installed.
* 0..65535 will get mapped to 0..65280, which is a Windows bug
"""
# We need to disassociate the profile first in case it's not the default
# so we can make it the default again.
# Note that disassociating the current default profile for a display will
# also set its video card gamma ramps to linear if Windows calibration
# management isn't enabled.
_win10_1903_take_process_handles_snapshot()
mscms.WcsDisassociateColorProfileFromDevice(scope, profile_name, devicekey)
retv = mscms.WcsAssociateColorProfileWithDevice(scope, profile_name, devicekey)
_win10_1903_close_leaked_regkey_handles(devicekey)
if not retv:
raise util_win.get_windows_error(ctypes.windll.kernel32.GetLastError())
monkey = devicekey.split("\\")[-2:]
current_user = scope == WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
profiles = _winreg_get_display_profiles(monkey, current_user)
if profile_name not in profiles:
return False
return True
def _wcs_unset_display_profile(
devicekey, profile_name, scope=WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
):
"""Unset the current default WCS color profile for the given device.
If the device is a display, this will also set its video card gamma ramps
to linear* if the given profile is the display's current default profile
and Windows calibration management isn't enabled.
Note that the profile needs to have been already installed.
* 0..65535 will get mapped to 0..65280, which is a Windows bug
"""
# Disassociating a profile will always (regardless of whether or
# not the profile was associated or even exists) result in Windows
# error code 2015 ERROR_PROFILE_NOT_ASSOCIATED_WITH_DEVICE.
# This is probably a Windows bug.
# To have a meaningful return value, we thus check wether the profile that
# should be removed is currently associated, and only fail if it is not,
# or if disassociating it fails for some reason.
monkey = devicekey.split("\\")[-2:]
current_user = scope == WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
profiles = _winreg_get_display_profiles(monkey, current_user)
_win10_1903_take_process_handles_snapshot()
retv = mscms.WcsDisassociateColorProfileFromDevice(scope, profile_name, devicekey)
_win10_1903_close_leaked_regkey_handles(devicekey)
if not retv:
errcode = ctypes.windll.kernel32.GetLastError()
if (
errcode == ERROR_PROFILE_NOT_ASSOCIATED_WITH_DEVICE
and profile_name in profiles
):
# Check if profile is still associated
profiles = _winreg_get_display_profiles(monkey, current_user)
if profile_name not in profiles:
# Successfully disassociated
return True
raise util_win.get_windows_error(errcode)
return True
def set_display_profile(
profile_name, display_no=0, devicekey=None, use_active_display_device=True
):
# Currently only implemented for Windows.
# The profile to be assigned has to be already installed!
if not devicekey:
device = util_win.get_display_device(display_no, use_active_display_device)
if not device:
return False
devicekey = device.DeviceKey
if mscms:
if util_win.per_user_profiles_isenabled(devicekey=devicekey):
scope = WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
else:
scope = WCS_PROFILE_MANAGEMENT_SCOPE["SYSTEM_WIDE"]
return _wcs_set_display_profile(str(devicekey), profile_name, scope)
else:
# TODO: Implement for XP
return False
def unset_display_profile(
profile_name, display_no=0, devicekey=None, use_active_display_device=True
):
# Currently only implemented for Windows.
# The profile to be unassigned has to be already installed!
if not devicekey:
device = util_win.get_display_device(display_no, use_active_display_device)
if not device:
return False
devicekey = device.DeviceKey
if mscms:
if util_win.per_user_profiles_isenabled(devicekey=devicekey):
scope = WCS_PROFILE_MANAGEMENT_SCOPE["CURRENT_USER"]
else:
scope = WCS_PROFILE_MANAGEMENT_SCOPE["SYSTEM_WIDE"]
return _wcs_unset_display_profile(str(devicekey), profile_name, scope)
else:
# TODO: Implement for XP
return False
def _blend_blackpoint(row, bp_in, bp_out, wp=None, use_bpc=False, weight=False):
X, Y, Z = row
if use_bpc:
X, Y, Z = colormath.apply_bpc(X, Y, Z, bp_in, bp_out, wp, weight=weight)
else:
X, Y, Z = colormath.blend_blackpoint(X, Y, Z, bp_in, bp_out, wp)
return X, Y, Z
def _mp_apply(
blocks,
thread_abort_event,
progress_queue,
pcs,
fn,
args,
D50,
interp,
rinterp,
abortmessage="Aborted",
):
"""Worker for applying function to cLUT
This should be spawned as a multiprocessing process
"""
from DisplayCAL.debughelpers import Info
for interp_tuple in (interp, rinterp):
if interp_tuple:
# Use numpy for speed
interp_list = list(interp_tuple)
for i, ointerp in enumerate(interp_list):
interp_list[i] = colormath.Interp(
ointerp.xp, ointerp.fp, use_numpy=True
)
interp_list[i].lookup = ointerp.lookup
if interp_tuple is interp:
interp = interp_list
else:
rinterp = interp_list
prevperc = 0
count = 0
numblocks = len(blocks)
for block in blocks:
if thread_abort_event and thread_abort_event.is_set():
return Info(abortmessage)
for i, row in enumerate(block):
if interp:
for column, value in enumerate(row):
row[column] = interp[column](value)
if pcs == "Lab":
L, a, b = legacy_PCSLab_uInt16_to_dec(*row)
X, Y, Z = colormath.Lab2XYZ(L, a, b, D50)
else:
X, Y, Z = [v / 32768.0 for v in row]
X, Y, Z = fn((X, Y, Z), *args)
if pcs == "Lab":
L, a, b = colormath.XYZ2Lab(X, Y, Z, D50)
row = [
min(max(0, v), 65535) for v in legacy_PCSLab_dec_to_uInt16(L, a, b)
]
else:
row = [min(max(0, v) * 32768.0, 65535) for v in (X, Y, Z)]
if rinterp:
for column, value in enumerate(row):
row[column] = rinterp[column](value)
block[i] = row
count += 1.0
perc = round(count / numblocks * 100)
if progress_queue and perc > prevperc:
progress_queue.put(perc - prevperc)
prevperc = perc
return blocks
def _mp_apply_black(
blocks,
thread_abort_event,
progress_queue,
pcs,
bp,
bp_out,
wp,
use_bpc,
weight,
D50,
interp,
rinterp,
abortmessage="Aborted",
):
"""Worker for applying black point compensation or offset
This should be spawned as a multiprocessing process
"""
return _mp_apply(
blocks,
thread_abort_event,
progress_queue,
pcs,
_blend_blackpoint,
(bp, bp_out, wp if use_bpc else None, use_bpc, weight),
D50,
interp,
rinterp,
abortmessage,
)
def _mp_hdr_tonemap(
HDR_XYZ, thread_abort_event, progress_queue, rgb_space, maxv, sat, cat="Bradford"
):
"""Worker for HDR tonemapping
This should be spawned as a multiprocessing process
"""
prevperc = 0
amount = len(HDR_XYZ)
dI = 0
dI_max = 0
dC = 0
dC_max = 0
I_reduced_count = 0
its_hi = 0 # Highest number pf iterations seen per color
for i, (RGB_in, ICtCp_XYZ, RGB_ICtCp_XYZ) in enumerate(HDR_XYZ):
if thread_abort_event and thread_abort_event.is_set():
return [False]
is_neutral = all(v == RGB_in[0] for v in RGB_in)
for j, XYZ in enumerate((ICtCp_XYZ, RGB_ICtCp_XYZ)):
if j == 0 and (sat == 1 or ICtCp_XYZ == RGB_ICtCp_XYZ):
# Set ICtCp_XYZ to the same object as RGB_ICtCp_XYZ which we
# are going to change in-place in the next iteration of the loop
# so that at the end of this loop, both will point to the same
# changed data
ICtCp_XYZ = RGB_ICtCp_XYZ
continue
X, Y, Z = XYZ
H = None
its = 10000 # Remaining iterations (limit)
while not is_neutral and its:
X_D50, Y_D50, Z_D50 = colormath.adapt(
*(v / maxv for v in (X, Y, Z)),
whitepoint_source=rgb_space[1],
cat=cat,
)
negative_clip = min(X_D50, Y_D50, Z_D50) < 0
positive_clip = (
round(X_D50, 4) > 0.9642 or Y_D50 > 1 or round(Z_D50, 4) > 0.8249
)
if not (negative_clip or positive_clip):
break
if H is None:
# Record hue angle
H = colormath.RGB2HSV(*RGB_in)[0]
# This is the initial intensity, and hue + saturation
I, Ct, Cp = colormath.XYZ2ICtCp(X, Y, Z)
Io = I
Co = colormath.Lab2LCHab(I, Ct, Cp)[1]
# Desaturate
Ct *= 0.99
Cp *= 0.99
# Update XYZ
X, Y, Z = colormath.ICtCp2XYZ(I, Ct, Cp)
if Y > XYZ[1]:
# Desaturating CtCp increases Y!
# As we desaturate different amounts per color,
# restore initial Y if lower than adjusted Y
# to keep luminance relation
X, Y, Z = (v / Y * XYZ[1] for v in (X, Y, Z))
I, Ct, Cp = colormath.XYZ2ICtCp(X, Y, Z)
its -= 1
if H is not None and round(Io - I, 4):
# Intensity was reduced by >= 0.0001, gather statistics
C = colormath.Lab2LCHab(I, Ct, Cp)[1]
dI += Io - I
dI_max = max(dI_max, Io - I)
dC += Co - C
dC_max = max(dC_max, Co - C)
I_reduced_count += 1
if not its:
# Max iterations exceeded, print diagnostics
# XXX: This should not happen (testing OK)
oX_D50, oY_D50, oZ_D50 = colormath.adapt(
*(v / maxv for v in XYZ), whitepoint_source=rgb_space[1], cat=cat
)
X_D50, Y_D50, Z_D50 = colormath.adapt(
*(v / maxv for v in (X, Y, Z)),
whitepoint_source=rgb_space[1],
cat=cat,
)
print(
"Reached iteration limit, XYZ "
f"{oX_D50:.4f} {oY_D50:.4f} {oZ_D50:.4f} -> "
f"{X_D50:.4f} {Y_D50:.4f} {Z_D50:.4f}"
)
its_hi = max(its_hi, 10000 - its)
XYZ[:] = X, Y, Z
HDR_XYZ[i] = (RGB_in, ICtCp_XYZ, RGB_ICtCp_XYZ)
perc = round((i + 1.0) / amount * 50)
if progress_queue and perc > prevperc:
progress_queue.put(perc - prevperc)
prevperc = perc
if I_reduced_count:
# Intensity was reduced, print informational statistics
print(
f"Max iterations {int(its_hi):d} "
f"dI avg {dI / I_reduced_count:.4f} "
f"max {dI_max:.4f} "
f"dC avg {dC / I_reduced_count:.4f} "
f"max {dC_max:.4f}"
)
elif its_hi:
print("Max iterations", its_hi)
return HDR_XYZ
def hexrepr(bytestring, mapping=None):
"""Generates hex representation of a bytes instance
:param bytestring:
:param mapping:
:return:
"""
hex_repr = (b"0x%s" % binascii.hexlify(bytestring).upper()).decode()
ascii_repr = re.sub(b"[^\x20-\x7e]", b"", bytestring)
if ascii_repr == bytestring:
hex_repr += f" '{ascii_repr.decode()}'"
if mapping:
value = mapping.get(ascii_repr)
if value:
hex_repr = f"{hex_repr} {value}"
return hex_repr
def dateTimeNumber(binary_string):
"""Byte
Offset Content Encoded as...
0..1 number of the year (actual year, e.g. 1994) uInt16Number
2..3 number of the month (1-12) uInt16Number
4..5 number of the day of the month (1-31) uInt16Number
6..7 number of hours (0-23) uInt16Number
8..9 number of minutes (0-59) uInt16Number
10..11 number of seconds (0-59) uInt16Number
:param binary_string: A 12 character long bytes value representing a datetime value.
"""
Y, m, d, H, M, S = [
uInt16Number(chunk)
for chunk in (
binary_string[:2],
binary_string[2:4],
binary_string[4:6],
binary_string[6:8],
binary_string[8:10],
binary_string[10:12],
)
]
return datetime.datetime(*(Y, m, d, H, M, S))
def dateTimeNumber_tohex(dt):
data = [uInt16Number_tohex(n) for n in dt.timetuple()[:6]]
return b"".join(data)
def s15Fixed16Number(binaryString):
return struct.unpack(">i", binaryString)[0] / 65536.0
def s15Fixed16Number_tohex(num):
return struct.pack(">i", int(round(num * 65536)))
def s15f16_is_equal(
a, b, quantizer=lambda v: s15Fixed16Number(s15Fixed16Number_tohex(v))
):
return colormath.is_equal(a, b, quantizer)
def u16Fixed16Number(binaryString):
return struct.unpack(">I", binaryString)[0] / 65536.0
def u16Fixed16Number_tohex(num):
return struct.pack(">I", int(round(num * 65536)) & 0xFFFFFFFF)
def u8Fixed8Number(binaryString):
return struct.unpack(">H", binaryString)[0] / 256.0
def u8Fixed8Number_tohex(num):
return struct.pack(">H", int(round(num * 256)))
def uInt16Number(binaryString):
return struct.unpack(">H", binaryString)[0]
def uInt16Number_tohex(num):
return struct.pack(">H", int(round(num)))
def uInt32Number(binaryString):
return struct.unpack(">I", binaryString)[0]
def uInt32Number_tohex(num):
try:
return struct.pack(">I", int(round(num)))
except struct.error as e:
print("num: {}".format(num))
raise e
def uInt64Number(binaryString):
return struct.unpack(">Q", binaryString)[0]
def uInt64Number_tohex(num):
return struct.pack(">Q", int(round(num)))
def uInt8Number(binaryString):
return struct.unpack(">H", b"\0" + binaryString)[0]
def uInt8Number_tohex(num):
return struct.pack(">H", int(round(num)))[1:2]
def videoCardGamma(tagData, tagSignature):
# reserved = uInt32Number(tagData[4:8])
tagType = uInt32Number(tagData[8:12])
if tagType == 0: # table
return VideoCardGammaTableType(tagData, tagSignature)
elif tagType == 1: # formula
return VideoCardGammaFormulaType(tagData, tagSignature)
class CRInterpolation:
"""Catmull-Rom interpolation.
Curve passes through the points exactly, with neighbouring points influencing curvature.
points[] should be at least 3 points long.
"""
def __init__(self, points):
self.points = points
def __call__(self, pos):
lbound = int(math.floor(pos) - 1)
ubound = int(math.ceil(pos) + 1)
t = pos % 1.0
if abs((lbound + 1) - pos) < 0.0001:
# sitting on a datapoint, so just return that
return self.points[lbound + 1]
if lbound < 0:
p = self.points[: ubound + 1]
# extend to the left linearly
while len(p) < 4:
p.insert(0, p[0] - (p[1] - p[0]))
else:
p = self.points[lbound : ubound + 1]
# extend to the right linearly
while len(p) < 4:
p.append(p[-1] - (p[-2] - p[-1]))
t2 = t * t
return 0.5 * (
(2 * p[1])
+ (-p[0] + p[2]) * t
+ ((2 * p[0]) - (5 * p[1]) + (4 * p[2]) - p[3]) * t2
+ (-p[0] + (3 * p[1]) - (3 * p[2]) + p[3]) * (t2 * t)
)
class ADict(dict):
"""Convenience class for dictionary key access via attributes.
Instead of writing aodict[key], you can also write aodict.key
"""
def __init__(self, *args, **kwargs):
super(ADict, self).__init__(*args, **kwargs)
def __getattr__(self, name):
if name in self:
return self[name]
else:
return self.__getattribute__(name)
def __setattr__(self, name, value):
self[name] = value
class AODict(ADict):
def __init__(self, *args, **kwargs):
super(AODict, self).__init__(*args, **kwargs)
def __setattr__(self, name, value):
if name == "_keys":
object.__setattr__(self, name, value)
else:
self[name] = value
class LazyLoadTagAODict(AODict):
"""Lazy-load (and parse) tag data on access"""
def __init__(self, profile, *args, **kwargs):
self.profile = profile
AODict.__init__(self)
def __getitem__(self, key):
tag = AODict.__getitem__(self, key)
if isinstance(tag, ICCProfileTag):
# Return already parsed tag
return tag
# Load and parse tag data
tagSignature = key
typeSignature, tagDataOffset, tagDataSize, tagData = tag
try:
if tagSignature in tagSignature2Tag:
tag = tagSignature2Tag[tagSignature](tagData, tagSignature)
elif typeSignature in typeSignature2Type:
args = tagData, tagSignature
if typeSignature in (b"clrt", b"ncl2"):
args += (self.profile.connectionColorSpace,)
if typeSignature == b"ncl2":
args += (self.profile.colorSpace,)
elif typeSignature in (b"XYZ ", b"mft2", b"curv", b"MS10", b"pseq"):
args += (self.profile,)
tag = typeSignature2Type[typeSignature](*args)
else:
tag = ICCProfileTag(tagData, tagSignature)
except Exception as exception:
raise ICCProfileInvalidError(
f"Couldn't parse tag {repr(tagSignature)} "
f"(type {repr(typeSignature)}, "
f"offset {int(tagDataOffset):d}, "
f"size {int(tagDataSize):d}): {repr(exception)}"
)
self[key] = tag
return tag
def __setattr__(self, name, value):
if name == "profile":
object.__setattr__(self, name, value)
else:
AODict.__setattr__(self, name, value)
def get(self, key, default=None):
if key in self:
return self[key]
return default
class ICCProfileTag:
def __init__(self, tagData, tagSignature):
self.tagData = tagData
self.tagSignature = tagSignature
def __setattr__(self, name, value):
if not isinstance(self, dict) or name in ("_keys", "tagData", "tagSignature"):
object.__setattr__(self, name, value)
else:
self[name] = value
def __repr__(self):
"""t.__repr__() <==> repr(t)"""
if isinstance(self, dict):
return dict.__repr__(self)
elif isinstance(self, UserString):
return UserString.__repr__(self)
elif isinstance(self, list):
return list.__repr__(self)
else:
if not self:
return "{}.{}()".format(
self.__class__.__module__, self.__class__.__name__
)
return "{}.{}({})".format(
self.__class__.__module__,
self.__class__.__name__,
repr(self.tagData),
)
class Text(ICCProfileTag, bytes):
def __init__(self, seq):
super(Text, self).__init__(tagData=seq, tagSignature=b"")
self.data = seq
def __str__(self):
return self.data.decode(FS_ENC, errors="replace")
class Colorant:
def __init__(self, binaryString=b"\0" * 4):
self._type = uInt32Number(binaryString)
self._channels = []
def __getitem__(self, key):
return self.__getattribute__(key)
def __iter__(self):
return iter(list(self.keys()))
def __repr__(self):
items = []
for key, value in (("type", self.type), ("description", self.description)):
items.append(f"{repr(key)}: {repr(value)}")
channels = []
for xy in self.channels:
channels.append("[{}]".format(", ".join([str(v) for v in xy])))
items.append("'channels': [{}]".format(", ".join(channels)))
return "{{{}}}".format(", ".join(items))
def __setitem__(self, key, value):
object.__setattr__(self, key, value)
@property
def channels(self):
if not self._channels and self._type and self._type in COLORANTS:
return [list(xy) for xy in COLORANTS[self._type]["channels"]]
return self._channels
@channels.setter
def channels(self, channels):
self._channels = channels
@property
def description(self):
return COLORANTS.get(self._type, COLORANTS[0])["description"]
@description.setter
def description(self, value):
pass
def get(self, key, default=None):
return getattr(self, key, default)
def items(self):
return list(zip(list(self.keys()), list(self.values())))
def iteritems(self):
return zip(list(self.keys()), iter(self.values()))
iterkeys = __iter__
def itervalues(self):
return map(self.get, list(self.keys()))
def keys(self):
return ["type", "description", "channels"]
def round(self, digits=4):
colorant = self.__class__()
colorant.type = self.type
for xy in self.channels:
colorant._channels.append([round(value, digits) for value in xy])
return colorant
@property
def type(self):
return self._type
@type.setter
def type(self, value):
if value and value != self._type and value in COLORANTS:
self._channels = []
self._type = value
def update(self, *args, **kwargs):
if len(args) > 1:
raise TypeError(f"update expected at most 1 arguments, got {len(args):d}")
for iterable in args + tuple(kwargs.items()):
if hasattr(iterable, "items"):
self.update(iter(iterable.items()))
elif hasattr(iterable, "keys"):
for key in list(iterable.keys()):
self[key] = iterable[key]
else:
for key, val in iterable:
self[key] = val
def values(self):
return list(map(self.get, list(self.keys())))
class Geometry(ADict):
def __init__(self, binaryString):
super(Geometry, self).__init__()
self.type = uInt32Number(binaryString)
self.description = GEOMETRY[self.type]
class Illuminant(ADict):
def __init__(self, binaryString):
super(Illuminant, self).__init__()
self.type = uInt32Number(binaryString)
self.description = ILLUMINANTS[self.type]
class LUT16Type(ICCProfileTag):
def __init__(self, tagData=None, tagSignature=None, profile=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.profile = profile
self._matrix = None
self._input = None
self._clut = None
self._output = None
self._i = (tagData and uInt8Number(tagData[8:9])) or 0 # Input channel count
self._o = (tagData and uInt8Number(tagData[9:10])) or 0 # Output channel count
self._g = (tagData and uInt8Number(tagData[10:11])) or 0 # cLUT grid res
self._n = (
tagData and uInt16Number(tagData[48:50])
) or 0 # Input channel entries count
self._m = (
tagData and uInt16Number(tagData[50:52])
) or 0 # Output channel entries count
def apply_black_offset(
self, XYZbp, logfile=None, thread_abort=None, abortmessage="Aborted"
):
# Apply only the black point blending portion of BT.1886 mapping
self._apply_black(XYZbp, False, False, logfile, thread_abort, abortmessage)
def apply_bpc(
self,
bp_out=(0, 0, 0),
weight=False,
logfile=None,
thread_abort=None,
abortmessage="Aborted",
):
return self._apply_black(
bp_out, True, weight, logfile, thread_abort, abortmessage
)
def _apply_black(
self,
bp_out,
use_bpc=False,
weight=False,
logfile=None,
thread_abort=None,
abortmessage="Aborted",
):
pcs = self.profile and self.profile.connectionColorSpace
bp_row = list(self.clut[0][0])
wp_row = list(self.clut[-1][-1])
nonzero_bp = tuple(bp_out) != (0, 0, 0)
interp = []
rinterp = []
if not use_bpc or nonzero_bp:
osize = len(self.output[0])
omaxv = osize - 1.0
orange = [i / omaxv * 65535 for i in range(osize)]
for i in range(3):
interp.append(colormath.Interp(orange, self.output[i]))
rinterp.append(colormath.Interp(self.output[i], orange))
for row in (bp_row, wp_row):
for column, value in enumerate(row):
row[column] = interp[column](value)
if use_bpc:
method = "apply_bpc"
else:
method = "apply_black_offset"
if pcs == b"Lab":
bp = colormath.Lab2XYZ(*legacy_PCSLab_uInt16_to_dec(*bp_row))
wp = colormath.Lab2XYZ(*legacy_PCSLab_uInt16_to_dec(*wp_row))
elif not pcs or pcs == b"XYZ":
if not pcs:
warnings.warn(
f"LUT16Type.{method}: PCS not specified, assuming XYZ", Warning
)
bp = [v / 32768.0 for v in bp_row]
wp = [v / 32768.0 for v in wp_row]
else:
raise ValueError(f"LUT16Type.{method}: Unsupported PCS {repr(pcs)}")
if [round(v * 32768) for v in bp] != [round(v * 32768) for v in bp_out]:
D50 = colormath.get_whitepoint("D50")
from DisplayCAL.multiprocess import pool_slice
if len(self.clut[0]) < 33:
num_workers = 1
else:
num_workers = None
# if pcs != "Lab" and nonzero_bp:
# bp_out_offset = bp_out
# bp_out = (0, 0, 0)
if bp != bp_out:
self.clut = sum(
pool_slice(
_mp_apply_black,
self.clut,
(
pcs,
bp,
bp_out,
wp,
use_bpc,
weight,
D50,
interp,
rinterp,
abortmessage,
),
{},
num_workers,
thread_abort,
logfile,
),
[],
)
# if pcs != "Lab" and nonzero_bp:
# # Apply black offset to output curves
# out = [[], [], []]
# for i in range(2049):
# v = i / 2048.0
# X, Y, Z = colormath.blend_blackpoint(v, v, v, (0, 0, 0),
# bp_out_offset)
# out[0].append(X * 2048 / 4095.0 * 65535)
# out[1].append(Y * 2048 / 4095.0 * 65535)
# out[2].append(Z * 2048 / 4095.0 * 65535)
# for i in range(2049, 4096):
# v = i / 4095.0
# out[0].append(v * 65535)
# out[1].append(v * 65535)
# out[2].append(v * 65535)
# self.output = out
@property
def clut(self):
if self._clut is None:
i, o, g, n = self._i, self._o, self._g, self._n
tagData = self._tagData
self._clut = [
[
[
uInt16Number(
tagData[
52 + n * i * 2 + o * 2 * (g * x + y) + z * 2 : 54
+ n * i * 2
+ o * 2 * (g * x + y)
+ z * 2
]
)
for z in range(o)
]
for y in range(g)
]
for x in range(int(g**i / g))
]
return self._clut
@clut.setter
def clut(self, value):
self._clut = value
def clut_writepng(self, stream_or_filename):
"""Write the cLUT as PNG image organized in <grid steps> * <grid steps>
sized squares, ordered vertically"""
if len(self.clut[0][0]) != 3:
raise NotImplementedError("clut_writepng: output channels != 3")
imfile.write(self.clut, stream_or_filename)
def clut_writecgats(self, stream_or_filename):
"""Write the cLUT as CGATS"""
# TODO:
# Need to take into account input/output curves
# Currently only supports RGB, A2B direction, and XYZ color space
if len(self.clut[0][0]) != 3:
raise NotImplementedError("clut_writecgats: output channels != 3")
if isinstance(stream_or_filename, str):
stream = open(stream_or_filename, "wb")
else:
stream = stream_or_filename
with stream:
stream.write(
b"""CTI3
DEVICE_CLASS "DISPLAY"
COLOR_REP "RGB_XYZ"
BEGIN_DATA_FORMAT
SAMPLE_ID RGB_R RGB_G RGB_B XYZ_X XYZ_Y XYZ_Z
END_DATA_FORMAT
BEGIN_DATA
"""
)
clutres = len(self.clut[0])
block = 0
i = 1
if self.tagSignature and self.tagSignature.startswith("B2A"):
interp = []
for input in self.input:
interp.append(
colormath.Interp(input, list(range(len(input))), use_numpy=True)
)
for a in range(clutres):
for b in range(clutres):
for c in range(clutres):
R, G, B = [v / (clutres - 1.0) * 100 for v in (a, b, c)]
if self.tagSignature and self.tagSignature.startswith("B2A"):
linear_rgb = [
interp[i](v)
/ (len(interp[i].xp) - 1.0)
* (1 + (32767 / 32768.0))
* 100
for i, v in enumerate(self.clut[block][c])
]
X, Y, Z = self.matrix.inverted() * linear_rgb
else:
X, Y, Z = [v / 32768.0 * 100 for v in self.clut[block][c]]
stream.write(
b"%i %7.3f %7.3f %7.3f %10.6f %10.6f %10.6f\n"
% (i, R, G, B, X, Y, Z)
)
i += 1
block += 1
stream.write(b"END_DATA\n")
@property
def clut_grid_steps(self):
"""Return number of grid points per dimension."""
