File: elasticsearch2_backend.py

package info (click to toggle)
django-haystack 3.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,504 kB
  • sloc: python: 23,475; xml: 1,708; sh: 74; makefile: 71
file content (384 lines) | stat: -rw-r--r-- 13,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import datetime
import warnings

from django.conf import settings

from haystack.backends import BaseEngine
from haystack.backends.elasticsearch_backend import (
    ElasticsearchSearchBackend,
    ElasticsearchSearchQuery,
)
from haystack.constants import DJANGO_CT
from haystack.exceptions import MissingDependency
from haystack.utils import get_identifier, get_model_ct

try:
    import elasticsearch

    if not ((2, 0, 0) <= elasticsearch.__version__ < (3, 0, 0)):
        raise ImportError
    from elasticsearch.helpers import bulk, scan

    warnings.warn(
        "ElasticSearch 2.x support deprecated, will be removed in 4.0",
        DeprecationWarning,
    )
except ImportError:
    raise MissingDependency(
        "The 'elasticsearch2' backend requires the \
                            installation of 'elasticsearch>=2.0.0,<3.0.0'. \
                            Please refer to the documentation."
    )


class Elasticsearch2SearchBackend(ElasticsearchSearchBackend):
    def __init__(self, connection_alias, **connection_options):
        super().__init__(connection_alias, **connection_options)
        self.content_field_name = None

    def clear(self, models=None, commit=True):
        """
        Clears the backend of all documents/objects for a collection of models.

        :param models: List or tuple of models to clear.
        :param commit: Not used.
        """
        if models is not None:
            assert isinstance(models, (list, tuple))

        try:
            if models is None:
                self.conn.indices.delete(index=self.index_name, ignore=404)
                self.setup_complete = False
                self.existing_mapping = {}
                self.content_field_name = None
            else:
                models_to_delete = []

                for model in models:
                    models_to_delete.append("%s:%s" % (DJANGO_CT, get_model_ct(model)))

                # Delete using scroll API
                query = {
                    "query": {"query_string": {"query": " OR ".join(models_to_delete)}}
                }
                generator = scan(
                    self.conn,
                    query=query,
                    index=self.index_name,
                    **self._get_doc_type_option(),
                )
                actions = (
                    {"_op_type": "delete", "_id": doc["_id"]} for doc in generator
                )
                bulk(
                    self.conn,
                    actions=actions,
                    index=self.index_name,
                    **self._get_doc_type_option(),
                )
                self.conn.indices.refresh(index=self.index_name)

        except elasticsearch.TransportError:
            if not self.silently_fail:
                raise

            if models is not None:
                self.log.exception(
                    "Failed to clear Elasticsearch index of models '%s'",
                    ",".join(models_to_delete),
                )
            else:
                self.log.exception("Failed to clear Elasticsearch index")

    def build_search_kwargs(
        self,
        query_string,
        sort_by=None,
        start_offset=0,
        end_offset=None,
        fields="",
        highlight=False,
        facets=None,
        date_facets=None,
        query_facets=None,
        narrow_queries=None,
        spelling_query=None