return self._g or len(self.clut[0])
@property
def input(self):
if self._input is None:
i, n = self._i, self._n
tagData = self._tagData
self._input = [
[
uInt16Number(
tagData[52 + n * 2 * z + y * 2 : 54 + n * 2 * z + y * 2]
)
for y in range(n)
]
for z in range(i)
]
return self._input
@input.setter
def input(self, value):
self._input = value
@property
def input_channels_count(self):
"""Return number of input channels."""
return self._i or len(self.input)
@property
def input_entries_count(self):
"""Return number of entries per input channel."""
return self._n or len(self.input[0])
def invert(self):
"""Invert input and output tables."""
# Invert input/output 1d LUTs
for channel in (self.input, self.output):
for e, entries in enumerate(channel):
lut = dict()
maxv = len(entries) - 1.0
for i, entry in enumerate(entries):
lut[entry / 65535.0 * maxv] = i / maxv * 65535
xp = list(lut.keys())
fp = list(lut.values())
for i in range(len(entries)):
if i not in lut:
lut[i] = colormath.interp(i, xp, fp)
lut = dict_sort(lut)
channel[e] = list(lut.values())
def clut_row_apply_per_channel(
self,
indexes,
fn,
fnargs=None,
fnkwargs=None,
pcs=None,
protect_gray_axis=True,
protect_dark=False,
protect_black=True,
exclude=None,
):
"""Apply function to channel values of each cLUT row"""
if fnargs is None:
fnargs = ()
if fnkwargs is None:
fnkwargs = {}
clutres = len(self.clut[0])
block = -1
for i, row in enumerate(self.clut):
channels = {}
for k in indexes:
channels[k] = []
if protect_gray_axis or protect_dark or protect_black or exclude:
if i % clutres == 0:
block += 1
if pcs == "XYZ":
gray_col_i = block
else:
# L*a*b*
gray_col_i = clutres // 2
gray_row_i = i + gray_col_i
fnkwargs["protect"] = []
for j, column in enumerate(row):
is_exclude = exclude and (i, j) in exclude
if is_exclude or (
protect_gray_axis and (i == gray_row_i and j == gray_col_i)
):
if DEBUG:
print(
"protect", "exclude" if is_exclude else "gray", i, j, column
)
fnkwargs["protect"].append(j)
elif (protect_dark and sum(column) < 65535 * 0.03125 * 3) or (
protect_black and min(column) == max(column) == 0
):
if DEBUG:
print("protect dark", i, j, column)
fnkwargs["protect"].append(j)
for k in indexes:
channels[k].append(column[k])
for k in channels:
values = channels[k]
channels[k] = fn(values, *fnargs, **fnkwargs)
for j, column in enumerate(row):
for k in indexes:
column[k] = channels[k][j]
def clut_shift_columns(self, order=(1, 2, 0)):
"""Shift cLUT columns, altering slowest to fastest changing column"""
if len(self.input) != 3:
raise NotImplementedError("input channels != 3")
steps = len(self.clut[0])
clut = []
coord = [0, 0, 0]
for a in range(steps):
coord[order[0]] = a
for b in range(steps):
coord[order[1]] = b
clut.append([])
for c in range(steps):
coord[order[2]] = c
z, y, x = coord
clut[-1].append(self.clut[z * steps + y][x])
self.clut = clut
@property
def matrix(self):
if self._matrix is None:
tagData = self._tagData
return colormath.Matrix3x3(
[
(
s15Fixed16Number(tagData[12:16]),
s15Fixed16Number(tagData[16:20]),
s15Fixed16Number(tagData[20:24]),
),
(
s15Fixed16Number(tagData[24:28]),
s15Fixed16Number(tagData[28:32]),
s15Fixed16Number(tagData[32:36]),
),
(
s15Fixed16Number(tagData[36:40]),
s15Fixed16Number(tagData[40:44]),
s15Fixed16Number(tagData[44:48]),
),
]
)
return self._matrix
@matrix.setter
def matrix(self, value):
self._matrix = value
@property
def output(self):
if self._output is None:
i, o, g, n, m = self._i, self._o, self._g, self._n, self._m
tagData = self._tagData
self._output = [
[
uInt16Number(
tagData[
52 + n * i * 2 + m * 2 * z + y * 2 + g**i * o * 2 : 54
+ n * i * 2
+ m * 2 * z
+ y * 2
+ g**i * o * 2
]
)
for y in range(m)
]
for z in range(o)
]
return self._output
@output.setter
def output(self, value):
self._output = value
@property
def output_channels_count(self):
"""Return number of output channels."""
return self._o or len(self.output)
@property
def output_entries_count(self):
"""Return number of entries per output channel."""
return self._m or len(self.output[0])
def smooth(self, diagpng=2, pcs=None, filename=None, logfile=None, debug_=0):
"""Apply extra smoothing to the cLUT"""
if not pcs:
if self.profile:
pcs = self.profile.connectionColorSpace
else:
raise TypeError("PCS not specified")
if not filename and self.profile:
filename = self.profile.fileName
clutres = len(self.clut[0])
sig = self.tagSignature or id(self)
if diagpng and filename and len(self.output) == 3:
# Generate diagnostic images
fname, _ = os.path.splitext(filename)
diag_fname = f"{fname}.{sig}.post.CLUT.png"
if diagpng == 2 and not os.path.isfile(diag_fname):
self.clut_writepng(diag_fname)
else:
diagpng = 0
if logfile:
logfile.write(f"Smoothing {sig}...\n")
# Create a list of <clutres> number of 2D grids, each one with a
# size of (width x height) <clutres> x <clutres>
grids = []
for i, block in enumerate(self.clut):
if i % clutres == 0:
grids.append([])
grids[-1].append([])
for RGB in block:
grids[-1][-1].append(RGB)
for i, grid in enumerate(grids):
for y in range(clutres):
for x in range(clutres):
is_dark = sum(grid[y][x]) < 65535 * 0.03125 * 3
if pcs == "XYZ":
is_gray = x == y == i
elif clutres // 2 != clutres / 2.0:
# For CIELab cLUT, gray will only
# fall on a cLUT point if uneven cLUT res
is_gray = x == y == clutres // 2
else:
is_gray = False
# print(
# i, y, x,
# "{:d} {:d} {:d}".format(*(int(v / 655.35 * 2.55) for v in grid[y][x])),
# is_dark,
# raw_input(is_gray) if is_gray else "",
# )
if is_dark or is_gray:
# Don't smooth dark colors and gray axis
continue
RGB = [[v] for v in grid[y][x]]
# Use either "plus"-shaped or box filter depending if one
# channel is fully saturated
if clutres - 1 in (y, x) or 0 in (x, y):
# Filter with a "plus" (+) shape
if pcs == "Lab" and i > clutres / 2.0:
# Smoothing factor for L*a*b* -> RGB cLUT above 50%
smooth = 0.25
else:
smooth = 0.5
for j, c in enumerate((x, y)):
# Omit corners and perpendicular axis
if 0 < c < clutres - 1:
for n in (-1, 1):
yi, xi = (y, y + n)[j], (x + n, x)[j]
if -1 < xi < clutres and -1 < yi < clutres:
RGBn = grid[yi][xi]
if debug_ == 2:
if i < clutres - 1 or grid[y][x] != [
16384,
16384,
16384,
]:
grid[y][x] = [32768, 32768, 32768]
if x == y == clutres - 2:
RGBn[:] = [16384, 16384, 16384]
for k in range(3):
RGB[k].append(
RGBn[k] * smooth
+ RGB[k][0] * (1 - smooth)
)
else:
# Box filter, 3x3
# Center pixel weight = 1.0, surround = 2/3, corners = 1/3
if debug_ == 1:
grid[y][x] = [32768, 32768, 32768]
for j in (0, 1):
for n in (-1, 1):
for yi, xi in [
((y, y + n)[j], (x + n, x)[j]),
(y - n, (x + n, x - n)[j]),
]:
if -1 < xi < clutres and -1 < yi < clutres:
RGBn = grid[yi][xi]
if yi != y and xi != x:
smooth = 1 / 3.0
else:
smooth = 2 / 3.0
if debug_ == 1 and x == y == clutres - 2:
RGBn[:] = (v * (1 - smooth) for v in RGBn)
for k in range(3):
RGB[k].append(
RGBn[k] * smooth
+ RGB[k][0] * (1 - smooth)
)
if not debug_:
grid[y][x] = [sum(v) / float(len(v)) for v in RGB]
for j, row in enumerate(grid):
self.clut[i * clutres + j] = [
[min(v, 65535) for v in RGB] for RGB in row
]
if diagpng and filename:
self.clut_writepng(f"{fname}.{sig}.post.CLUT.smooth.png")
def smooth2(
self,
diagpng=2,
pcs=None,
filename=None,
logfile=None,
window=(1 / 16.0, 1, 1 / 16.0),
):
"""Apply extra smoothing to the cLUT"""
if not pcs:
if self.profile:
pcs = self.profile.connectionColorSpace
else:
raise TypeError("PCS not specified")
if not filename and self.profile:
filename = self.profile.fileName
clutres = len(self.clut[0])
sig = self.tagSignature or id(self)
if diagpng and filename and len(self.output) == 3:
# Generate diagnostic images
fname, ext = os.path.splitext(filename)
diag_fname = f"{fname}.{sig}.post.CLUT.png"
if diagpng == 2 and not os.path.isfile(diag_fname):
self.clut_writepng(diag_fname)
else:
diagpng = 0
if logfile:
logfile.write(f"Smoothing {sig}...\n")
for i in range(3):
state = ("original", "pass", "final")[i]
if diagpng != 3 and i != 1:
continue
for j, (order, channels) in enumerate(
[
(None, "BGR"),
((1, 2, 0), "RBG"),
((0, 2, 1), "BRG"),
((2, 1, 0), "GRB"),
((0, 2, 1), "RGB"),
((2, 0, 1), "GBR"),
((0, 2, 1), "BGR"),
]
):
if order:
if DEBUG:
print("Shifting order to", channels)
self.clut_shift_columns(order)
if i == 1 and j != 6:
if DEBUG:
print("Smoothing")
exclude = None
protect_gray_axis = True
if pcs == "Lab":
if clutres // 2 != clutres / 2.0:
# For CIELab cLUT, gray will only
# fall on a cLUT point if uneven cLUT res
if channels in ("RBG", "RGB"):
exclude = [
((clutres // 2 + 1) * (clutres - 1), col)
for col in range(clutres)
]
protect_gray_axis = False
elif channels in ("BRG", "GRB"):
exclude = [
((clutres // 2) * clutres + y, clutres // 2)
for y in range(clutres)
]
protect_gray_axis = False
else:
protect_gray_axis = False
self.clut_row_apply_per_channel(
(0, 1, 2),
colormath.smooth_avg,
(),
{"window": window},
pcs,
protect_gray_axis,
exclude=exclude,
)
if diagpng == 3 and filename and j != 6:
if DEBUG:
print("Writing diagnostic PNG for", state, channels)
self.clut_writepng(
f"{fname}.{sig}.post.CLUT.{channels}.{state}.png"
)
if diagpng and filename:
self.clut_writepng(f"{fname}.{sig}.post.CLUT.smooth.png")
@property
def tagData(self):
"""Return raw tag data."""
if (self._matrix, self._input, self._clut, self._output) == (None,) * 4:
return self._tagData
tagData = [
b"mft2",
b"\0" * 4,
uInt8Number_tohex(len(self.input)),
uInt8Number_tohex(len(self.output)),
uInt8Number_tohex(len(self.clut and self.clut[0])),
b"\0",
s15Fixed16Number_tohex(self.matrix[0][0]),
s15Fixed16Number_tohex(self.matrix[0][1]),
s15Fixed16Number_tohex(self.matrix[0][2]),
s15Fixed16Number_tohex(self.matrix[1][0]),
s15Fixed16Number_tohex(self.matrix[1][1]),
s15Fixed16Number_tohex(self.matrix[1][2]),
s15Fixed16Number_tohex(self.matrix[2][0]),
s15Fixed16Number_tohex(self.matrix[2][1]),
s15Fixed16Number_tohex(self.matrix[2][2]),
uInt16Number_tohex(len(self.input and self.input[0])),
uInt16Number_tohex(len(self.output and self.output[0])),
]
for entries in self.input:
tagData.extend(uInt16Number_tohex(v) for v in entries)
for block in self.clut:
for entries in block:
tagData.extend(uInt16Number_tohex(v) for v in entries)
for entries in self.output:
tagData.extend(uInt16Number_tohex(v) for v in entries)
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
self._tagData = tagData
class Observer(ADict):
def __init__(self, bytes_data):
super(ADict, self).__init__()
self.type = uInt32Number(bytes_data)
self.description = OBSERVERS[self.type]
class ChromaticityType(ICCProfileTag, Colorant):
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
if not tagData:
Colorant.__init__(self, uInt32Number_tohex(1))
return
deviceChannelsCount = uInt16Number(tagData[8:10])
Colorant.__init__(self, uInt32Number_tohex(uInt16Number(tagData[10:12])))
channels = tagData[12:]
for _count in range(deviceChannelsCount):
self._channels.append(
[u16Fixed16Number(channels[:4]), u16Fixed16Number(channels[4:8])]
)
channels = channels[8:]
__repr__ = Colorant.__repr__
@property
def tagData(self):
"""Return raw tag data."""
tagData = [b"chrm", b"\0" * 4, uInt16Number_tohex(len(self.channels))]
tagData.append(uInt16Number_tohex(self.type))
for channel in self.channels:
for xy in channel:
tagData.append(u16Fixed16Number_tohex(xy))
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
class ColorantTableType(ICCProfileTag, AODict):
def __init__(self, tagData=None, tagSignature=None, pcs=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
AODict.__init__(self)
if not tagData:
return
colorantCount = uInt32Number(tagData[8:12])
data = tagData[12:]
for _count in range(colorantCount):
pcsvalues = [
uInt16Number(data[32:34]),
uInt16Number(data[34:36]),
uInt16Number(data[36:38]),
]
for i, pcsvalue in enumerate(pcsvalues):
if pcs in (b"Lab", b"RGB", b"CMYK", b"YCbr"):
keys = ["L", "a", "b"]
if i == 0:
# L* range 0..100 + (25500 / 65280.0)
pcsvalues[i] = pcsvalue / 65536.0 * 256 / 255.0 * 100
else:
# a, b range -128..127 + (255 / 256.0)
pcsvalues[i] = -128 + (pcsvalue / 65536.0 * 256)
elif pcs == b"XYZ":
# X, Y, Z range 0..100 + (32767 / 32768.0)
keys = ["X", "Y", "Z"]
pcsvalues[i] = pcsvalue / 32768.0 * 100
else:
print(f"Warning: Non-standard profile connection space '{pcs}'")
return
end = data[:32].find(b"\0")
if end < 0:
end = 32
name = data[:end]
self[name] = AODict(list(zip(keys, pcsvalues)))
data = data[38:]
class CurveType(ICCProfileTag, list):
def __init__(self, tagData=None, tagSignature=None, profile=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.profile = profile
self._reset()
if not tagData:
return
curveEntriesCount = uInt32Number(tagData[8:12])
curveEntries = tagData[12:]
if curveEntriesCount == 1:
# Gamma
self.append(u8Fixed8Number(curveEntries[:2]))
elif curveEntriesCount:
# Curve
for _count in range(curveEntriesCount):
self.append(uInt16Number(curveEntries[:2]))
curveEntries = curveEntries[2:]
else:
# Identity
self.append(1.0)
def __delitem__(self, y):
list.__delitem__(self, y)
self._reset()
def __delslice__(self, i, j):
list.__delslice__(self, i, j)
self._reset()
def __iadd__(self, y):
list.__iadd__(self, y)
self._reset()
def __imul__(self, y):
list.__imul__(self, y)
self._reset()
def __setitem__(self, i, y):
list.__setitem__(self, i, y)
self._reset()
def __setslice__(self, i, j, y):
list.__setslice__(self, i, j, y)
self._reset()
def _reset(self):
self._transfer_function = {}
self._bt1886 = {}
def append(self, object):
list.append(self, object)
self._reset()
def apply_bpc(self, black_Y_out=0, weight=False):
if len(self) < 2:
return
D50_xyY = colormath.XYZ2xyY(*colormath.get_whitepoint("D50"))
bp_in = colormath.xyY2XYZ(D50_xyY[0], D50_xyY[1], self[0] / 65535.0)
bp_out = colormath.xyY2XYZ(D50_xyY[0], D50_xyY[1], black_Y_out)
wp_out = colormath.xyY2XYZ(D50_xyY[0], D50_xyY[1], self[-1] / 65535.0)
for i, v in enumerate(self):
X, Y, Z = colormath.xyY2XYZ(D50_xyY[0], D50_xyY[1], v / 65535.0)
self[i] = (
colormath.apply_bpc(X, Y, Z, bp_in, bp_out, wp_out, weight)[1] * 65535.0
)
def extend(self, iterable):
list.extend(self, iterable)
self._reset()
def get_gamma(
self,
use_vmin_vmax=False,
average=True,
least_squares=False,
slice=(0.01, 0.99),
lstar_slice=True,
):
"""Return average or least squares gamma or a list of gamma values"""
if len(self) <= 1:
if len(self):
values = self
else:
# Identity
values = [1.0]
if average or least_squares:
return values[0]
return [values[0]]
if lstar_slice:
start = slice[0] * 100
end = slice[1] * 100
values = []
for i, y in enumerate(self):
n = colormath.XYZ2Lab(0, y / 65535.0 * 100, 0)[0]
if start <= n <= end:
values.append((i / (len(self) - 1.0) * 65535.0, y))
else:
maxv = len(self) - 1.0
maxi = int(maxv)
starti = int(round(slice[0] * maxi))
endi = int(round(slice[1] * maxi)) + 1
values = list(
zip(
[(v / maxv) * 65535 for v in range(starti, endi)], self[starti:endi]
)
)
vmin = 0
vmax = 65535.0
if use_vmin_vmax:
if len(self) > 2:
vmin = self[0]
vmax = self[-1]
return colormath.get_gamma(values, 65535.0, vmin, vmax, average, least_squares)
def get_transfer_function(
self, best=True, slice=(0.05, 0.95), black_Y=None, outoffset=None
):
"""Return transfer function name, exponent and match percentage."""
if len(self) == 1:
# Gamma
return (f"Gamma {round(self[0], 2):.2f}", self[0], 1.0), 1.0
if not len(self):
# Identity
return ("Gamma 1.0", 1.0, 1.0), 1.0
transfer_function = self._transfer_function.get((best, slice))
if transfer_function:
return transfer_function
trc = CurveType()
match = {}
otrc = CurveType()
otrc[:] = self
if otrc[0]:
otrc.apply_bpc()
vmin = otrc[0]
vmax = otrc[-1]
if self.profile and isinstance(self.profile.tags.get("lumi"), XYZType):
white_cdm2 = self.profile.tags.lumi.Y
else:
white_cdm2 = 100.0
if black_Y is None:
black_Y = self[0] / 65535.0
black_cdm2 = black_Y * white_cdm2
maxv = len(otrc) - 1.0
maxi = int(maxv)
_starti = int(round(0.4 * maxi))
_endi = int(round(0.6 * maxi))
gamma = otrc.get_gamma(True, slice=(0.4, 0.6), lstar_slice=False)
egamma = colormath.get_gamma([(0.5, 0.5**gamma)], vmin=-black_Y)
outoffset_unspecified = outoffset is None
if outoffset_unspecified:
outoffset = 1.0
tfs = [
("Rec. 709", -709, outoffset),
("Rec. 1886", -1886, 0),
("SMPTE 240M", -240, outoffset),
("SMPTE 2084", -2084, outoffset),
("DICOM", -1023, outoffset),
("HLG", -2, outoffset),
("L*", -3.0, outoffset),
("sRGB", -2.4, outoffset),
(
"Gamma {:.2f} {:.0%}".format(gamma, outoffset),
gamma,
outoffset,
),
]
if outoffset_unspecified and black_Y:
for i in range(100):
tfs.append(
(
"Gamma {:.2f} {:d}%".format(gamma, i),
gamma,
i / 100.0,
)
)
for name, exp, outoffset in tfs:
if name in ("DICOM", "Rec. 1886", "SMPTE 2084", "HLG"):
try:
if name == "DICOM":
trc.set_dicom_trc(black_cdm2, white_cdm2, size=len(self))
elif name == "Rec. 1886":
trc.set_bt1886_trc(black_Y, size=len(self))
elif name == "SMPTE 2084":
trc.set_smpte2084_trc(black_cdm2, white_cdm2, size=len(self))
elif name == "HLG":
trc.set_hlg_trc(black_cdm2, white_cdm2, size=len(self))
except ValueError:
continue
elif exp > 0 and black_Y:
trc.set_bt1886_trc(black_Y, outoffset, egamma, "b")
else:
trc.set_trc(exp, len(self), vmin, vmax)
if trc[0] and trc[-1] - trc[0]:
trc.apply_bpc()
if otrc == trc:
match[(name, exp, outoffset)] = 1.0
else:
match[(name, exp, outoffset)] = 0.0
count = 0
start = slice[0] * len(self)
end = slice[1] * len(self)
for i, n in enumerate(otrc):
# n = colormath.XYZ2Lab(0, n / 65535.0 * 100, 0)[0]
if start <= i <= end:
n = colormath.get_gamma(
[(i / (len(self) - 1.0) * 65535.0, n)],
65535.0,
vmin,
vmax,
False,
)
if n:
n = n[0]
# n2 = colormath.XYZ2Lab(0, trc[i] / 65535.0 * 100, 0)[0]
n2 = colormath.get_gamma(
[(i / (len(self) - 1.0) * 65535.0, trc[i])],
65535.0,
vmin,
vmax,
False,
)
if n2 and n2[0]:
n2 = n2[0]
match[(name, exp, outoffset)] += 1 - (
max(n, n2) - min(n, n2)
) / ((n + n2) / 2.0)
count += 1
if count:
match[(name, exp, outoffset)] /= count
if not best:
self._transfer_function[(best, slice)] = match
return match
match, (name, exp, outoffset) = sorted(
zip(list(match.values()), list(match.keys()))
)[-1]
self._transfer_function[(best, slice)] = (name, exp, outoffset), match
return (name, exp, outoffset), match
def insert(self, object):
list.insert(self, object)
self._reset()
def pop(self, index):
list.pop(self, index)
self._reset()
def remove(self, value):
list.remove(self, value)
self._reset()
def reverse(self):
list.reverse(self)
self._reset()
def set_bt1886_trc(
self, black_Y=0, outoffset=0.0, gamma=2.4, gamma_type="B", size=None
):
"""Set the response to the BT. 1886 curve
This response is special in that it depends on the actual black
level of the display.
"""
bt1886 = self._bt1886.get((gamma, black_Y, outoffset))
if bt1886:
return bt1886
if gamma_type in ("b", "g"):
# Get technical gamma needed to achieve effective gamma
gamma = colormath.xicc_tech_gamma(gamma, black_Y, outoffset)
rXYZ = colormath.RGB2XYZ(1.0, 0, 0)
gXYZ = colormath.RGB2XYZ(0, 1.0, 0)
bXYZ = colormath.RGB2XYZ(0, 0, 1.0)
mtx = colormath.Matrix3x3(
[
[rXYZ[0], gXYZ[0], bXYZ[0]],
[rXYZ[1], gXYZ[1], bXYZ[1]],
[rXYZ[2], gXYZ[2], bXYZ[2]],
]
)
wXYZ = colormath.RGB2XYZ(1.0, 1.0, 1.0)
x, y = colormath.XYZ2xyY(*wXYZ)[:2]
XYZbp = colormath.xyY2XYZ(x, y, black_Y)
bt1886 = colormath.BT1886(mtx, XYZbp, outoffset, gamma)
self._bt1886[(gamma, black_Y, outoffset)] = bt1886
self.set_trc(-709, size)
for i, v in enumerate(self):
X, Y, Z = colormath.xyY2XYZ(x, y, v / 65535.0)
self[i] = bt1886.apply(X, Y, Z)[1] * 65535.0
def set_dicom_trc(self, black_cdm2=0.05, white_cdm2=100, size=None):
"""Set the response to the DICOM Grayscale Standard Display Function
This response is special in that it depends on the actual black
and white level of the display.
"""
# See http://medical.nema.org/Dicom/2011/11_14pu.pdf
# Luminance levels depend on the start level of 0.05 cd/m2
# and end level of 4000 cd/m2
black_cdm2 = round(black_cdm2, 6)
if black_cdm2 < 0.05 or black_cdm2 >= white_cdm2:
raise ValueError(
f"The black level of {black_cdm2} cd/m2 is out of range "
"for DICOM. Valid range begins at 0.05 cd/m2."
)
if white_cdm2 > 4000 or white_cdm2 <= black_cdm2:
raise ValueError(
f"The white level of {white_cdm2} cd/m2 is out of range "
"for DICOM. Valid range is up to 4000 cd/m2."
)
black_jndi = colormath.DICOM(black_cdm2, True)
white_jndi = colormath.DICOM(white_cdm2, True)
white_dicomY = math.pow(10, colormath.DICOM(white_jndi))
if not size:
size = len(self)
if size < 2:
size = 1024
self[:] = []
for i in range(size):
v = (
math.pow(
10,
colormath.DICOM(
black_jndi + (float(i) / (size - 1)) * (white_jndi - black_jndi)
),
)
/ white_dicomY
)
self.append(v * 65535)
def set_hlg_trc(
self,
black_cdm2=0,
white_cdm2=100,
system_gamma=1.2,
ambient_cdm2=5,
maxsignal=1.0,
size=None,
logfile=None,
):
"""Set the response to the Hybrid Log-Gamma (HLG) function
This response is special in that it depends on the actual black
and white level of the display, system gamma and ambient.
XYZbp Black point in absolute XYZ, Y range 0..white_cdm2
maxsignal Set clipping point (optional)
size Number of steps. Recommended >= 1024
"""
if black_cdm2 < 0 or black_cdm2 >= white_cdm2:
raise ValueError(
f"The black level of {black_cdm2:f} cd/m2 is out of range "
"for HLG. Valid range begins at 0 cd/m2."
)
values = []
hlg = colormath.HLG(black_cdm2, white_cdm2, system_gamma, ambient_cdm2)
if maxsignal < 1:
# Adjust EOTF so that EOTF[maxsignal] gives (approx) white_cdm2
while hlg.eotf(maxsignal) * hlg.white_cdm2 < white_cdm2:
hlg.white_cdm2 += 1
lscale = 1.0 / hlg.oetf(1.0, True)
hlg.white_cdm2 *= lscale
if lscale < 1 and logfile:
logfile.write(
f"Nominal peak luminance after scaling = {hlg.white_cdm2:.2f}\n"
)
maxv = hlg.eotf(maxsignal)
if not size:
size = len(self)
if size < 2:
size = 1024
for i in range(size):
n = i / (size - 1.0)
v = hlg.eotf(min(n, maxsignal))
values.append(min(v / maxv, 1.0))
self[:] = [min(v * 65535, 65535) for v in values]
def set_smpte2084_trc(
self,
black_cdm2=0,
white_cdm2=100,
master_black_cdm2=0,
master_white_cdm2=0,
use_alternate_master_white_clip=True,
rolloff=False,
size=None,
):
"""Set the response to the SMPTE 2084 perceptual quantizer (PQ) function
This response is special in that it depends on the actual black
and white level of the display.
black_cdm2 Black point in absolute Y, range 0..white_cdm2
master_black_cdm2 (Optional) Used to normalize PQ values
master_white_cdm2 (Optional) Used to normalize PQ values
rolloff BT.2390
size Number of steps. Recommended >= 1024
"""
# See https://www.smpte.org/sites/default/files/2014-05-06-EOTF-Miller-1-2-handout.pdf
# Luminance levels depend on the end level of 10000 cd/m2
if black_cdm2 < 0 or black_cdm2 >= white_cdm2:
raise ValueError(
f"The black level of {black_cdm2:f} cd/m2 is out of range "
"for SMPTE 2084. Valid range begins at 0 cd/m2."
)
if max(white_cdm2, master_white_cdm2) > 10000:
raise ValueError(
f"The white level of {max(white_cdm2, master_white_cdm2):f} "
"cd/m2 is out of range for SMPTE 2084. "
"Valid range is up to 10000 cd/m2."
)
values = []
maxv = white_cdm2 / 10000.0
maxi = colormath.specialpow(maxv, 1.0 / -2084)
if rolloff:
# Rolloff as defined in ITU-R BT.2390
if not master_white_cdm2:
master_white_cdm2 = 10000
bt2390 = colormath.BT2390(
black_cdm2,
white_cdm2,
master_black_cdm2,
master_white_cdm2,
use_alternate_master_white_clip,
)
maxi_out = maxi
else:
if not master_white_cdm2:
master_white_cdm2 = white_cdm2
maxi_out = colormath.specialpow(master_white_cdm2 / 10000.0, 1.0 / -2084)
if not size:
size = len(self)
if size < 2:
size = 1024
for i in range(size):
n = i / (size - 1.0)
if rolloff:
n = bt2390.apply(n)
v = colormath.specialpow(n * (maxi / maxi_out), -2084)
values.append(min(v / maxv, 1.0))
self[:] = [min(v * 65535, 65535) for v in values]
if black_cdm2 and not rolloff:
self.apply_bpc(black_cdm2 / white_cdm2)
def set_trc(self, power=2.2, size=None, vmin=0, vmax=65535):
"""Set the response to a certain function.
Positive power, or -2.4 = sRGB, -3.0 = L*, -240 = SMPTE 240M,
-601 = Rec. 601, -709 = Rec. 709 (Rec. 601 and 709 transfer functions are
identical)
"""
if not size:
size = len(self) or 1024
if size == 1:
if callable(power):
power = colormath.get_gamma([(0.5, power(0.5))])
if power >= 0.0 and not vmin:
self[:] = [power]
return
else:
size = 1024
self[:] = []
if not callable(power):
exp = power
def power(a):
return colormath.specialpow(a, exp)
for i in range(0, size):
self.append(vmin + power(float(i) / (size - 1)) * (vmax - vmin))
def smooth_cr(self, length=64):
"""Smooth curves (Catmull-Rom)."""
raise NotImplementedError()
def smooth_avg(self, passes=1, window=None):
"""Smooth curves (moving average).
passses Number of passes
window Tuple or list containing weighting factors. Its length
determines the size of the window to use.
Defaults to (1.0, 1.0, 1.0)
"""
self[:] = colormath.smooth_avg(self, passes, window)
def sort(self, cmp=None, key=None, reverse=False):
list.sort(self, key=key, reverse=reverse)
self._reset()
@property
def tagData(self):
"""Return raw tag data."""
if len(self) == 1 and self[0] == 1.0:
# Identity
curveEntriesCount = 0
else:
curveEntriesCount = len(self)
tagData = [b"curv", b"\0" * 4, uInt32Number_tohex(curveEntriesCount)]
if curveEntriesCount == 1:
# Gamma
tagData.append(u8Fixed8Number_tohex(self[0]))
elif curveEntriesCount:
# Curve
for curveEntry in self:
tagData.append(uInt16Number_tohex(curveEntry))
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
class ParametricCurveType(ICCProfileTag):
def __init__(self, tagData=None, tagSignature=None, profile=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.profile = profile
self.params = {}
if not tagData:
return
fntype = uInt16Number(tagData[8:10])
numparams = {0: 1, 1: 3, 2: 4, 3: 5, 4: 7}.get(fntype)
for i, param in enumerate("gabcdef"[:numparams]):
self.params[param] = s15Fixed16Number(tagData[12 + i * 4 : 12 + i * 4 + 4])
def __apply(self, v):
if len(self.params) == 1:
return v ** self.params["g"]
elif len(self.params) == 3:
# CIE 122-1966
if v >= -self.params["b"] / self.params["a"]:
return (self.params["a"] * v + self.params["b"]) ** self.params["g"]
else:
return 0
elif len(self.params) == 4:
# IEC 61966-3
if v >= -self.params["b"] / self.params["a"]:
return (self.params["a"] * v + self.params["b"]) ** self.params[
"g"
] + self.params["c"]
else:
return self.params["c"]
elif len(self.params) == 5:
# IEC 61966-2.1 (sRGB)
if v >= self.params["d"]:
return (self.params["a"] * v + self.params["b"]) ** self.params["g"]
else:
return self.params["c"] * v
elif len(self.params) == 7:
if v >= self.params["d"]:
return (self.params["a"] * v + self.params["b"]) ** self.params[
"g"
] + self.params["e"]
else:
return self.params["c"] * v + self.params["f"]
else:
raise NotImplementedError(
f"Invalid number of parameters: {len(self.params):d}"
)
def apply(self, v):
# clip result to [0, 1]
return max(0, min(self.__apply(v), 1))
def get_trc(self, size=1024):
curv = CurveType(profile=self.profile)
for i in range(size):
curv.append(self.apply(i / (size - 1.0)) * 65535)
return curv
class DateTimeType(ICCProfileTag, datetime.datetime):
def __new__(cls, tagData, tagSignature):
dt = dateTimeNumber(tagData[8:20])
return datetime.datetime.__new__(
cls, dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second
)
class DictList(list):
def __getitem__(self, key):
for item in self:
if item[0] == key:
return item
raise KeyError(key)
def __setitem__(self, key, value):
if not isinstance(value, DictListItem):
self.append(DictListItem((key, value)))
class DictListItem(list):
def __iadd__(self, value):
self[-1] += value
return self
class DictType(ICCProfileTag, AODict):
"""ICC dictType Tag
Implements all features of 'Dictionary Type and Metadata TAG Definition'
(ICC spec revision 2010-02-25), including shared data (the latter will
only be effective for mutable types, ie. MultiLocalizedUnicodeType)
Examples:
tag[key] Returns the (non-localized) value
tag.getname(key, locale='en_US') Returns the localized name if present
tag.getvalue(key, locale='en_US') Returns the localized value if present
tag[key] = value Sets the (non-localized) value
"""
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
AODict.__init__(self)
if not tagData:
return
numrecords = uInt32Number(tagData[8:12])
recordlen = uInt32Number(tagData[12:16])
if recordlen not in (16, 24, 32):
print(
f"Error (non-critical): '{tagData[:4]}' invalid record length "
f"(expected 16, 24 or 32, got {recordlen})"
)
return
elements = {}
for n in range(0, numrecords):
record = tagData[16 + n * recordlen : 16 + (n + 1) * recordlen]
if len(record) < recordlen:
print(
f"Error (non-critical): '{tagData[:4]}' record {n} too short "
f"(expected {recordlen} bytes, got {len(record)} bytes)"
)
break
for key, offsetpos in (
("name", 0),
("value", 8),
("display_name", 16),
("display_value", 24),
):
if (
offsetpos in (0, 8)
or recordlen == offsetpos + 8
or recordlen == offsetpos + 16
):
# Required:
# Bytes 0..3, 4..7: Name offset and size
# Bytes 8..11, 12..15: Value offset and size
# Optional:
# Bytes 16..23, 24..23: Display name offset and size
# Bytes 24..27, 28..31: Display value offset and size
offset = uInt32Number(record[offsetpos : offsetpos + 4])
size = uInt32Number(record[offsetpos + 4 : offsetpos + 8])
if offset > 0:
if (offset, size) in elements:
# Use existing element if same offset and size
# This will really only make a difference for
# mutable types i.e. MultiLocalizedUnicodeType
data = elements[(offset, size)]
else:
data = tagData[offset : offset + size]
try:
if key.startswith("display_"):
data = MultiLocalizedUnicodeType(data, "mluc")
else:
data = data.decode("UTF-16-BE", "replace").rstrip(
"\0"
)
except Exception:
print(
"Error (non-critical): could not decode "
f"'{tagData[:4]}', offset {offset}, length {size}"
)
# Remember element by offset and size
elements[(offset, size)] = data
if key == "name":
name = data
self[name] = ""
else:
self.get(name)[key] = data
def __getitem__(self, name):
return self.get(name).value
def __setitem__(self, name, value):
AODict.__setitem__(self, name, ADict(value=value))
@property
def tagData(self):
"""Return raw tag data."""
numrecords = len(self)
recordlen = 16
keys = ("name", "value")
for value in self.values():
if isinstance(value, dict):
if "display_value" in value:
recordlen = 32
break
elif "display_name" in value:
recordlen = 24
if recordlen > 16:
keys += ("display_name",)
if recordlen > 24:
keys += ("display_value",)
tagData = [
b"dict",
b"\0" * 4,
uInt32Number_tohex(numrecords),
uInt32Number_tohex(recordlen),
]
storage_offset = 16 + numrecords * recordlen
storage = []
elements = []
offsets = []
for item in self.items():
for key in keys:
if key == "name":
element = item[0]
else:
if isinstance(item[1], dict):
element = item[1].get(key)
else:
element = item[1]
if element is None:
offset = 0
size = 0
else:
if element in elements:
# Use existing offset and size if same element
offset, size = offsets[elements.index(element)]
else:
offset = storage_offset + len(b"".join(storage))
if isinstance(element, MultiLocalizedUnicodeType):
data = element.tagData
else:
data = str(element).encode("UTF-16-BE")
size = len(data)
if isinstance(element, MultiLocalizedUnicodeType):
# Remember element, offset and size
elements.append(element)
offsets.append((offset, size))
# Pad all data with binary zeros so it lies on
# 4-byte boundaries
padding = int(math.ceil(size / 4.0)) * 4 - size
data += b"\0" * padding
storage.append(data)
tagData.append(uInt32Number_tohex(offset))
tagData.append(uInt32Number_tohex(size))
tagData.extend(storage)
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
def getname(self, name, default=None, locale="en_US"):
"""Convenience function to get (localized) names"""
item = self.get(name, default)
if item is default:
return default
if locale and "display_name" in item:
return item.display_name.get_localized_string(*locale.split("_"))
else:
return name
def getvalue(self, name, default=None, locale="en_US"):
"""Convenience function to get (localized) values"""
item = self.get(name, default)
if item is default:
return default
if locale and "display_value" in item:
return item.display_value.get_localized_string(*locale.split("_"))
else:
if isinstance(item, dict):
return item.value
else:
return item
def setitem(self, name, value, display_name=None, display_value=None):
"""Convenience function to set items
display_name and display_value (if given) should be dict types with
country -> language -> string mappings, e.g.:
{"en": {"US": u"localized string"},
"de": {"DE": u"localized string", "CH": u"localized string"}}
"""
self[name] = value
item = self.get(name)
if display_name:
item.display_name = MultiLocalizedUnicodeType()
item.display_name.update(display_name)
if display_value:
item.display_value = MultiLocalizedUnicodeType()
item.display_value.update(display_value)
def to_json(self, encoding="UTF-8", errors="replace", locale="en_US"):
"""Return a JSON representation
Display names/values are used if present.
"""
return DictTypeJSONEncoder(locale=locale).encode(self)
class DictTypeJSONEncoder(json.JSONEncoder):
"""JSON Encoder for the DictType class."""
def __init__(self, *args, **kwargs):
self.locale = kwargs.pop("locale") or "en_US"
super().__init__(*args, **kwargs)
def default(self, obj):
return_data = {}
regex = re.compile(r"\\x([0-9a-f]{2})")
repl_str = r"\\u00\1"
for name in obj:
value = obj.getvalue(name, None, self.locale)
name = obj.getname(name, None, self.locale)
value = '"{}"'.format(repr(str(value))[2:-1].replace('"', '\\"'))
name = regex.sub(repl_str, name)
value = regex.sub(repl_str, value)
return_data[name] = value
return return_data
class MakeAndModelType(ICCProfileTag, ADict):
def __init__(self, tagData, tagSignature):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.update({"manufacturer": tagData[10:12], "model": tagData[14:16]})
class MeasurementType(ICCProfileTag, ADict):
def __init__(self, tagData, tagSignature):
ICCProfileTag.__init__(self, tagData, tagSignature)
print(f"tagData[8:12]: {tagData[8:12]}")
self.update(
{
"observer": Observer(tagData[8:12]),
"backing": XYZNumber(tagData[12:24]),
"geometry": Geometry(tagData[24:28]),
"flare": u16Fixed16Number(tagData[28:32]),
"illuminantType": Illuminant(tagData[32:36]),
}
)
class MultiLocalizedUnicodeType(ICCProfileTag, AODict): # ICC v4
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
AODict.__init__(self)
if not tagData:
return
recordsCount = uInt32Number(tagData[8:12])
recordSize = uInt32Number(tagData[12:16]) # 12
if recordSize != 12:
print(
f"Warning (non-critical): '{tagData[:4]}' invalid record length "
f"(expected 12, got {recordSize})"
)
if recordSize < 12:
recordSize = 12
records = tagData[16 : 16 + recordSize * recordsCount]
for _count in range(recordsCount):
record = records[:recordSize]
if len(record) < 12:
continue
recordLanguageCode = record[:2]
recordCountryCode = record[2:4]
recordLength = uInt32Number(record[4:8])
recordOffset = uInt32Number(record[8:12])
self.add_localized_string(
recordLanguageCode,
recordCountryCode,
str(
tagData[recordOffset : recordOffset + recordLength],
"utf-16-be",
"replace",
),
)
records = records[recordSize:]
def __str__(self):
"""Return tag as string."""
# TODO: Needs some work re locales
# (currently if en-UK or en-US is not found, simply the first entry
# is returned)
if b"en" in self:
for countryCode in (b"UK", b"US"):
if countryCode in self[b"en"]:
return self[b"en"][countryCode]
if self[b"en"]:
return list(self[b"en"].values())[0]
return ""
elif len(self):
return list(list(self.values())[0].values())[0]
else:
return ""
def add_localized_string(self, languagecode, countrycode, localized_string):
"""Convenience function for adding localized strings"""
if languagecode not in self:
self[languagecode] = AODict()
self[languagecode][countrycode] = localized_string.strip("\0")
def get_localized_string(self, languagecode="en", countrycode="US"):
"""Convenience function for retrieving localized strings
Falls back to first locale available if the requested one isn't
"""
try:
return self[languagecode][countrycode]
except KeyError:
return str(self)
@property
def tagData(self):
"""Return raw tag data."""
tagData = [b"mluc", b"\0" * 4]
recordsCount = 0
for languageCode in self:
for _countryCode in self[languageCode]:
recordsCount += 1
tagData.append(uInt32Number_tohex(recordsCount))
recordSize = 12
tagData.append(uInt32Number_tohex(recordSize))
storage_offset = 16 + recordSize * recordsCount
storage = []
offsets = []
for languageCode in self:
for countryCode in self[languageCode]:
tagData.append(languageCode + countryCode)
data = self[languageCode][countryCode].encode("UTF-16-BE")
if data in storage:
offset, recordLength = offsets[storage.index(data)]
else:
recordLength = len(data)
offset = len("".join(storage))
offsets.append((offset, recordLength))
storage.append(data)
tagData.append(uInt32Number_tohex(recordLength))
tagData.append(uInt32Number_tohex(storage_offset + offset))
tagData.append(
b"".join(storage)
) # TODO: Are you sure that this needs to be bytes
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
class ProfileSequenceDescType(ICCProfileTag, list):
def __init__(self, tagData=None, tagSignature=None, profile=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.profile = profile
if tagData:
count = uInt32Number(tagData[8:12])
desc_data = tagData[12:]
while count:
# NOTE: Like in the profile header, the attributes are a 64 bit
# value, but the least significant 32 bits (big-endian) are
# reserved for the ICC.
attributes = uInt32Number(desc_data[8:12])
desc = {
"manufacturer": desc_data[0:4],
"model": desc_data[4:8],
"attributes": {
"reflective": attributes & 1 == 0,
"glossy": attributes & 2 == 0,
"positive": attributes & 4 == 0,
"color": attributes & 8 == 0,
},
"tech": desc_data[16:20],
}
desc_data = desc_data[20:]
for desc_type in ("dmnd", "dmdd"):
tag_type = desc_data[0:4]
if tag_type == "desc":
cls = TextDescriptionType
elif tag_type == "mluc":
cls = MultiLocalizedUnicodeType
else:
print(
"Error (non-critical): could not fully decode 'pseq' - "
f"unknown {repr(desc_type)} tag type {repr(tag_type)}"
)
count = 1 # Skip remaining
break
desc[desc_type] = cls(desc_data)
desc_data = desc_data[len(desc[desc_type].tagData) :]
self.append(desc)
count -= 1
def add(self, profile):
"""Add description structure of profile"""
desc = {}
desc.update(profile.device)
desc["tech"] = profile.tags.get("tech", b"").ljust(4, b"\0")[:4]
for desc_type in ("dmnd", "dmdd"):
if self.profile.version >= 4:
cls = MultiLocalizedUnicodeType
else:
cls = TextDescriptionType
if self.profile.version < 4 and profile.version < 4:
# Both profiles not v4
tag = profile.tags.get(desc_type, cls())
else:
tag = cls()
description = str(profile.tags.get(desc_type, ""))
if self.profile.version < 4:
# Other profile is v4
tag.ASCII = description.encode("ASCII", "asciize")
if tag.ASCII != description:
tag.Unicode = description
else:
# Other profile is v2
tag.add_localized_string("en", "US", description)
desc[desc_type] = tag
self.append(desc)
@property
def tagData(self):
"""Return raw tag data."""
tag_data = [b"pseq", b"\0" * 4, uInt32Number_tohex(len(self))]
for desc in self:
tag_data.append(desc.get("manufacturer", b"").ljust(4, b"\0")[:4])
tag_data.append(desc.get("model", b"").ljust(4, b"\0")[:4])
attributes = 0
for name, bit in {
"reflective": 1,
"glossy": 2,
"positive": 4,
"color": 8,
}.items():
if not desc.get("attributes", {}).get(name):
attributes |= bit
tag_data.append(uInt32Number_tohex(attributes) + b"\0" * 4)
tag_data.append(desc.get("tech", b"").ljust(4, b"\0")[:4])
for desc_type in ("dmnd", "dmdd"):
tag_data.append(desc.get(desc_type, b"").tagData)
return b"".join(tag_data)
@tagData.setter
def tagData(self, tag_data):
pass
class s15Fixed16ArrayType(ICCProfileTag, list):
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
if tagData:
data = tagData[8:]
while data:
self.append(s15Fixed16Number(data[0:4]))
data = data[4:]
@property
def tagData(self):
"""Return raw tag data."""
tag_data = [b"sf32", b"\0" * 4]
for value in self:
tag_data.append(s15Fixed16Number_tohex(value))
return b"".join(tag_data)
@tagData.setter
def tagData(self, tag_data):
pass
def SignatureType(tagData, tagSignature):
tag = Text(tagData[8:12].rstrip(b"\0"))
tag.tagData = tagData
tag.tagSignature = tagSignature
return tag
class TextDescriptionType(ICCProfileTag, ADict): # ICC v2
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.ASCII = b""
if not tagData:
return
ASCIIDescriptionLength = uInt32Number(tagData[8:12])
if ASCIIDescriptionLength:
ASCIIDescription = tagData[12 : 12 + ASCIIDescriptionLength].strip(
b"\0\n\r "
)
if ASCIIDescription:
self.ASCII = ASCIIDescription
unicodeOffset = 12 + ASCIIDescriptionLength
self.unicodeLanguageCode = uInt32Number(
tagData[unicodeOffset : unicodeOffset + 4]
)
unicodeDescriptionLength = uInt32Number(
tagData[unicodeOffset + 4 : unicodeOffset + 8]
)
if unicodeDescriptionLength:
if unicodeOffset + 8 + unicodeDescriptionLength * 2 > len(tagData):
# Damn you MS. The Unicode character count should be the number of
# double-byte characters (including trailing unicode NUL), not the
# number of bytes as in the profiles created by Vista and later
print(
f"Warning (non-critical): '{tagData[:4]}' Unicode part end points "
"past the tag data, assuming number of bytes instead "
"of number of characters for length"
)
unicodeDescriptionLength /= 2
if (
tagData[
unicodeOffset + 8 + unicodeDescriptionLength : unicodeOffset
+ 8
+ unicodeDescriptionLength
+ 2
]
== b"\0\0"
):
print(
f"Warning (non-critical): '{tagData[:4]}' Unicode part "
"seems to be a single-byte string (double-byte "
"string expected)"
)
charBytes = 1 # fix for fubar'd desc
else:
charBytes = 2
unicodeDescription = tagData[
unicodeOffset + 8 : unicodeOffset
+ 8
+ (unicodeDescriptionLength) * charBytes
]
try:
if charBytes == 1:
unicodeDescription = str(unicodeDescription, errors="replace")
else:
if unicodeDescription[:2] == b"\xfe\xff":
# UTF-16 Big Endian
if DEBUG:
print("UTF-16 Big endian")
unicodeDescription = unicodeDescription[2:]
if (
len(unicodeDescription.split(b" "))
== unicodeDescriptionLength - 1
):
print(
f"Warning (non-critical): '{tagData[:4]}' "
"Unicode part starts with UTF-16 big "
"endian BOM, but actual contents seem "
"to be UTF-16 little endian"
)
# fix fubar'd desc
unicodeDescription = str(
b"\0".join(unicodeDescription.split(b" ")),
"utf-16-le",
errors="replace",
)
else:
unicodeDescription = str(
unicodeDescription, "utf-16-be", errors="replace"
)
elif unicodeDescription[:2] == b"\xff\xfe":
# UTF-16 Little Endian
if DEBUG:
print("UTF-16 Little endian")
unicodeDescription = unicodeDescription[2:]
if unicodeDescription[0] == b"\0":
print(
f"Warning (non-critical): '{tagData[:4]}' "
"Unicode part starts with UTF-16 "
"little endian BOM, but actual "
"contents seem to be UTF-16 big "
"endian"
)
# fix fubar'd desc
unicodeDescription = str(
unicodeDescription, "utf-16-be", errors="replace"
)
else:
unicodeDescription = str(
unicodeDescription, "utf-16-le", errors="replace"
)
else:
if DEBUG:
print("ASSUMED UTF-16 Big Endian")
unicodeDescription = str(
unicodeDescription, "utf-16-be", errors="replace"
)
unicodeDescription = unicodeDescription.strip("\0\n\r ")
if unicodeDescription:
if unicodeDescription.find("\0") < 0:
self.Unicode = unicodeDescription
else:
print(
"Error (non-critical): could not decode "
f"'{tagData[:4]}' Unicode part - null byte(s) "
"encountered"
)
except UnicodeDecodeError:
print(
"UnicodeDecodeError (non-critical): could not "
f"decode '{tagData[:4]}' Unicode part"
)
else:
charBytes = 1
macOffset = unicodeOffset + 8 + unicodeDescriptionLength * charBytes
self.macScriptCode = 0
if len(tagData) > macOffset + 2:
self.macScriptCode = uInt16Number(tagData[macOffset : macOffset + 2])
macDescriptionLength = ord(tagData[macOffset + 2 : macOffset + 3])
if macDescriptionLength:
try:
macDescription = str(
tagData[macOffset + 3 : macOffset + 3 + macDescriptionLength],
"mac-" + ENCODINGS["mac"][self.macScriptCode],
errors="replace",
).strip("\0\n\r ")
if macDescription:
self.Macintosh = macDescription
except KeyError:
print(
f"KeyError (non-critical): could not decode '{tagData[:4]}' "
f"Macintosh part (unsupported encoding {self.macScriptCode})"
)
except LookupError:
print(
f"LookupError (non-critical): could not decode '{tagData[:4]}' "
"Macintosh part (unsupported encoding "
f"'{ENCODINGS['mac'][self.macScriptCode]}')"
)
except UnicodeDecodeError:
print(
"UnicodeDecodeError (non-critical): could not decode "
f"'{tagData[:4]}' Macintosh part"
)
@property
def tagData(self):
"""Return raw tag data."""
tagData = [
b"desc",
b"\0" * 4,
uInt32Number_tohex(len(self.ASCII) + 1), # count of ASCII chars + 1
self.ASCII + b"\0", # ASCII desc, \0 terminated
uInt32Number_tohex(self.get("unicodeLanguageCode", 0)),
]
if "Unicode" in self:
tagData.extend(
[
uInt32Number_tohex(
len(self.Unicode) + 2
), # count of Unicode chars + 2 (UTF-16-BE BOM + trailing UTF-16 NUL, 1 char = 2 byte)
b"\xfe\xff" + self.Unicode.encode("utf-16-be", "replace") + b"\0\0",
]
) # Unicode desc, \0\0 terminated
else:
tagData.append(uInt32Number_tohex(0)) # Unicode desc length = 0
tagData.append(uInt16Number_tohex(self.get("macScriptCode", 0)))
if "Macintosh" in self:
macDescription = self.Macintosh[:66]
tagData.extend(
[
uInt8Number_tohex(
len(macDescription) + 1
), # count of Macintosh chars + 1
macDescription.encode(
"mac-" + ENCODINGS["mac"][self.get("macScriptCode", 0)],
"replace",
)
+ (b"\0" * (67 - len(macDescription))),
]
)
else:
tagData.extend([b"\0", b"\0" * 67]) # Mac desc length = 0
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
def __str__(self):
if "Unicode" not in self and len(str(self.ASCII)) < 67:
# Do not use Macintosh description if ASCII length >= 67
localizedTypes = ("Macintosh", "ASCII")
else:
localizedTypes = ("Unicode", "ASCII")
for localizedType in localizedTypes:
if localizedType in self:
value = self[localizedType]
if not isinstance(value, str):
# Even ASCII description may contain non-ASCII chars, so
# assume system encoding and convert to unicode, replacing
# unknown chars
value = value.decode("utf-8", "replace")
return value
def TextType(tagData, tagSignature):
tag = Text(tagData[8:].rstrip(b"\0"))
tag.tagData = tagData
tag.tagSignature = tagSignature
return tag
class VideoCardGammaType(ICCProfileTag, ADict):
# Private tag
# http://developer.apple.com/documentation/GraphicsImaging/Reference/ColorSync_Manager/Reference/reference.html#//apple_ref/doc/uid/TP30000259-CH3g-C001473
def __init__(self, tagData, tagSignature):
ICCProfileTag.__init__(self, tagData, tagSignature)
def is_linear(self, r=True, g=True, b=True):
r_points, g_points, b_points, linear_points = self.get_values()
if (
(r and g and b and r_points == g_points == b_points)
or (r and g and r_points == g_points)
or not (g or b)
):
points = r_points
elif (
(r and b and r_points == b_points)
or (g and b and g_points == b_points)
or not (r or g)
):
points = b_points
elif g:
points = g_points
return points == linear_points
def get_unique_values(self, r=True, g=True, b=True):
r_points, g_points, b_points, linear_points = self.get_values()
r_unique = set(round(y) for x, y in r_points)
g_unique = set(round(y) for x, y in g_points)
b_unique = set(round(y) for x, y in b_points)
return r_unique, g_unique, b_unique
def get_values(self, r=True, g=True, b=True):
r_points = []
g_points = []
b_points = []
linear_points = []
vcgt = self
if "data" in vcgt: # table
data = list(vcgt["data"])
while len(data) < 3:
data.append(data[0])
irange = list(range(0, vcgt["entryCount"]))
vmax = math.pow(256, vcgt["entrySize"]) - 1
for i in irange:
j = i * (255.0 / (vcgt["entryCount"] - 1))
linear_points.append(
[j, int(round(i / float(vcgt["entryCount"] - 1) * 65535))]
)
if r:
n = int(round(float(data[0][i]) / vmax * 65535))
r_points.append([j, n])
if g:
n = int(round(float(data[1][i]) / vmax * 65535))
g_points.append([j, n])
if b:
n = int(round(float(data[2][i]) / vmax * 65535))
b_points.append([j, n])
else: # formula
irange = list(range(0, 256))
step = 100.0 / 255.0
for i in irange:
linear_points.append([i, i / 255.0 * 65535])
if r:
vmin = vcgt["redMin"] * 65535
v = math.pow(step * i / 100.0, vcgt["redGamma"])
vmax = vcgt["redMax"] * 65535
r_points.append([i, int(round(vmin + v * (vmax - vmin)))])
if g:
vmin = vcgt["greenMin"] * 65535
v = math.pow(step * i / 100.0, vcgt["greenGamma"])
vmax = vcgt["greenMax"] * 65535
g_points.append([i, int(round(vmin + v * (vmax - vmin)))])
if b:
vmin = vcgt["blueMin"] * 65535
v = math.pow(step * i / 100.0, vcgt["blueGamma"])
vmax = vcgt["blueMax"] * 65535
b_points.append([i, int(round(vmin + v * (vmax - vmin)))])
return r_points, g_points, b_points, linear_points
def printNormalizedValues(self, amount=None, digits=12):
"""Normalizes and prints all values in the vcgt (range of 0.0...1.0).
For a 256-entry table with linear values from 0 to 65535:
# REF C1 C2 C3
001 0.000000000000 0.000000000000 0.000000000000 0.000000000000
002 0.003921568627 0.003921568627 0.003921568627 0.003921568627
003 0.007843137255 0.007843137255 0.007843137255 0.007843137255
...
You can also specify the amount of values to print (where a value
lesser than the entry count will leave out intermediate values)
and the number of digits.
"""
if amount is None:
if hasattr(self, "entryCount"):
amount = self.entryCount
else:
amount = 256 # common value
values = self.getNormalizedValues(amount)
entryCount = len(values)
channels = len(values[0])
header = ["REF"]
for k in range(channels):
header.append("C" + str(k + 1))
header = [title.ljust(digits + 2) for title in header]
print("#".ljust(len(str(amount)) + 1) + " ".join(header))
for i, value in enumerate(values):
formatted_values = [
str(round(channel, digits)).ljust(digits + 2, "0") for channel in value
]
print(
str(i + 1).rjust(len(str(amount)), "0"),
str(round(i / float(entryCount - 1), digits)).ljust(digits + 2, "0"),
" ".join(formatted_values),
)
class VideoCardGammaFormulaType(VideoCardGammaType):
def __init__(self, tagData, tagSignature):
VideoCardGammaType.__init__(self, tagData, tagSignature)
data = tagData[12:]
self.update(
{
"redGamma": u16Fixed16Number(data[0:4]),
"redMin": u16Fixed16Number(data[4:8]),
"redMax": u16Fixed16Number(data[8:12]),
"greenGamma": u16Fixed16Number(data[12:16]),
"greenMin": u16Fixed16Number(data[16:20]),
"greenMax": u16Fixed16Number(data[20:24]),
"blueGamma": u16Fixed16Number(data[24:28]),
"blueMin": u16Fixed16Number(data[28:32]),
"blueMax": u16Fixed16Number(data[32:36]),
}
)
def getNormalizedValues(self, amount=None):
if amount is None:
amount = 256 # common value
step = 1.0 / float(amount - 1)
rgb = AODict([("red", []), ("green", []), ("blue", [])])
for i in range(0, amount):
for key in rgb:
rgb[key].append(
float(self[key + "Min"])
+ math.pow(step * i / 1.0, float(self[key + "Gamma"]))
* float(self[key + "Max"] - self[key + "Min"])
)
return list(zip(*list(rgb.values())))
def getTableType(self, entryCount=256, entrySize=2, quantizer=round):
"""Return gamma as table type."""
maxValue = math.pow(256, entrySize) - 1
tagData = [
self.tagData[:8],
uInt32Number_tohex(0), # type 0 = table
uInt16Number_tohex(3), # channels
uInt16Number_tohex(entryCount),
uInt16Number_tohex(entrySize),
]
int2hex = {
1: uInt8Number_tohex,
2: uInt16Number_tohex,
4: uInt32Number_tohex,
8: uInt64Number_tohex,
}
for key in ("red", "green", "blue"):
for i in range(0, entryCount):
vmin = float(self[key + "Min"])
vmax = float(self[key + "Max"])
gamma = float(self[key + "Gamma"])
v = vmin + math.pow(1.0 / (entryCount - 1) * i, gamma) * float(
vmax - vmin
)
tagData.append(int2hex[entrySize](quantizer(v * maxValue)))
return VideoCardGammaTableType(b"".join(tagData), self.tagSignature)
class VideoCardGammaTableType(VideoCardGammaType):
def __init__(self, tagData, tagSignature):
VideoCardGammaType.__init__(self, tagData, tagSignature)
if not tagData:
self.update({"channels": 0, "entryCount": 0, "entrySize": 0, "data": []})
return
data = tagData[12:]
channels = uInt16Number(data[0:2])
entryCount = uInt16Number(data[2:4])
entrySize = uInt16Number(data[4:6])
self.update(
{
"channels": channels,
"entryCount": entryCount,
"entrySize": entrySize,
"data": [],
}
)
hex2int = {1: uInt8Number, 2: uInt16Number, 4: uInt32Number, 8: uInt64Number}
if entrySize not in hex2int:
raise ValueError(
f"Invalid VideoCardGammaTableType entry size {int(entrySize):d}"
)
i = 0
while i < channels:
self.data.append([])
j = 0
while j < entryCount:
index = 6 + i * entryCount * entrySize + j * entrySize
self.data[i].append(hex2int[entrySize](data[index : index + entrySize]))
j = j + 1
i = i + 1
def getNormalizedValues(self, amount=None):
if amount is None:
amount = self.entryCount
maxValue = math.pow(256, self.entrySize) - 1
values = list(
zip(*[[entry / maxValue for entry in channel] for channel in self.data])
)
if amount <= self.entryCount:
step = self.entryCount / float(amount - 1)
all = values
values = []
for i, value in enumerate(all):
if i == 0 or (i + 1) % step < 1 or i + 1 == self.entryCount:
values.append(value)
return values
def getFormulaType(self):
"""Return formula representing gamma value at 50% input."""
maxValue = math.pow(256, self.entrySize) - 1
tagData = [self.tagData[:8], uInt32Number_tohex(1)] # type 1 = formula
data = list(self.data)
while len(data) < 3:
data.append(data[0])
for channel in data:
channel_length = (len(channel) - 1) / 2.0
floor = float(channel[int(math.floor(channel_length))])
ceil = float(channel[int(math.ceil(channel_length))])
vmin = channel[0] / maxValue
vmax = channel[-1] / maxValue
v = (vmin + ((floor + ceil) / 2.0) * (vmax - vmin)) / maxValue
gamma = math.log(v) / math.log(0.5)
print(vmin, gamma, vmax)
tagData.append(u16Fixed16Number_tohex(gamma))
tagData.append(u16Fixed16Number_tohex(vmin))
tagData.append(u16Fixed16Number_tohex(vmax))
return VideoCardGammaFormulaType(b"".join(tagData), self.tagSignature)
def quantize(self, bits=16, quantizer=round):
"""Quantize to n bits of precision.
Note that when the quantize bits are not 8, 16, 32 or 64, double
quantization will occur: First from the table precision bits according
to entrySize to the chosen quantization bits, and then back to the
table precision bits.
"""
oldmax = math.pow(256, self.entrySize) - 1
if bits in (8, 16, 32, 64):
self.entrySize = int(bits / 8)
bitv = 2.0**bits
newmax = math.pow(256, self.entrySize) - 1
for _i, channel in enumerate(self.data):
for j, value in enumerate(channel):
channel[j] = int(quantizer(value / oldmax * bitv) / bitv * newmax)
def resize(self, length=128):
data = [[], [], []]
for i, channel in enumerate(self.data):
for j in range(0, length):
j *= (len(channel) - 1) / float(length - 1)
if int(j) != j:
floor = channel[int(math.floor(j))]
ceil = channel[min(int(math.ceil(j)), len(channel) - 1)]
interpolated = range(floor, ceil + 1)
fraction = j - int(j)
index = int(round(fraction * (ceil - floor)))
v = interpolated[index]
else:
v = channel[int(j)]
data[i].append(v)
self.data = data
self.entryCount = len(data[0])
def resized(self, length=128):
resized = self.__class__(self.tagData, self.tagSignature)
resized.resize(length)
return resized
def smooth_cr(self, length=64):
"""Smooth video LUT curves (Catmull-Rom)."""
resized = self.resized(length)
for i in range(0, len(self.data)):
step = float(length - 1) / (len(self.data[i]) - 1)
interpolation = CRInterpolation(resized.data[i])
for j in range(0, len(self.data[i])):
self.data[i][j] = interpolation(j * step)
def smooth_avg(self, passes=1, window=None):
"""Smooth video LUT curves (moving average).
passses Number of passes
window Tuple or list containing weighting factors. Its length
determines the size of the window to use.
Defaults to (1.0, 1.0, 1.0)
"""
for i, channel in enumerate(self.data):
self.data[i] = colormath.smooth_avg(channel, passes, window)
self.entryCount = len(self.data[0])
@property
def tagData(self):
"""Return raw tag data."""
tagData = [
b"vcgt",
b"\0" * 4,
uInt32Number_tohex(0), # type 0 = table
uInt16Number_tohex(len(self.data)), # channels
uInt16Number_tohex(self.entryCount),
uInt16Number_tohex(self.entrySize),
]
int2hex = {
1: uInt8Number_tohex,
2: uInt16Number_tohex,
4: uInt32Number_tohex,
8: uInt64Number_tohex,
}
for channel in self.data:
for i in range(0, self.entryCount):
tagData.append(int2hex[self.entrySize](channel[i]))
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
class ViewingConditionsType(ICCProfileTag, ADict):
def __init__(self, tagData, tagSignature):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.update(
{
"illuminant": XYZNumber(tagData[8:20]),
"surround": XYZNumber(tagData[20:32]),
"illuminantType": Illuminant(tagData[32:36]),
}
)
class TagData:
def __init__(self, tagData, offset, size):
self.tagData = tagData
self.offset = offset
self.size = size
def __contains__(self, item):
return item in bytes(self)
def __bytes__(self):
return self.tagData[self.offset : self.offset + self.size]
class WcsProfilesTagType(ICCProfileTag, ADict):
def __init__(self, tagData, tagSignature, profile):
ICCProfileTag.__init__(self, tagData, tagSignature)
self.profile = profile
for i, modelname in enumerate(
["ColorDeviceModel", "ColorAppearanceModel", "GamutMapModel"]
):
j = i * 8
if len(tagData) < 16 + j:
break
offset = uInt32Number(tagData[8 + j : 12 + j])
size = uInt32Number(tagData[12 + j : 16 + j])
if offset and size:
from io import StringIO
from xml.etree import ElementTree
it = ElementTree.iterparse(StringIO(tagData[offset : offset + size]))
for _event, elem in it:
elem.tag = elem.tag.split("}", 1)[-1] # Strip all namespaces
self[modelname] = it.root
def get_vcgt(self, quantize=False, quantizer=round):
"""Return calibration information (if present) as VideoCardGammaType
If quantize is set, a table quantized to <quantize> bits is returned.
Note that when the quantize bits are not 8, 16, 32 or 64, multiple
quantizations will occur: For quantization bits below 32, first to 32
bits, then to the chosen quantization bits, then back to 32 bits (which
will be the final table precision bits).
"""
if quantize and not isinstance(quantize, int):
raise ValueError(f"Invalid quantization bits: {repr(quantize)}")
if "ColorDeviceModel" in self:
# Parse calibration information to VCGT
cal = self.ColorDeviceModel.find("Calibration")
if cal is None:
return
agammaconf = cal.find("AdapterGammaConfiguration")
if agammaconf is None:
return
pcurves = agammaconf.find("ParameterizedCurves")
if pcurves is None:
return
vcgtData = "vcgt"
vcgtData += b"\0" * 4
vcgtData += uInt32Number_tohex(1) # Type 1 = formula
for color in ("Red", "Green", "Blue"):
trc = pcurves.find(color + "TRC")
if trc is None:
trc = {}
vcgtData += u16Fixed16Number_tohex(float(trc.get("Gamma", 1)))
vcgtData += u16Fixed16Number_tohex(float(trc.get("Offset1", 0)))
vcgtData += u16Fixed16Number_tohex(float(trc.get("Gain", 1)))
vcgt = VideoCardGammaFormulaType(vcgtData, "vcgt")
if quantize:
if quantize in (8, 16, 32, 64):
entrySize = quantize / 8
elif quantize < 32:
entrySize = 4
else:
entrySize = 8
vcgt = vcgt.getTableType(entrySize=entrySize, quantizer=quantizer)
if quantize not in (8, 16, 32, 64):
vcgt.quantize(quantize, quantizer)
return vcgt
class XYZNumber(AODict):
"""Byte
Offset Content Encoded as...
0..3 CIE X s15Fixed16Number
4..7 CIE Y s15Fixed16Number
8..11 CIE Z s15Fixed16Number
:param bytes binaryString:
"""
def __init__(self, binaryString=b"\0" * 12):
AODict.__init__(self)
self.X, self.Y, self.Z = [
s15Fixed16Number(chunk)
for chunk in (binaryString[:4], binaryString[4:8], binaryString[8:12])
]
def __repr__(self):
XYZ = []
for key in self:
value = self[key]
XYZ.append("({}, {})".format(repr(key), value))
return "{}.{}([{}])".format(
self.__class__.__module__,
self.__class__.__name__,
", ".join(XYZ),
)
def adapt(
self, whitepoint_source=None, whitepoint_destination=None, cat="Bradford"
):
XYZ = self.__class__()
XYZ.X, XYZ.Y, XYZ.Z = colormath.adapt(
self.X, self.Y, self.Z, whitepoint_source, whitepoint_destination, cat
)
return XYZ
def round(self, digits=4):
XYZ = self.__class__()
for key in self:
XYZ[key] = round(self[key], digits)
return XYZ
def tohex(self):
data = [s15Fixed16Number_tohex(n) for n in list(self.values())]
return b"".join(data)
@property
def hex(self):
return self.tohex()
@property
def Lab(self):
return colormath.XYZ2Lab(*[v * 100 for v in list(self.values())])
@property
def xyY(self):
return colormath.NumberTuple(colormath.XYZ2xyY(self.X, self.Y, self.Z))
class XYZType(ICCProfileTag, XYZNumber):
def __init__(self, tagData=b"\0" * 20, tagSignature=None, profile=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
XYZNumber.__init__(self, tagData[8:20])
self.profile = profile
__repr__ = XYZNumber.__repr__
def __setattr__(self, name, value):
if name in ("_keys", "profile", "tagData", "tagSignature"):
object.__setattr__(self, name, value)
else:
self[name] = value
def adapt(self, whitepoint_source=None, whitepoint_destination=None, cat=None):
if cat is None:
if self.profile and isinstance(
self.profile.tags.get("arts"), chromaticAdaptionTag
):
cat = self.profile.tags.arts
else:
cat = "Bradford"
XYZ = self.__class__(profile=self.profile)
XYZ.X, XYZ.Y, XYZ.Z = colormath.adapt(
self.X, self.Y, self.Z, whitepoint_source, whitepoint_destination, cat
)
return XYZ
@property
def ir(self):
"""Get illuminant-relative values"""
pcs_illuminant = list(self.profile.illuminant.values())
if b"chad" in self.profile.tags and self.profile.creator != b"appl":
# Apple profiles have a bug where they contain a 'chad' tag,
# but the media white is not under PCS illuminant
if self is self.profile.tags.wtpt:
XYZ = self.__class__(profile=self.profile)
XYZ.X, XYZ.Y, XYZ.Z = list(self.values())
else:
# Go from XYZ mediawhite-relative under PCS illuminant to XYZ
# under PCS illuminant
if isinstance(self.profile.tags.get("arts"), chromaticAdaptionTag):
cat = self.profile.tags.arts
else:
cat = "XYZ scaling"
XYZ = self.adapt(
pcs_illuminant, list(self.profile.tags.wtpt.values()), cat=cat
)
# Go from XYZ under PCS illuminant to XYZ illuminant-relative
XYZ.X, XYZ.Y, XYZ.Z = self.profile.tags.chad.inverted() * list(XYZ.values())
return XYZ
else:
if self in (self.profile.tags.wtpt, self.profile.tags.get("bkpt")):
# For profiles without 'chad' tag, the white/black point should
# already be illuminant-relative
return self
elif "chad" in self.profile.tags:
XYZ = self.__class__(profile=self.profile)
# Go from XYZ under PCS illuminant to XYZ illuminant-relative
XYZ.X, XYZ.Y, XYZ.Z = self.profile.tags.chad.inverted() * list(
self.values()
)
return XYZ
else:
# Go from XYZ under PCS illuminant to XYZ illuminant-relative
return self.adapt(pcs_illuminant, list(self.profile.tags.wtpt.values()))
@property
def pcs(self):
"""Get PCS-relative values"""
if self in (self.profile.tags.wtpt, self.profile.tags.get("bkpt")) and (
"chad" not in self.profile.tags or self.profile.creator == b"appl"
):
# Apple profiles have a bug where they contain a 'chad' tag,
# but the media white is not under PCS illuminant
if "chad" in self.profile.tags:
XYZ = self.__class__(profile=self.profile)
XYZ.X, XYZ.Y, XYZ.Z = self.profile.tags.chad * list(self.values())
return XYZ
pcs_illuminant = list(self.profile.illuminant.values())
return self.adapt(list(self.profile.tags.wtpt.values()), pcs_illuminant)
else:
# Values should already be under PCS illuminant
return self
@property
def tagData(self):
"""Return raw tag data."""
tagData = [b"XYZ ", b"\0" * 4]
tagData.append(self.tohex())
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
@property
def xyY(self):
if self is self.profile.tags.get("bkpt"):
ref = self.profile.tags.bkpt
else:
ref = self.profile.tags.wtpt
return colormath.NumberTuple(
colormath.XYZ2xyY(self.X, self.Y, self.Z, (ref.X, ref.Y, ref.Z))
)
class chromaticAdaptionTag(colormath.Matrix3x3, s15Fixed16ArrayType):
def __init__(self, tagData=None, tagSignature=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
if tagData:
data = tagData[8:]
if data:
matrix = []
while data:
if len(matrix) == 0 or len(matrix[-1]) == 3:
matrix.append([])
matrix[-1].append(s15Fixed16Number(data[0:4]))
data = data[4:]
self.update(matrix)
else:
self._reset()
@property
def tagData(self):
"""Return raw tag data."""
tagData = [b"sf32", b"\0" * 4]
for row in self:
for column in row:
tagData.append(s15Fixed16Number_tohex(column))
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
def get_cat(self):
"""Compare to known CAT matrices and return matching name (if any)"""
def q(v):
return s15Fixed16Number(s15Fixed16Number_tohex(v))
for cat_name in colormath.cat_matrices:
cat_matrix = colormath.cat_matrices[cat_name]
if colormath.is_similar_matrix(self.applied(q), cat_matrix.applied(q), 4):
return cat_name
class NamedColor2Value:
def __init__(
self, valueData=b"\0" * 38, deviceCoordCount=0, pcs="XYZ", device="RGB"
):
self._pcsname = pcs
self._devicename = device
end = valueData[0:32].find(b"\0")
if end < 0:
end = 32
self.rootName = valueData[0:end]
self.pcsvalues = [
uInt16Number(valueData[32:34]),
uInt16Number(valueData[34:36]),
uInt16Number(valueData[36:38]),
]
self.pcs = AODict()
for i, pcsvalue in enumerate(self.pcsvalues):
if pcs == "Lab":
if i == 0:
# L* range 0..100 + (25500 / 65280.0)
self.pcs[pcs[i]] = pcsvalue / 65536.0 * 256 / 255.0 * 100
else:
# a, b range -128..127 + (255/256.0)
self.pcs[pcs[i]] = -128 + (pcsvalue / 65536.0 * 256)
elif pcs == "XYZ":
# X, Y, Z range 0..100 + (32767 / 32768.0)
self.pcs[pcs[i]] = pcsvalue / 32768.0 * 100
deviceCoords = []
if deviceCoordCount > 0:
for i in range(38, 38 + deviceCoordCount * 2, 2):
deviceCoords.append(uInt16Number(valueData[i : i + 2]))
self.devicevalues = deviceCoords
if device == "Lab":
# L* range 0..100 + (25500 / 65280.0)
# a, b range range -128..127 + (255 / 256.0)
self.device = tuple(
(
v / 65536.0 * 256 / 255.0 * 100
if i == 0
else -128 + (v / 65536.0 * 256)
)
for i, v in enumerate(deviceCoords)
)
elif device == "XYZ":
# X, Y, Z range 0..100 + (32767 / 32768.0)
self.device = tuple(v / 32768.0 * 100 for v in deviceCoords)
else:
# Device range 0..100
self.device = tuple(v / 65535.0 * 100 for v in deviceCoords)
@property
def name(self):
return str(Text(self.rootName.strip(b"\0")), "latin-1")
def __repr__(self):
pcs = []
dev = []
for key in self.pcs:
value = self.pcs[key]
pcs.append(f"{key}={value}")
for value in self.device:
dev.append(f"{value}")
return "{}({}, {{{}}}, [{}])".format(
self.__class__.__name__,
self.name,
", ".join(pcs),
", ".join(dev),
)
@property
def tagData(self):
"""Return raw tag data."""
valueData = []
valueData.append(self.rootName.ljust(32, b"\0"))
valueData.extend([uInt16Number_tohex(pcsval) for pcsval in self.pcsvalues])
valueData.extend(
[uInt16Number_tohex(deviceval) for deviceval in self.devicevalues]
)
return b"".join(valueData)
@tagData.setter
def tagData(self, tagData):
pass
class NamedColor2ValueTuple(tuple):
__slots__ = ()
REPR_OUTPUT_SIZE = 10
def __repr__(self):
data = list(self[: self.REPR_OUTPUT_SIZE + 1])
if len(data) > self.REPR_OUTPUT_SIZE:
data[-1] = "...(remaining elements truncated)..."
return repr(data)
@property
def tagData(self):
"""Return raw tag data."""
return b"".join([val.tagData for val in self])
@tagData.setter
def tagData(self, tagData):
pass
class NamedColor2Type(ICCProfileTag, AODict):
REPR_OUTPUT_SIZE = 10
def __init__(self, tagData=b"\0" * 84, tagSignature=None, pcs=None, device=None):
ICCProfileTag.__init__(self, tagData, tagSignature)
AODict.__init__(self)
colorCount = uInt32Number(tagData[12:16])
deviceCoordCount = uInt32Number(tagData[16:20])
stride = 38 + 2 * deviceCoordCount
self.vendorData = tagData[8:12]
self.colorCount = colorCount
self.deviceCoordCount = deviceCoordCount
self._prefix = Text(tagData[20:52])
self._suffix = Text(tagData[52:84])
self._pcsname = pcs
self._devicename = device
keys = []
values = []
if colorCount > 0:
start = 84
end = start + (stride * colorCount)
for i in range(start, end, stride):
nc2 = NamedColor2Value(
tagData[i : i + stride], deviceCoordCount, pcs=pcs, device=device
)
keys.append(nc2.name)
values.append(nc2)
self.update(dict(list(zip(keys, values))))
def __setattr__(self, name, value):
object.__setattr__(self, name, value)
@property
def prefix(self):
return str(self._prefix.strip(b"\0"), "latin-1")
@property
def suffix(self):
return str(self._suffix.strip(b"\0"), "latin-1")
@property
def colorValues(self):
return NamedColor2ValueTuple(list(self.values()))
def add_color(self, rootName, *deviceCoordinates, **pcsCoordinates):
if self._pcsname == "Lab":
keys = ["L", "a", "b"]
elif self._pcsname == "XYZ":
keys = ["X", "Y", "Z"]
else:
keys = ["X", "Y", "Z"]
if not set(pcsCoordinates.keys()).issuperset(set(keys)):
raise ICCProfileInvalidError(
"Can't add namedColor2 without all 3 PCS coordinates: '{}'".format(
set(keys) - set(pcsCoordinates.keys())
)
)
if len(deviceCoordinates) != self.deviceCoordCount:
raise ICCProfileInvalidError(
f"Can't add namedColor2 without all {self.deviceCoordCount} "
f"device coordinates (called with {len(deviceCoordinates)})"
)
nc2value = NamedColor2Value()
nc2value._pcsname = self._pcsname
nc2value._devicename = self._devicename
nc2value.rootName = rootName
if rootName in list(self.keys()):
raise ICCProfileInvalidError(
f"Can't add namedColor2 with existant name: '{rootName}'"
)
nc2value.devicevalues = []
nc2value.device = tuple(deviceCoordinates)
nc2value.pcs = AODict(copy(pcsCoordinates))
for idx, key in enumerate(keys):
val = nc2value.pcs[key]
if key == "L":
nc2value.pcsvalues[idx] = val * 65536 / (256 / 255.0) / 100.0
elif key in ("a", "b"):
nc2value.pcsvalues[idx] = (val + 128) * 65536 / 256.0
elif key in ("X", "Y", "Z"):
nc2value.pcsvalues[idx] = val * 32768 / 100.0
for idx, val in enumerate(nc2value.device):
if self._devicename == "Lab":
if idx == 0:
# L* range 0..100 + (25500 / 65280.0)
nc2value.devicevalues[idx] = val * 65536 / (256 / 255.0) / 100.0
else:
# a, b range -128..127 + (255/256.0)
nc2value.devicevalues[idx] = (val + 128) * 65536 / 256.0
elif self._devicename == "XYZ":
# X, Y. Z range 0..100 + (32767 / 32768.0)
nc2value.devicevalues[idx] = val * 32768 / 100.0
else:
# Device range 0..100
nc2value.devicevalues[idx] = val * 65535 / 100.0
self[nc2value.name] = nc2value
def __repr__(self):
data = list(self.items())[: self.REPR_OUTPUT_SIZE + 1]
if len(data) > self.REPR_OUTPUT_SIZE:
data[-1] = ("...", "(remaining elements truncated)")
return repr(dict(data))
@property
def tagData(self):
"""Return raw tag data."""
tagData = [
b"ncl2",
b"\0" * 4,
self.vendorData,
uInt32Number_tohex(len(list(self.items()))),
uInt32Number_tohex(self.deviceCoordCount),
self._prefix.ljust(32),
self._suffix.ljust(32),
self.colorValues.tagData,
]
return b"".join(tagData)
@tagData.setter
def tagData(self, tagData):
pass
tagSignature2Tag = {"arts": chromaticAdaptionTag, "chad": chromaticAdaptionTag}
typeSignature2Type = {
b"chrm": ChromaticityType,
b"clrt": ColorantTableType,
b"curv": CurveType,
b"desc": TextDescriptionType, # ICC v2
b"dict": DictType, # ICC v2 + v4
b"dtim": DateTimeType,
b"meas": MeasurementType,
b"mluc": MultiLocalizedUnicodeType, # ICC v4
b"mft2": LUT16Type,
b"mmod": MakeAndModelType, # Apple private tag
b"ncl2": NamedColor2Type,
b"para": ParametricCurveType,
b"pseq": ProfileSequenceDescType,
b"sf32": s15Fixed16ArrayType,
b"sig ": SignatureType,
b"text": TextType,
b"vcgt": videoCardGamma,
b"view": ViewingConditionsType,
b"MS10": WcsProfilesTagType,
b"XYZ ": XYZType,
}
class ICCProfileInvalidError(IOError):
pass
_iccprofilecache = WeakValueDictionary()
class ICCProfile:
"""Returns a new ICCProfile object.
Optionally initialized with a string containing binary profile data or
a filename, or a file-like object. Also, if the 'load' keyword argument
is False (default True), only the header will be read initially and
loading of the tags will be deferred to when they are accessed the
first time.
"""
_recent = []
def __new__(cls, profile=None, load=True, use_cache=False):
key = None
# the content of the profile should be passed as bytes in Python 3.
if isinstance(profile, (str, pathlib.Path)):
# Filename
if not profile:
raise ICCProfileInvalidError("Empty path given")
if isinstance(profile, str):
p = pathlib.Path(profile)
else:
p = profile
if not p.is_file() and not p.is_absolute():
search_paths = list(set(iccprofiles_home + iccprofiles))
found_profile = False
while search_paths and not found_profile:
search_path = pathlib.Path(search_paths.pop(0))
if search_path.is_dir(): # only look in to directories
for entry in search_path.glob(profile):
if entry.is_file():
profile = str(entry)
# TODO: update this to stay a Path instance after migration
# to pathlib is completed
found_profile = True
break
if use_cache:
stat = os.stat(profile)
key = (profile, stat.st_dev, stat.st_ino, stat.st_mtime, stat.st_size)
else:
key = ()
elif isinstance(profile, bytes):
# Binary string
if use_cache:
key = md5(profile).hexdigest()
if use_cache:
chk = _iccprofilecache.get(key)
if chk:
return chk
if isinstance(key, tuple):
# Filename
profile = open(profile, "rb")
self = super(ICCProfile, cls).__new__(cls)
if use_cache and key:
_iccprofilecache[key] = self
# Make sure most recent three are not garbage collected
if len(ICCProfile._recent) == 3:
ICCProfile._recent.pop(0)
ICCProfile._recent.append(self)
self._key = key
self.ID = b"\0" * 16
self._data = b""
self._file = None
self._tagoffsets = [] # Original tag offsets
self._tags = LazyLoadTagAODict(self)
self.fileName = None
self.is_loaded = False
self.size = 0
if profile is not None:
if isinstance(profile, bytes):
# Binary string
data = profile
self.is_loaded = True
else:
# File object
self._file = profile
self.fileName = self._file.name
self._file.seek(0)
data = self._file.read(128)
self.close()
if not data or len(data) < 128:
raise ICCProfileInvalidError("Not enough data")
if data[:5] == b"<?xml" or data[:10] == b"<\0?\0x\0m\0l\0":
# Microsoft WCS profile
from io import BytesIO
from xml.etree import ElementTree
self.fileName = None
self._data = data
self.load()
data = self._data
self._data = b""
self.set_defaults()
it = ElementTree.iterparse(BytesIO(data))
try:
for _event, elem in it:
# Strip all namespaces
elem.tag = elem.tag.split("}", 1)[-1]
except ElementTree.ParseError:
raise ICCProfileInvalidError("Invalid WCS profile")
desc = it.root.find(b"Description")
if desc is not None:
desc = desc.find(b"Text")
if desc is not None:
self.setDescription(str(desc.text, "UTF-8"))
author = it.root.find(b"Author")
if author is not None:
author = author.find(b"Text")
if author is not None:
self.setCopyright(str(author.text, "UTF-8"))
device = it.root.find(b"RGBVirtualDevice")
if device is not None:
measurement_data = device.find(b"MeasurementData")
if measurement_data is not None:
for color in (b"White", b"Red", b"Green", b"Blue", b"Black"):
prim = measurement_data.find(color + b"Primary")
if prim is None:
continue
XYZ = []
for component in b"XYZ":
try:
XYZ.append(float(prim.get(component)) / 100.0)
except (TypeError, ValueError):
raise ICCProfileInvalidError("Invalid WCS profile")
if color == b"White":
tag_name = "wtpt"
elif color == b"Black":
tag_name = "bkpt"
else:
XYZ = colormath.adapt(
*XYZ,
whitepoint_source=list(self.tags.wtpt.values()),
)
tag_name = color[0].lower().decode() + "XYZ"
tag = self.tags[tag_name] = XYZType(profile=self)
tag.X, tag.Y, tag.Z = XYZ
gamma = measurement_data.find(b"GammaOffsetGainLinearGain")
if gamma is None:
gamma = measurement_data.find(b"GammaOffsetGain")
if gamma is not None:
params = {
"Gamma": 1,
"Offset": 0,
"Gain": 1,
"LinearGain": 1,
"TransitionPoint": -1,
}
for att in list(params.keys()):
try:
params[att] = float(gamma.get(att))
except (TypeError, ValueError):
if (
att not in ("LinearGain", "TransitionPoint")
or gamma.tag != "GammaOffsetGain"
):
raise ICCProfileInvalidError(
"Invalid WCS profile"
)
def power(a):
if a <= params["TransitionPoint"]:
v = a / params["LinearGain"]
else:
v = math.pow(
(a + params["Offset"]) * params["Gain"],
params["Gamma"],
)
return v
else:
gamma = measurement_data.find("Gamma")
if gamma is not None:
try:
power = float(gamma.get("value"))
except (TypeError, ValueError):
raise ICCProfileInvalidError("Invalid WCS profile")
if gamma is not None:
self.set_trc_tags(True, power)
if it.root.tag == "ColorDeviceModel":
ms00 = WcsProfilesTagType(b"", "MS00", self)
ms00["ColorDeviceModel"] = it.root
vcgt = ms00.get_vcgt()
if vcgt:
self.tags["vcgt"] = vcgt
self.size = len(self.data)
return self
if data[36:40] != b"acsp":
raise ICCProfileInvalidError(
"Profile signature mismatch - expected 'acsp', found '"
+ data[36:40].decode("utf-8")
+ "'"
)
# ICC profile
header = data[:128]
self.size = uInt32Number(header[0:4])
self.preferredCMM = header[4:8]
minorrev_bugfixrev = binascii.hexlify(header[8:12][1:2])
self.version = float(
"{}.{}".format(
header[8:12][0],
str(int(b"0x0" + minorrev_bugfixrev[0:1], 16))
+ str(int(b"0x0" + minorrev_bugfixrev[1:2], 16)),
)
)
self.profileClass = header[12:16]
self.colorSpace = header[16:20].strip()
self.connectionColorSpace = header[20:24].strip()
try:
self.dateTime = dateTimeNumber(header[24:36])
except ValueError:
raise ICCProfileInvalidError("Profile creation date/time invalid")
self.platform = header[40:44]
flags = uInt32Number(header[44:48])
self.embedded = flags & 1 != 0
self.independent = flags & 2 == 0
deviceAttributes = uInt32Number(header[56:60])
self.device = {
"manufacturer": header[48:52],
"model": header[52:56],
"attributes": {
"reflective": deviceAttributes & 1 == 0,
"glossy": deviceAttributes & 2 == 0,
"positive": deviceAttributes & 4 == 0,
"color": deviceAttributes & 8 == 0,
},
}
self.intent = uInt32Number(header[64:68])
self.illuminant = XYZNumber(header[68:80])
self.creator = header[80:84]
if header[84:100] != b"\0" * 16:
self.ID = header[84:100]
self._data = data[: self.size]
if load:
_ = self.tags
else:
self.set_defaults()
return self
def set_defaults(self):
if not hasattr(self, "version"):
# Default to RGB display device profile
self.preferredCMM = b"argl"
self.version = 2.4
self.profileClass = b"mntr"
self.colorSpace = b"RGB"
self.connectionColorSpace = b"XYZ"
self.dateTime = datetime.datetime.now()
if sys.platform == "win32":
platform_id = b"MSFT" # Microsoft
elif sys.platform == "darwin":
platform_id = b"APPL" # Apple
else:
platform_id = b"*nix"
self.platform = platform_id
self.embedded = False
self.independent = True
self.device = {
"manufacturer": b"",
"model": b"",
"attributes": {
"reflective": True,
"glossy": True,
"positive": True,
"color": True,
},
}
self.intent = 0
self.illuminant = XYZNumber(b"\0\0\xf6\xd6\0\x01\0\0\0\0\xd3-") # D50
self.creator = b"DCAL" # DisplayCAL
def __len__(self):
"""Return the number of tags.
Can also be used in boolean comparisons (profiles with no tags
evaluate to false)
"""
return len(self.tags)
@property
def data(self):
"""Get raw binary profile data.
This will re-assemble the various profile parts (header, tag table and data)
on-the-fly.
"""
# Assemble tag table and tag data
tagCount = len(self.tags)
tagTable = dict()
tagTableSize = tagCount * 12
tagsData = []
tagsDataOffset = []
tagDataOffset = 128 + 4 + tagTableSize
tags = []
# Order of tag table and actual tag data may be different.
# Keep order of tags according to original offsets (if any).
for _oOffset, tagSignature in sorted(self._tagoffsets):
if tagSignature in self.tags:
tags.append(tagSignature)
# Keep tag table order
for tagSignature in self.tags:
tagTable[tagSignature] = tagSignature.encode()
if tagSignature not in tags:
tags.append(tagSignature)
for tagSignature in tags:
tag = AODict.__getitem__(self.tags, tagSignature)
if isinstance(tag, ICCProfileTag):
tagData = self.tags[tagSignature].tagData
else:
tagData = tag[3]
tagDataSize = len(tagData)
# Pad all data with binary zeros, so it lies on 4-byte boundaries
padding = int(math.ceil(tagDataSize / 4.0)) * 4 - tagDataSize
tagData += b"\0" * padding
if (
tagDataOffset,
tagSignature,
) not in self._tagoffsets and tagData in tagsData:
tagTable[tagSignature] += uInt32Number_tohex(
tagsDataOffset[tagsData.index(tagData)]
)
else:
tagTable[tagSignature] += uInt32Number_tohex(tagDataOffset)
tagsData.append(tagData)
tagsDataOffset.append(tagDataOffset)
tagDataOffset += tagDataSize + padding
tagTable[tagSignature] += uInt32Number_tohex(tagDataSize)
tagsData = b"".join(tagsData)
header = self.header(tagTableSize, len(tagsData))
data = b"".join(
[
header,
uInt32Number_tohex(tagCount),
b"".join(list(tagTable.values())),
tagsData,
]
)
return data
def header(self, tagTableSize, tagDataSize):
"""Profile Header"""
# Profile size: 128 bytes header + 4 bytes tag count + tag table + data
header = [
uInt32Number_tohex(128 + 4 + tagTableSize + tagDataSize),
self.preferredCMM[:4].ljust(4, b" ") if self.preferredCMM else b"\0" * 4,
# Next three lines are ICC version
chr(int(str(self.version).split(".")[0])).encode(),
binascii.unhexlify((f"{self.version:.2f}").split(".")[1]),
b"\0" * 2,
self.profileClass[:4].ljust(4, b" "),
self.colorSpace[:4].ljust(4, b" "),
self.connectionColorSpace[:4].ljust(4, b" "),
dateTimeNumber_tohex(self.dateTime),
b"acsp",
self.platform[:4].ljust(4, b" ") if self.platform else b"\0" * 4,
]
flags = 0
if self.embedded:
flags += 1
if not self.independent:
flags += 2
header.extend(
[
uInt32Number_tohex(flags),
(
self.device["manufacturer"][:4].rjust(4, b"\0")
if self.device["manufacturer"]
else b"\0" * 4
),
(
self.device["model"][:4].rjust(4, b"\0")
if self.device["model"]
else b"\0" * 4
),
]
)
deviceAttributes = 0
for name, bit in {
"reflective": 1,
"glossy": 2,
"positive": 4,
"color": 8,
}.items():
if not self.device["attributes"][name]:
deviceAttributes += bit
if sys.platform == "darwin" and self.version < 4:
# Dont't include ID under Mac OS X unless v4 profile
# to stop pedantic ColorSync utility from complaining
# about header padding not being null
id = b""
else:
id = self.ID[:16]
if isinstance(self._data, str):
self._data = self._data.encode()
header.extend(
[
uInt32Number_tohex(deviceAttributes) + b"\0" * 4,
uInt32Number_tohex(self.intent),
self.illuminant.tohex(),
self.creator[:4].ljust(4, b" ") if self.creator else b"\0" * 4,
id.ljust(16, b"\0"),
self._data[100:128] if len(self._data[100:128]) == 28 else b"\0" * 28,
]
)
return b"".join(header)
@property
def tags(self):
"""Profile Tag Table"""
if not self._tags:
self.load()
if self._data and len(self._data) > 131:
# tag table and tagged element data
tagCount = uInt32Number(self._data[128:132])
if DEBUG:
print("tagCount:", tagCount)
tagTable = self._data[132 : 132 + tagCount * 12]
self._tagoffsets = []
discard_len = 0
tags = {}
while tagTable:
tag = tagTable[:12]
if len(tag) < 12:
raise ICCProfileInvalidError("Tag table is truncated")
tagSignature = tag[:4].decode()
if DEBUG:
print("tagSignature:", tagSignature)
tagDataOffset = uInt32Number(tag[4:8])
self._tagoffsets.append((tagDataOffset, tagSignature))
if DEBUG:
print(" tagDataOffset:", tagDataOffset)
tagDataSize = uInt32Number(tag[8:12])
if DEBUG:
print(" tagDataSize:", tagDataSize)
if tagSignature in self._tags:
print(
f"Error (non-critical): Tag '{tagSignature}' "
"already encountered. Skipping..."
)
else:
if (tagDataOffset, tagDataSize) in tags:
if DEBUG:
print(
" tagDataOffset and tagDataSize indicate shared tag"
)
else:
start = tagDataOffset - discard_len
if DEBUG:
print(" tagData start:", start)
end = tagDataOffset - discard_len + tagDataSize
if DEBUG:
print(" tagData end:", end)
tagData = self._data[start:end]
if len(tagData) < tagDataSize:
print(
f"Warning: Tag data for tag {repr(tagSignature)} "
f"is truncated (offset {int(tagDataOffset):d}, "
f"expected size {int(tagDataSize):d}, "
f"actual size {len(tagData):d})"
)
tagDataSize = len(tagData)
typeSignature = tagData[:4]
if len(typeSignature) < 4:
print(
"Warning: Tag type signature for tag "
f"{repr(tagSignature)} is truncated "
f"(offset {int(tagDataOffset):d}, "
f"size {int(tagDataSize):d})"
)
typeSignature = typeSignature.ljust(4, b" ")
if DEBUG:
print(" typeSignature:", typeSignature)
tags[(tagDataOffset, tagDataSize)] = (
typeSignature,
tagDataOffset,
tagDataSize,
tagData,
)
self._tags[tagSignature] = tags[(tagDataOffset, tagDataSize)]
tagTable = tagTable[12:]
self._data = self._data[:128]
return self._tags
def calculateID(self, setID=True):
"""Calculates, sets, and returns the profile's ID (checksum).
Calling this function always recalculates the checksum on-the-fly,
in contrast to just accessing the ID property.
The entire profile, based on the size field in the header, is used
to calculate the ID after the values in the Profile Flags field
(bytes 44 to 47), Rendering Intent field (bytes 64 to 67) and
Profile ID field (bytes 84 to 99) in the profile header have been
temporarily replaced with zeros.
"""
data = self.data
data = (
data[:44]
+ b"\0\0\0\0"
+ data[48:64]
+ b"\0\0\0\0"
+ data[68:84]
+ b"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
+ data[100:]
)
ID = md5(data).digest()
if setID:
if ID != self.ID:
# No longer reflects original profile
self._delfromcache()
self.ID = ID
return ID
def close(self):
"""Closes the associated file object (if any)."""
if self._file and not self._file.closed:
self._file.close()
def convert_iccv4_tags_to_iccv2(self, version=2.4, undo_wtpt_chad=False):
"""Convert ICCv4 parametric curve tags to ICCv2-compatible curve tags
If desired version after conversion is < 2.4 and undo_wtpt_chad is True,
also set whitepoint to illuinant relative values, and remove any
chromatic adaptation tag.
If ICC profile version is < 4 or no [rgb]TRC tags or LUT16Type tags,
return False.
Otherwise, convert curve tags and return True.
"""
if self.version < 4:
return False
# Fail if any LUT tag is not LUT16Type as we currently
# have not implemented conversion (which may not even
# be possible, depending on LUT contents)
has_lut_tags = False
for direction in ("A2B", "B2A"):
for tableno in range(3):
tag = self.tags.get(f"{direction}{tableno}")
if tag:
if isinstance(tag, LUT16Type):
has_lut_tags = True
else:
return False
if self.has_trc_tags():
for channel in "rgb":
tag = self.tags[channel + "TRC"]
if isinstance(tag, ParametricCurveType):
# Convert to CurveType
self.tags[channel + "TRC"] = tag.get_trc()
elif not has_lut_tags:
return False
# Set fileName to None because our profile no longer reflects the file
# on disk and remove from cache
self.fileName = None
self._delfromcache()
if version < 2.4 and undo_wtpt_chad:
# Set whitepoint tag to illuminant relative and remove chromatic
# adaptation tag afterwards(!)
self.tags.wtpt = self.tags.wtpt.ir
if "chad" in self.tags:
del self.tags["chad"]
# Get all multiLocalizedUnicodeType tags
mluc = {}
for tagname in self.tags:
tag = self.tags[tagname]
if isinstance(tag, MultiLocalizedUnicodeType):
mluc[tagname] = str(tag)
# Set profile version
self.version = version
# Convert to textDescriptionType/textType (after setting version to 2.x)
for tagname in mluc:
unistr = mluc[tagname]
if tagname == "cprt":
self.setCopyright(unistr)
else:
self.set_localizable_desc(tagname, unistr)
return True
def convert_iccv2_tags_to_iccv4(self):
"""Convert ICCv2 text description tags to ICCv4 multi-localized unicode
Also sets whitepoint to D50, and stores illuminant-relative to D50
matrix as chromatic adaptation tag.
If ICC profile version is >= 4, return False.
Otherwise, convert and return True.
After conversion, the profile version is 4.3
"""
if self.version >= 4:
return False
# Set fileName to None because our profile no longer reflects the file
# on disk and remove from cache
self.fileName = None
self._delfromcache()
wtpt = list(self.tags.wtpt.ir.values())
# Set whitepoint tag to D50
self.tags.wtpt = self.tags.wtpt.pcs
if "chad" not in self.tags:
# Set chromatic adaptation matrix
self.tags["chad"] = chromaticAdaptionTag()
wpam = colormath.wp_adaption_matrix(
wtpt, cat=self.tags.get("arts", "Bradford")
)
self.tags["chad"].update(wpam)
# Get all textDescriptionType tags
text = {}
for tagname in self.tags:
tag = self.tags[tagname]
if tagname == "cprt" or isinstance(tag, TextDescriptionType):
text[tagname] = str(tag)
# Set profile version to 4.3
self.version = 4.3
# Convert to multiLocalizedUnicodeType (after setting version to 4.x)
for tagname in text:
unistr = text[tagname]
self.set_localizable_text(tagname, unistr)
return True
@staticmethod
def from_named_rgb_space(
rgb_space_name, iccv4=False, cat="Bradford", profile_class=b"mntr"
):
rgb_space = colormath.get_rgb_space(rgb_space_name)
return ICCProfile.from_rgb_space(
rgb_space, rgb_space_name, iccv4, cat, profile_class
)
@staticmethod
def from_rgb_space(
rgb_space, description, iccv4=False, cat="Bradford", profile_class=b"mntr"
):
rx, ry = rgb_space[2:][0][:2]
gx, gy = rgb_space[2:][1][:2]
bx, by = rgb_space[2:][2][:2]
wx, wy = colormath.XYZ2xyY(*rgb_space[1])[:2]
return ICCProfile.from_chromaticities(
rx,
ry,
gx,
gy,
bx,
by,
wx,
wy,
rgb_space[0],
description,
"No copyright",
iccv4=iccv4,
cat=cat,
profile_class=profile_class,
)
@staticmethod
def from_edid(edid, iccv4=False, cat="Bradford"):
"""Create an ICC Profile from EDID data and return it
You may override the gamma from EDID by setting it to a list of curve
values.
"""
description = edid.get(
"monitor_name", edid.get("ascii", str(edid["product_id"] or edid["hash"]))
)
manufacturer = edid.get("manufacturer", b"")
manufacturer_id = edid["edid"][8:10]
model_name = description
model_id = edid["edid"][10:12]
copyright = "Created from EDID"
# Get chromaticities of primaries0
xy = {}
for color in ("red", "green", "blue", "white"):
x, y = edid.get(color + "_x", 0.0), edid.get(color + "_y", 0.0)
xy[color[0] + "x"] = x
xy[color[0] + "y"] = y
gamma = edid.get("gamma", 2.2)
profile = ICCProfile.from_chromaticities(
xy["rx"],
xy["ry"],
xy["gx"],
xy["gy"],
xy["bx"],
xy["by"],
xy["wx"],
xy["wy"],
gamma,
description,
copyright,
manufacturer,
model_name,
manufacturer_id,
model_id,
iccv4,
cat,
)
profile.set_edid_metadata(edid)
spec_prefixes = "DATA_,OPENICC_"
prefix = profile.tags.meta.getvalue("prefix", b"", None)
if isinstance(prefix, bytes):
prefix = prefix.decode("utf-8")
prefixes = (prefix or spec_prefixes).split(",")
for prefix in spec_prefixes.split(","):
if prefix not in prefixes:
prefixes.append(prefix)
profile.tags.meta["prefix"] = ",".join(prefixes)
profile.tags.meta["OPENICC_automatic_generated"] = "1"
profile.tags.meta["DATA_source"] = "edid"
profile.calculateID()
return profile
@staticmethod
def from_chromaticities(
rx,
ry,
gx,
gy,
bx,
by,
wx,
wy,
gamma,
description,
copyright,
manufacturer=None,
model_name=None,
manufacturer_id=b"\0\0",
model_id=b"\0\0",
iccv4=False,
cat="Bradford",
profile_class=b"mntr",
):
"""Create an ICC Profile from chromaticities and return it"""
wXYZ = colormath.xyY2XYZ(wx, wy, 1.0)
# Calculate RGB to XYZ matrix from chromaticities and white
mtx = colormath.rgb_to_xyz_matrix(rx, ry, gx, gy, bx, by, wXYZ)
rgb = {"r": (1.0, 0.0, 0.0), "g": (0.0, 1.0, 0.0), "b": (0.0, 0.0, 1.0)}
XYZ = {}
for color in "rgb":
# Calculate XYZ for primaries
XYZ[color] = mtx * rgb[color]
profile = ICCProfile.from_XYZ(
XYZ["r"],
XYZ["g"],
XYZ["b"],
wXYZ,
gamma,
description,
copyright,
manufacturer,
model_name,
manufacturer_id,
model_id,
iccv4,
cat,
profile_class,
)
return profile
@staticmethod
def from_XYZ(
rXYZ,
gXYZ,
bXYZ,
wXYZ,
gamma,
description,
copyright,
manufacturer=None,
model_name=None,
manufacturer_id=b"\0\0",
model_id=b"\0\0",
iccv4=False,
cat="Bradford",
profile_class=b"mntr",
):
"""Create an ICC Profile from XYZ values and return it"""
profile = ICCProfile()
profile.profileClass = profile_class
D50 = colormath.get_whitepoint("D50")
if iccv4:
profile.version = 4.3
elif not s15f16_is_equal(wXYZ, D50) and (
profile.profileClass not in (b"mntr", b"prtr")
or colormath.is_similar_matrix(
colormath.get_cat_matrix(cat), colormath.get_cat_matrix("Bradford")
)
):
profile.version = 2.2 # Match ArgyllCMS
profile.setDescription(description)
profile.setCopyright(copyright)
if manufacturer:
profile.setDeviceManufacturerDescription(manufacturer)
if model_name:
profile.setDeviceModelDescription(model_name)
profile.device["manufacturer"] = (
b"\0\0" + manufacturer_id[1:] + manufacturer_id[:1]
)
profile.device["model"] = b"\0\0" + model_id[1:] + model_id[:1]
# Add Apple-specific 'mmod' tag (TODO: need full spec)
if manufacturer_id != b"\0\0" or model_id != b"\0\0":
mmod = (
b"mmod"
+ (b"\x00" * 6)
+ manufacturer_id
+ (b"\x00" * 2)
+ model_id[1:]
+ model_id[:1]
+ (b"\x00" * 4)
+ (b"\x00" * 20)
)
profile.tags.mmod = ICCProfileTag(mmod, "mmod")
profile.set_wtpt(wXYZ, cat)
profile.tags.chrm = ChromaticityType()
profile.tags.chrm.type = 0
for color in "rgb":
X, Y, Z = locals()[color + "XYZ"]
# Get chromaticity of primary
x, y = colormath.XYZ2xyY(X, Y, Z)[:2]
profile.tags.chrm.channels.append((x, y))
# Write XYZ and TRC tags (don't forget to adapt to D50)
tagname = color + "XYZ"
profile.tags[tagname] = XYZType(profile=profile)
(
profile.tags[tagname].X,
profile.tags[tagname].Y,
profile.tags[tagname].Z,
) = colormath.adapt(X, Y, Z, wXYZ, D50, cat)
tagname = color + "TRC"
profile.tags[tagname] = CurveType(profile=profile)
if isinstance(gamma, (list, tuple)):
profile.tags[tagname].extend(gamma)
else:
profile.tags[tagname].set_trc(gamma, 1)
profile.calculateID()
return profile
def set_wtpt(self, wXYZ, cat="Bradford"):
"""Set whitepoint, 'chad' tag (if >= v2.4 profile or CAT is not Bradford
and wtpt is not D50)
Add ArgyllCMS 'arts' tag
"""
self.tags.wtpt = XYZType(profile=self)
# Compatibility: ArgyllCMS will only read 'chad' if display or
# output profile
if self.profileClass in (b"mntr", b"prtr") and (
self.version >= 2.4
or not colormath.is_similar_matrix(
colormath.get_cat_matrix(cat), colormath.get_cat_matrix("Bradford")
)
):
# Set wtpt to D50 and store actual white -> D50 transform in chad
# if creating ICCv4 profile or CAT is not default Bradford
D50 = colormath.get_whitepoint("D50")
(self.tags.wtpt.X, self.tags.wtpt.Y, self.tags.wtpt.Z) = D50
if not s15f16_is_equal(wXYZ, D50):
# Only create chad if actual white is not D50
self.tags.chad = chromaticAdaptionTag()
matrix = colormath.wp_adaption_matrix(wXYZ, D50, cat)
self.tags.chad.update(matrix)
else:
# Store actual white in wtpt
(self.tags.wtpt.X, self.tags.wtpt.Y, self.tags.wtpt.Z) = wXYZ
self.tags.arts = chromaticAdaptionTag()
self.tags.arts.update(colormath.get_cat_matrix(cat))
def has_trc_tags(self):
"""Return whether the profile has [rgb]TRC tags"""
return False not in [channel + "TRC" in self.tags for channel in "rgb"]
def set_blackpoint(self, XYZbp):
if "chad" not in self.tags:
cat = self.guess_cat() or "Bradford"
XYZbp = colormath.adapt(
*XYZbp, whitepoint_destination=list(self.tags.wtpt.ir.values()), cat=cat
)
self.tags.bkpt = XYZType(tagSignature="bkpt", profile=self)
self.tags.bkpt.X, self.tags.bkpt.Y, self.tags.bkpt.Z = XYZbp
def apply_black_offset(
self,
XYZbp,
power=40.0,
include_A2B=True,
set_blackpoint=True,
logfiles=None,
thread_abort=None,
abortmessage="Aborted",
include_trc=True,
):
# Apply only the black point blending portion of BT.1886 mapping
if include_A2B:
tables = []
for i in range(3):
a2b = self.tags.get(f"A2B{i}")
if isinstance(a2b, LUT16Type) and a2b not in tables:
a2b.apply_black_offset(XYZbp, logfiles, thread_abort, abortmessage)
tables.append(a2b)
if set_blackpoint:
self.set_blackpoint(XYZbp)
if not self.tags.get("rTRC") or not include_trc:
return
rXYZ = list(self.tags.rXYZ.values())
gXYZ = list(self.tags.gXYZ.values())
bXYZ = list(self.tags.bXYZ.values())
mtx = colormath.Matrix3x3(
[
[rXYZ[0], gXYZ[0], bXYZ[0]],
[rXYZ[1], gXYZ[1], bXYZ[1]],
[rXYZ[2], gXYZ[2], bXYZ[2]],
]
)
imtx = mtx.inverted()
for channel in "rgb":
tag = CurveType(profile=self)
if len(self.tags[channel + "TRC"]) == 1:
gamma = self.tags[channel + "TRC"].get_gamma()
tag.set_trc(gamma, 1024)
else:
tag.extend(self.tags[channel + "TRC"])
self.tags[channel + "TRC"] = tag
rgbbp_in = []
for channel in "rgb":
rgbbp_in.append(self.tags[f"{channel}TRC"][0] / 65535.0)
bp_in = mtx * rgbbp_in
if tuple(bp_in) == tuple(XYZbp):
return
size = len(self.tags.rTRC)
for i in range(size):
rgb = []
for channel in "rgb":
rgb.append(self.tags[f"{channel}TRC"][i] / 65535.0)
X, Y, Z = mtx * rgb
XYZ = colormath.blend_blackpoint(X, Y, Z, bp_in, XYZbp, power=power)
rgb = imtx * XYZ
for j, channel in enumerate("rgb"):
self.tags[f"{channel}TRC"][i] = min(max(rgb[j], 0), 1) * 65535
def set_bt1886_trc(
self, XYZbp, outoffset=0.0, gamma=2.4, gamma_type="B", size=None
):
if gamma_type in ("b", "g"):
# Get technical gamma needed to achieve effective gamma
gamma = colormath.xicc_tech_gamma(gamma, XYZbp[1], outoffset)
rXYZ = list(self.tags.rXYZ.values())
gXYZ = list(self.tags.gXYZ.values())
bXYZ = list(self.tags.bXYZ.values())
mtx = colormath.Matrix3x3(
[
[rXYZ[0], gXYZ[0], bXYZ[0]],
[rXYZ[1], gXYZ[1], bXYZ[1]],
[rXYZ[2], gXYZ[2], bXYZ[2]],
]
)
bt1886 = colormath.BT1886(mtx, XYZbp, outoffset, gamma)
values = dict()
for _i, channel in enumerate(("r", "g", "b")):
self.tags[channel + "TRC"] = CurveType(profile=self)
self.tags[channel + "TRC"].set_trc(-709, size)
for j, v in enumerate(self.tags[channel + "TRC"]):
if not values.get(j):
values[j] = []
values[j].append(v / 65535.0)
for i in values:
r, g, b = values[i]
X, Y, Z = mtx * (r, g, b)
values[i] = bt1886.apply(X, Y, Z)
for i in values:
XYZ = values[i]
rgb = mtx.inverted() * XYZ
for j, channel in enumerate(("r", "g", "b")):
self.tags[channel + "TRC"][i] = max(min(rgb[j] * 65535, 65535), 0)
self.set_blackpoint(XYZbp)
def set_dicom_trc(self, XYZbp, white_cdm2=100, size=1024):
"""Set the response to the DICOM Grayscale Standard Display Function
This response is special in that it depends on the actual black
and white level of the display.
XYZbp Black point in absolute XYZ, Y range 0.05..white_cdm2
"""
self.set_trc_tags()
for channel in "rgb":
self.tags[f"{channel}TRC"].set_dicom_trc(XYZbp[1], white_cdm2, size)
self.apply_black_offset(
[v / white_cdm2 for v in XYZbp], 40.0 * (white_cdm2 / 40.0)
)
def set_hlg_trc(
self,
XYZbp=(0, 0, 0),
white_cdm2=100,
system_gamma=1.2,
ambient_cdm2=5,
maxsignal=1.0,
size=1024,
blend_blackpoint=True,
):
"""Set the response to the Hybrid Log-Gamma (HLG) function
This response is special in that it depends on the actual black
and white level of the display, system gamma and ambient.
XYZbp Black point in absolute XYZ, Y range 0..white_cdm2
maxsignal Set clipping point (optional)
size Number of steps. Recommended >= 1024
"""
self.set_trc_tags()
for channel in "rgb":
self.tags[f"{channel}TRC"].set_hlg_trc(
XYZbp[1], white_cdm2, system_gamma, ambient_cdm2, maxsignal, size
)
if tuple(XYZbp) != (0, 0, 0) and blend_blackpoint:
self.apply_black_offset(
[v / white_cdm2 for v in XYZbp], 40.0 * (white_cdm2 / 100.0)
)
def set_smpte2084_trc(
self,
XYZbp=(0, 0, 0),
white_cdm2=100,
master_black_cdm2=0,
master_white_cdm2=10000,
use_alternate_master_white_clip=True,
rolloff=False,
size=1024,
blend_blackpoint=True,
):
"""Set the response to the SMPTE 2084 perceptual quantizer (PQ) function
This response is special in that it depends on the actual black
and white level of the display.
XYZbp Black point in absolute XYZ, Y range 0..white_cdm2
master_black_cdm2 (Optional) Used to normalize PQ values
master_white_cdm2 (Optional) Used to normalize PQ values
rolloff BT.2390
size Number of steps. Recommended >= 1024
"""
self.set_trc_tags()
for channel in "rgb":
self.tags[f"{channel}TRC"].set_smpte2084_trc(
XYZbp[1],
white_cdm2,
master_black_cdm2,
master_white_cdm2,
use_alternate_master_white_clip,
rolloff,
size,
)
if tuple(XYZbp) != (0, 0, 0) and blend_blackpoint:
self.apply_black_offset(
[v / white_cdm2 for v in XYZbp], 40.0 * (white_cdm2 / 100.0)
)
def set_trc_tags(self, identical=False, power=None):
for channel in "rgb":
if identical and channel != "r":
tag = self.tags.rTRC
else:
tag = CurveType(profile=self)
if power:
tag.set_trc(
power, size=1 if not callable(power) and power >= 0 else 1024
)
self.tags[f"{channel}TRC"] = tag
def set_localizable_desc(
self, tagname, description, languagecode="en", countrycode="US"
):
# Handle ICCv2 <> v4 differences and encoding
if self.version < 4:
self.tags[tagname] = TextDescriptionType()
if isinstance(description, str):
asciidesc = description.encode("ASCII", "asciize")
else:
asciidesc = description
self.tags[tagname].ASCII = asciidesc
if asciidesc != description:
self.tags[tagname].Unicode = description
else:
self.set_localizable_text(tagname, description, languagecode, countrycode)
def set_localizable_text(self, tagname, text, languagecode="en", countrycode="US"):
# Handle ICCv2 <> v4 differences and encoding
if self.version < 4:
if isinstance(text, str):
text = text.encode("ASCII", "asciize")
self.tags[tagname] = TextType(b"text\0\0\0\0%s\0" % text, tagname)
else:
self.tags[tagname] = MultiLocalizedUnicodeType()
self.tags[tagname].add_localized_string(languagecode, countrycode, text)
def setCopyright(self, copyright, languagecode="en", countrycode="US"):
self.set_localizable_text("cprt", copyright, languagecode, countrycode)
def setDescription(self, description, languagecode="en", countrycode="US"):
self.set_localizable_desc("desc", description, languagecode, countrycode)
def setDeviceManufacturerDescription(
self, description, languagecode="en", countrycode="US"
):
self.set_localizable_desc("dmnd", description, languagecode, countrycode)
def setDeviceModelDescription(
self, description, languagecode="en", countrycode="US"
):
self.set_localizable_desc("dmdd", description, languagecode, countrycode)
def getCopyright(self):
"""Return profile copyright."""
return str(self.tags.get("cprt", ""))
def getDescription(self):
"""Return profile description."""
return str(self.tags.get("desc", ""))
def getDeviceManufacturerDescription(self):
"""Return device manufacturer description."""
return str(self.tags.get("dmnd", ""))
def getDeviceModelDescription(self):
"""Return device model description."""
return str(self.tags.get("dmdd", ""))
def getViewingConditionsDescription(self):
"""Return viewing conditions description."""
return str(self.tags.get("vued", ""))
def guess_cat(self, matrix=True):
"""Get or guess chromatic adaptation transform.
If 'matrix' is True, and 'arts' tag is present, return actual matrix
instead of name if no match to known matrices.
"""
illuminant = list(self.illuminant.values())
if isinstance(self.tags.get("chad"), chromaticAdaptionTag):
return colormath.guess_cat(
self.tags.chad, self.tags.chad.inverted() * illuminant, illuminant
)
elif isinstance(self.tags.get("arts"), chromaticAdaptionTag):
return self.tags.arts.get_cat() or (matrix and self.tags.arts)
def isSame(self, profile, force_calculation=False):
"""Compare the ID of profiles.
Returns a boolean indicating if the profiles have the same ID.
profile can be a ICCProfile instance, a binary string
containing profile data, a filename or a file object.
"""
if not isinstance(profile, self.__class__):
profile = self.__class__(profile)
if force_calculation or self.ID == b"\0" * 16:
id1 = self.calculateID(False)
else:
id1 = self.ID
if force_calculation or profile.ID == b"\0" * 16:
id2 = profile.calculateID(False)
else:
id2 = profile.ID
return id1 == id2
def load(self):
"""Load the profile from the file object.
Normally, you don't need to call this method, since the ICCProfile
class automatically loads the profile when necessary (load does
nothing if the profile was passed in as a binary string).
"""
if not self.is_loaded and self._file:
if self._file.closed:
self._file = open(self._file.name, "rb")
self._file.seek(len(self._data))
read_size = self.size - len(self._data)
if read_size > 0:
self._data += self._file.read(read_size)
self._file.close()
self.is_loaded = True
def print_info(self):
print("=" * 80)
print("ICC profile information")
print("-" * 80)
print("File name:", os.path.basename(self.fileName or ""))
for label, value in self.get_info():
if not value:
print(label)
else:
print(label + ":", value)
@staticmethod
def add_device_info(info, device, level=1):
"""Add a device structure (see profile header) to info dict"""
indent = " " * 4 * level
info[f"{indent}Manufacturer"] = "0x{}".format(
binascii.hexlify(device.get("manufacturer", b"")).upper().decode()
)
if (
len(device.get("manufacturer", b"")) == 4
and device["manufacturer"][0:2] == b"\0\0"
and device["manufacturer"][2:4] != b"\0\0"
):
mnft_id = device["manufacturer"][3:4] + device["manufacturer"][2:3]
mnft_id = edid.parse_manufacturer_id(mnft_id)
manufacturer = edid.get_manufacturer_name(mnft_id) # this is str
else:
manufacturer = (
re.sub(b"[^\x20-\x7e]", b"", device.get("manufacturer", b""))
).decode()
if manufacturer != device.get("manufacturer"):
manufacturer = None
else:
manufacturer = f"'{manufacturer.decode()}'"
if manufacturer is not None:
info[f"{indent}Manufacturer"] += f" {manufacturer}"
info[indent + "Model"] = hexrepr(device.get("model", ""))
attributes = device.get("attributes", {})
info[indent + "Media attributes"] = ", ".join(
[
{True: "Reflective"}.get(attributes.get("reflective"), "Transparency"),
{True: "Glossy"}.get(attributes.get("glossy"), "Matte"),
{True: "Positive"}.get(attributes.get("positive"), "Negative"),
{True: "Color"}.get(attributes.get("color"), "Black & white"),
]
)
def get_info(self):
info = DictList()
info["Size"] = "{:d} Bytes ({:.2f} KiB)".format(int(self.size), self.size / 1024.0)
info["Preferred CMM"] = hexrepr(self.preferredCMM, CMMS)
info["ICC version"] = f"{self.version}"
info["Profile class"] = PROFILE_CLASS.get(self.profileClass, self.profileClass)
info["Color model"] = self.colorSpace.decode()
info["Profile connection space (PCS)"] = self.connectionColorSpace.decode()
info["Created"] = "{:%Y-%m-%d %H:%M:%S}".format(self.dateTime)
info["Platform"] = PLATFORM.get(self.platform, hexrepr(self.platform))
info["Is embedded"] = {True: "Yes"}.get(self.embedded, "No")
info["Can be used independently"] = {True: "Yes"}.get(self.independent, "No")
info["Device"] = ""
ICCProfile.add_device_info(info, self.device)
info["Default rendering intent"] = {
0: "Perceptual",
1: "Media-relative colorimetric",
2: "Saturation",
3: "ICC-absolute colorimetric",
}.get(self.intent, "Unknown")
info["PCS illuminant XYZ"] = " ".join(
[
" ".join([f"{v * 100:6.2f}" for v in list(self.illuminant.values())]),
"(xy {},".format(
" ".join(f"{v:6.4f}" for v in self.illuminant.xyY[:2])
),
"CCT {:d}K)".format(
int(colormath.XYZ2CCT(*list(self.illuminant.values()))) or 0
),
]
)
info["Creator"] = hexrepr(self.creator, MANUFACTURERS)
info["Checksum"] = f"0x{binascii.hexlify(self.ID).upper().decode()}"
calculated_id = self.calculateID(False)
if self.ID != b"\0" * 16:
info[" Checksum OK"] = {True: "Yes"}.get(self.ID == calculated_id, "No")
if self.ID != calculated_id:
info[" Calculated checksum"] = (
f"0x{binascii.hexlify(calculated_id).upper().decode()}"
)
for sig in self.tags:
tag = self.tags[sig]
name = TAGS.get(sig, f"'{sig}'")
if isinstance(tag, chromaticAdaptionTag):
info[name] = self.guess_cat(False) or "Unknown"
name = " Matrix"
for i, row in enumerate(tag):
if i > 0:
name = " " * 2
info[name] = " ".join(f"{v:6.4f}" for v in row)
elif isinstance(tag, ChromaticityType):
info["Chromaticity (illuminant-relative)"] = ""
for i, channel in enumerate(tag.channels):
if self.colorSpace.endswith(b"CLR"):
colorant_name = ""
else:
colorant_name = "({}) ".format(
self.colorSpace[i : i + 1].decode("utf-8")
)
info[f" Channel {i + 1:d} {colorant_name}xy"] = " ".join(
f"{v:6.4f}" for v in channel
)
elif isinstance(tag, ColorantTableType):
info["Colorants (PCS-relative)"] = ""
for colorant_name in tag:
colorant = tag[colorant_name]
values = list(colorant.values())
if "".join(list(colorant.keys())) == "Lab":
values = colormath.Lab2XYZ(*values)
else:
values = [v / 100.0 for v in values]
XYZxy = [" ".join(f"{v:6.2f}" for v in list(colorant.values()))]
if values != [0, 0, 0]:
XYZxy.append(
"(xy {})".format(
" ".join(
f"{v:6.4f}" for v in colormath.XYZ2xyY(*values)[:2]
)
)
)
colorant_name = colorant_name.decode()
info[
" {} {}".format(
colorant_name, "".join(list(colorant.keys()))
)
] = " ".join(XYZxy)
elif isinstance(tag, ParametricCurveType):
params = "".join(sorted(tag.params.keys()))
tag_params = dict(list(tag.params.items()))
for key in tag_params:
value = tag_params[key]
if key == "g":
value = f"{value:3.2f}"
else:
value = f"{value:.6f}"
value = value.rstrip("0").rstrip(".")
if key == "g" and "." not in value:
value += ".0"
tag_params[key] = value
tag_params["E"] = sig[0].upper()
if params == "g":
info[name] = f"Gamma {tag_params['g']}"
else:
info[name] = ""
if params == "abg":
info[" if ({E} >= - {b} / {a}):".format(**tag_params)] = (
"Y = pow({a} * {E} + {b}, {g})".format(**tag_params)
)
info[" if ({E} < - {b} / {a}):".format(**tag_params)] = "Y = 0"
elif params == "abcg":
info[" if ({E} >= - {b} / {a}):".format(**tag_params)] = (
"Y = pow({a} * {E} + {b}, {g}) + {c}".format(**tag_params)
)
info[" if ({E} < - {b} / {a}):".format(**tag_params)] = (
f"Y = {tag_params['c']}"
)
elif params == "abcdg":
info[" if ({E} >= {d}):".format(**tag_params)] = (
"Y = pow({a} * {E} + {b}, {g})".format(**tag_params)
)
info[" if ({E} < {d}):".format(**tag_params)] = (
"Y = {c} * {E}".format(**tag_params)
)
elif params == "abcdefg":
info[" if ({E} >= {d}):".format(**tag_params)] = (
"Y = pow({a} * {E} + {b}, {g}) + {e}".format(**tag_params)
)
info[" if ({E} < {d}):".format(**tag_params)] = (
"Y = {c} * {E} + {f}".format(**tag_params)
)
if params != "g":
tag = tag.get_trc()
# info[" Average gamma"] = f"{tag.get_gamma():3.2f}"
transfer_function = tag.get_transfer_function(
slice=(0, 1.0), outoffset=1.0
)
if round(transfer_function[1], 2) == 1.0:
value = f"{transfer_function[0][0]}"
else:
if transfer_function[1] >= 0.95:
value = "≈ {} (Δ {:.2%})".format(
transfer_function[0][0],
1 - transfer_function[1],
)
else:
value = "Unknown"
info[" Transfer function"] = value
elif isinstance(tag, CurveType):
if len(tag) == 1:
value = (f"{tag[0]:3.2f}").rstrip("0").rstrip(".")
if "." not in value:
value = f"{value}.0"
info[name] = f"Gamma {value}"
elif len(tag):
info[name] = ""
info[" Number of entries"] = f"{len(tag):d}"
# info[" Average gamma"] = f"{tag.get_gamma():3.2f}"
transfer_function = tag.get_transfer_function(
slice=(0, 1.0), outoffset=1.0
)
if round(transfer_function[1], 2) == 1.0:
value = f"{transfer_function[0][0]}"
else:
if transfer_function[1] >= 0.95:
value = "≈ {} (Δ {:.2%})".format(
transfer_function[0][0],
1 - transfer_function[1],
)
else:
value = "Unknown"
info[" Transfer function"] = value
info[" Minimum Y"] = "{:6.4f}".format(tag[0] / 65535.0 * 100)
info[" Maximum Y"] = "{:6.2f}".format(tag[-1] / 65535.0 * 100)
elif isinstance(tag, DictType):
if sig == "meta":
name = "Metadata"
else:
name = "Generic name-value data"
info[name] = ""
for key in tag:
record = tag.get(key)
value = record.get("value")
if value and key == "prefix":
value = "\n".join(value.split(","))
info[f" {key}"] = value
elements = dict()
for subkey in ("display_name", "display_value"):
entry = record.get(subkey)
if isinstance(entry, MultiLocalizedUnicodeType):
for language in entry:
countries = entry[language]
for country in countries:
value = countries[country]
if country.strip("\0 "):
country = f"/{country}"
loc = f"{language}{country}"
if loc not in elements:
elements[loc] = dict()
elements[loc][subkey] = value
for loc in elements:
items = elements[loc]
if len(items) > 1:
value = "{} = {}".format(*items.values())
elif "display_name" in items:
value = "{}".format(items["display_name"])
else:
value = " = {}".format(items["display_value"])
info[f" {loc}"] = value
elif isinstance(tag, LUT16Type):
info[name] = ""
name = " Matrix"
for i, row in enumerate(tag.matrix):
if i > 0:
name = " " * 2
info[name] = " ".join(f"{v:6.4f}" for v in row)
info[" Input Table"] = ""
info[" Channels"] = f"{int(tag.input_channels_count):d}"
info[" Number of entries per channel"] = (
f"{int(tag.input_entries_count):d}"
)
info[" Color Look Up Table"] = ""
info[" Grid Steps"] = f"{int(tag.clut_grid_steps):d}"
info[" Entries"] = "{:d}".format(
int(tag.clut_grid_steps**tag.input_channels_count)
)
info[" Output Table"] = ""
info[" Channels"] = f"{int(tag.output_channels_count):d}"
info[" Number of entries per channel"] = (
f"{int(tag.output_entries_count):d}"
)
elif isinstance(tag, MakeAndModelType):
info[name] = ""
manufacturer_code = tag.manufacturer
manufacturer_name = edid.get_manufacturer_name(
edid.parse_manufacturer_id(manufacturer_code.ljust(2, b"\0")[:2])
)
info[" Manufacturer"] = "0x{} {}".format(
binascii.hexlify(manufacturer_code).decode("utf-8").upper(),
manufacturer_name or "",
)
info[" Model"] = "0x{}".format(
binascii.hexlify(tag.model).decode("utf-8").upper()
)
elif isinstance(tag, MeasurementType):
info[name] = ""
info[" Observer"] = tag.observer.description
info[" Backing XYZ"] = " ".join(
f"{v:6.2f}" for v in list(tag.backing.values())
)
info[" Geometry"] = tag.geometry.description
info[" Flare"] = f"{tag.flare:.2%}"
info[" Illuminant"] = tag.illuminantType.description
elif isinstance(tag, MultiLocalizedUnicodeType):
info[name] = ""
for language in tag:
countries = tag[language]
for country in countries:
value = countries[country]
country = country.decode()
if country.strip("\0 "):
country = "/" + country
language = language.decode()
info[f" {language}{country}"] = value
elif isinstance(tag, NamedColor2Type):
info[name] = ""
info[" Device color components"] = f"{int(tag.deviceCoordCount):d}"
info[" Colors (PCS-relative)"] = (
f"{int(tag.colorCount):d} ({len(tag.tagData):d} Bytes) "
)
i = 1
for k in tag:
v = tag[k]
pcsout = []
devout = []
for _kk in v.pcs:
vv = v.pcs[_kk]
pcsout.append(f"{vv:03.2f}")
for vv in v.device:
devout.append(f"{vv:03.2f}")
formatstr = (
f" {{:0{len(str(tag.colorCount)):d}}} {{}}{{}}{{}}"
)
key = formatstr.format(i, tag.prefix, k, tag.suffix)
info[key] = "{} {}".format(
"".join(list(v.pcs.keys())),
" ".join(pcsout),
)
if self.colorSpace != self.connectionColorSpace or " ".join(
pcsout
) != " ".join(devout):
info[key] += " ({} {})".format(
self.colorSpace, " ".join(devout)
)
i += 1
elif isinstance(tag, ProfileSequenceDescType):
info[name] = ""
for i, desc in enumerate(tag):
info[" " * 4 + f"{i + 1:d}"] = ""
ICCProfile.add_device_info(info, desc, 2)
for desc_type in ("dmnd", "dmdd"):
description = str(desc[desc_type])
if description:
info[" " * 8 + TAGS[desc_type]] = description
elif isinstance(tag, Text):
if sig == "cprt":
info[name] = str(tag)
elif sig == "ciis":
info[name] = CIIS.get(tag, f"'{tag}'")
elif sig == "tech":
print(f"tag: {tag}")
print(f"type(tag): {type(tag)}")
info[name] = TECH.get(tag, f"'{tag}'")
elif tag.find(b"\n") > -1 or tag.find(b"\r") > -1:
info[name] = f"[{len(tag):d} Bytes]"
else:
info[name] = tag[: 60 - len(name)] + (
b"...[%i more Bytes]" % (len(tag) - (60 - len(name)))
if len(tag) > 60 - len(name)
else b""
)
elif isinstance(tag, TextDescriptionType):
if not tag.get("Unicode") and not tag.get("Macintosh"):
info[f"{name} (ASCII)"] = tag.ASCII.decode("utf-8")
else:
info[name] = ""
info[" ASCII"] = tag.ASCII.decode("utf-8")
if tag.get("Unicode"):
info[" Unicode"] = tag.Unicode
if tag.get("Macintosh"):
info[" Macintosh"] = tag.Macintosh
elif isinstance(tag, VideoCardGammaFormulaType):
info[name] = ""
# linear = tag.is_linear()
# info[" Is linear"] = {0: "No", 1: "Yes"}[linear]
for key in ("red", "green", "blue"):
info[f" {key.capitalize()} gamma"] = "{:.2f}".format(
tag[f"{key}Gamma"]
)
info[f" {key.capitalize()} minimum"] = "{:.2f}".format(
tag[f"{key}Min"]
)
info[f" {key.capitalize()} maximum"] = "{:.2f}".format(
tag[f"{key}Max"]
)
elif isinstance(tag, VideoCardGammaTableType):
info[name] = ""
info[" Bitdepth"] = f"{int(tag.entrySize * 8):d}"
info[" Channels"] = f"{int(tag.channels):d}"
info[" Number of entries per channel"] = f"{int(tag.entryCount):d}"
r_points, g_points, b_points, linear_points = tag.get_values()
points = r_points, g_points, b_points
# if r_points == g_points == b_points == linear_points:
# info[" Is linear".format(i)] = {True: "Yes"}.get(points[i] == linear_points, "No")
# else:
if True:
unique = tag.get_unique_values()
for i, channel in enumerate(tag.data):
scale = math.pow(2, tag.entrySize * 8) - 1
vmin = 0
vmax = scale
gamma = colormath.get_gamma(
[
(
(len(channel) / 2 - 1)
/ (len(channel) - 1.0)
* scale,
channel[int(len(channel) / 2 - 1)],
)
],
scale,
vmin,
vmax,
False,
False,
)
if gamma:
info[f" Channel {i + 1} gamma at 50% input"] = (
f"{gamma[0]:.2f}"
)
vmin = channel[0]
vmax = channel[-1]
info[f" Channel {i + 1} minimum"] = f"{vmin / scale:6.4%}"
info[f" Channel {i + 1} maximum"] = f"{vmax / scale:6.2%}"
info[f" Channel {i + 1} unique values"] = (
f"{len(unique[i])} @ 8 Bit"
)
info[f" Channel {i + 1} is linear"] = "Yes" if points[i] == linear_points else "No"
elif isinstance(tag, ViewingConditionsType):
info[name] = ""
info[" Illuminant"] = tag.illuminantType.description
info[" Illuminant XYZ"] = "{} (xy {})".format(
" ".join(f"{v:6.2f}" for v in list(tag.illuminant.values())),
" ".join(f"{v:6.4f}" for v in tag.illuminant.xyY[:2]),
)
XYZxy = [" ".join(f"{v:6.2f}" for v in list(tag.surround.values()))]
if list(tag.surround.values()) != [0, 0, 0]:
XYZxy.append(
"(xy {})".format(
" ".join(f"{v:6.4f}" for v in tag.surround.xyY[:2])
)
)
info[" Surround XYZ"] = " ".join(XYZxy)
elif isinstance(tag, XYZType):
if sig == "lumi":
info[name] = f"{self.tags.lumi.Y:.2f} cd/m²"
elif sig in ("bkpt", "wtpt"):
format = {"bkpt": "{:6.4f}", "wtpt": "{:6.2f}"}[sig]
info[name] = ""
if self.profileClass == b"mntr" and sig == "wtpt":
info[" Is illuminant"] = "Yes"
if self.profileClass != b"prtr":
label = "Illuminant-relative"
else:
label = "PCS-relative"
# if self.connectionColorSpace == "Lab" and self.profileClass == "prtr":
if self.profileClass == b"prtr":
color = [" ".join([format.format(v) for v in tag.ir.Lab])]
info[f" {label} Lab"] = " ".join(color)
else:
color = [
" ".join(format.format(v * 100) for v in list(tag.ir.values()))
]
if list(tag.ir.values()) != [0, 0, 0]:
xy = " ".join(f"{v:6.4f}" for v in tag.ir.xyY[:2])
color.append(f"(xy {xy})")
cct, delta = colormath.xy_CCT_delta(*tag.ir.xyY[:2])
else:
cct = None
info[f" {label} XYZ"] = " ".join(color)
if cct:
info[f" {label} CCT"] = f"{int(cct):d}K"
if delta:
info[" ΔE 2000 to daylight locus"] = (
f"{delta['E']:.2f}"
)
kwargs = {"daylight": False}
cct, delta = colormath.xy_CCT_delta(
*tag.ir.xyY[:2], **kwargs
)
if delta:
info[" ΔE 2000 to blackbody locus"] = (
f"{delta['E']:.2f}"
)
if "chad" in self.tags:
color = [
" ".join(format.format(v * 100) for v in list(tag.pcs.values()))
]
if list(tag.pcs.values()) != [0, 0, 0]:
xy = " ".join(f"{v:6.4f}" for v in tag.pcs.xyY[:2])
color.append(f"(xy {xy})")
info[" PCS-relative XYZ"] = " ".join(color)
cct, delta = colormath.xy_CCT_delta(*tag.pcs.xyY[:2])
if cct:
info[" PCS-relative CCT"] = f"{int(cct):d}K"
# if delta:
# info[u" ΔE 2000 to daylight locus"] = f"{delta['E']:.2f}"
# kwargs = {"daylight": False}
# cct, delta = colormath.xy_CCT_delta(*tag.pcs.xyY[:2], **kwargs)
# if delta:
# info[u" ΔE 2000 to blackbody locus"] = f"{delta['E']:.2f}"
else:
info[name] = ""
info[" Illuminant-relative XYZ"] = " ".join(
[
" ".join(
f"{v * 100:6.2f}" for v in list(tag.ir.values())
),
"(xy {})".format(" ".join(f"{v:6.4f}" for v in tag.ir.xyY[:2])),
]
)
info[" PCS-relative XYZ"] = " ".join(
[
" ".join(f"{v * 100:6.2f}" for v in list(tag.values())),
"(xy {})".format(" ".join(f"{v:6.4f}" for v in tag.xyY[:2])),
]
)
elif isinstance(tag, ICCProfileTag):
info[name] = "'{}' [{:d} Bytes]".format(
tag.tagData[:4].decode(),
len(tag.tagData),
)
return info
def get_rgb_space(self, relation="ir", gamma=None):
tags = self.tags
if "wtpt" not in tags:
return False
rgb_space = [gamma or [], list(getattr(tags.wtpt, relation).values())]
for component in ("r", "g", "b"):
if "{component}XYZ" not in tags or (
not gamma
and (
f"{component}TRC" not in tags
or not isinstance(tags[f"{component}TRC"], CurveType)
)
):
return False
rgb_space.append(getattr(tags[f"{component}XYZ"], relation).xyY)
if not gamma:
if len(tags[f"{component}TRC"]) > 1:
rgb_space[0].append(
[v / 65535.0 for v in tags[f"{component}TRC"]]
)
else:
rgb_space[0].append(tags[f"{component}TRC"][0])
return rgb_space
def get_chardata_bkpt(self, illuminant_relative=False):
"""Get blackpoint from embeded characterization data ('targ' tag)"""
if isinstance(self.tags.get("targ"), Text):
from DisplayCAL.cgats import CGATS
ti3 = CGATS(self.tags.targ)
if 0 in ti3:
black = ti3[0].queryi({"RGB_R": 0, "RGB_G": 0, "RGB_B": 0})
# May be several samples for black. Average them.
if black:
XYZbp = [0, 0, 0]
for sample in black.values():
for i, component in enumerate("XYZ"):
if "XYZ_" + component in sample:
XYZbp[i] += sample["XYZ_" + component] / 100.0
for i in range(3):
XYZbp[i] /= len(black)
if not illuminant_relative:
# Adapt to D50
white = ti3.get_white_cie()
if white:
XYZwp = [
v / 100.0
for v in (
white["XYZ_X"],
white["XYZ_Y"],
white["XYZ_Z"],
)
]
else:
XYZwp = list(self.tags.wtpt.ir.values())
cat = self.guess_cat() or "Bradford"
XYZbp = colormath.adapt(
*XYZbp, whitepoint_source=XYZwp, cat=cat
)
return XYZbp
def optimize(self, return_bytes_saved=False, update_ID=True):
"""Optimize the tag data so that shared tags are only recorded once.
Return whether or not optimization was performed (not necessarily
indicative of a reduction in profile size).
If return_bytes_saved is True, return number of bytes saved instead
(this sets the 'size' property of the profile to the new size).
If update_ID is True, a non-NULL profile ID will also be updated.
Note that for profiles created by ICCProfile (and not read from disk),
this will always be superfluous because they are optimized by default.
"""
numoffsets = len(self._tagoffsets)
offsets = [
(-(numoffsets - i), tag_sig)
for i, (offset, tag_sig) in enumerate(sorted(self._tagoffsets))
]
if self._tagoffsets != offsets:
if return_bytes_saved:
oldsize = len(self.data)
# Discard original offsets
self._tagoffsets = offsets
if update_ID and self.ID != b"\0" * 16:
self.calculateID()
else:
# No longer reflects original profile
self._delfromcache()
if return_bytes_saved:
self.size = len(self.data)
return oldsize - self.size
return True
return 0 if return_bytes_saved else False
def read(self, profile):
"""Read profile from binary string, filename or file object.
Same as self.__init__(profile)
"""
self.__init__(profile)
def set_edid_metadata(self, edid):
"""Sets metadata from EDID
Key names follow the ICC meta Tag for Monitor Profiles specification
http://www.oyranos.org/wiki/index.php?title=ICC_meta_Tag_for_Monitor_Profiles_0.1
and the GNOME Color Manager metadata specification
http://gitorious.org/colord/master/blobs/master/doc/metadata-spec.txt
"""
if "meta" not in self.tags:
self.tags.meta = DictType()
spec_prefixes = "EDID_"
prefix = self.tags.meta.getvalue("prefix", b"", None)
if isinstance(prefix, bytes):
prefix = prefix.decode("utf-8")
prefixes = (prefix or spec_prefixes).split(",")
for prefix in spec_prefixes.split(","):
if prefix not in prefixes:
prefixes.append(prefix)
# OpenICC keys (some shared with GCM)
self.tags.meta.update(
(
("prefix", ",".join(prefixes)),
("EDID_mnft", edid["manufacturer_id"]),
("EDID_mnft_id", struct.unpack(">H", edid["edid"][8:10])[0]),
("EDID_model_id", edid["product_id"]),
(
"EDID_date",
"{:04d}-T{:d}".format(
int(edid["year_of_manufacture"]),
int(edid["week_of_manufacture"])
),
),
("EDID_red_x", edid["red_x"]),
("EDID_red_y", edid["red_y"]),
("EDID_green_x", edid["green_x"]),
("EDID_green_y", edid["green_y"]),
("EDID_blue_x", edid["blue_x"]),
("EDID_blue_y", edid["blue_y"]),
("EDID_white_x", edid["white_x"]),
("EDID_white_y", edid["white_y"]),
)
)
manufacturer = edid.get("manufacturer")
if manufacturer:
self.tags.meta["EDID_manufacturer"] = manufacturer
if "gamma" in edid:
self.tags.meta["EDID_gamma"] = edid["gamma"]
monitor_name = edid.get("monitor_name", edid.get("ascii"))
if monitor_name:
self.tags.meta["EDID_model"] = monitor_name
if edid.get("serial_ascii"):
self.tags.meta["EDID_serial"] = edid["serial_ascii"]
elif edid.get("serial_32"):
# don't try to convert the following ``str`` to ``bytes``.
# the edid["serial_32"] is a huge number and bytes({int}) is not working
# like str({int}). What it tries is to create a b"\0" * {int}.
self.tags.meta["EDID_serial"] = str(edid["serial_32"])
# Gnome Color Management keys
self.tags.meta["EDID_md5"] = edid["hash"]
def set_gamut_metadata(self, gamut_volume=None, gamut_coverage=None):
"""Set gamut volume and coverage metadata keys."""
if gamut_volume or gamut_coverage:
if "meta" not in self.tags:
self.tags.meta = DictType()
# Update meta prefix
prefix = self.tags.meta.getvalue("prefix", b"", None)
if isinstance(prefix, bytes):
prefix = prefix.decode("utf-8")
prefixes = (prefix or "GAMUT_").split(",")
if "GAMUT_" not in prefixes:
prefixes.append("GAMUT_")
self.tags.meta["prefix"] = ",".join(prefixes)
if gamut_volume:
# Set gamut size
self.tags.meta["GAMUT_volume"] = gamut_volume
if gamut_coverage:
# Set gamut coverage
for key in gamut_coverage:
factor = gamut_coverage[key]
self.tags.meta[f"GAMUT_coverage({key})"] = factor
def write(self, stream_or_filename=None):
"""Write profile to stream.
This will re-assemble the various profile parts (header,
tag table and data) on-the-fly.
"""
if not stream_or_filename:
if self._file:
if not self._file.closed:
self.close()
stream_or_filename = self.fileName
if isinstance(stream_or_filename, str):
stream = open(stream_or_filename, "wb")
if not self.fileName:
self.fileName = stream_or_filename
else:
stream = stream_or_filename
stream.write(self.data)
if isinstance(stream_or_filename, str):
stream.close()
def __getattribute__(self, name):
if name == "write" or name.startswith("set") or name.startswith("apply"):
# No longer reflects original profile
self._delfromcache()
return object.__getattribute__(self, name)
def _delfromcache(self):
# Make double sure to remove ourselves from the cache
if self._key and self._key in _iccprofilecache:
try:
del _iccprofilecache[self._key]
except KeyError:
# GC was faster
pass
|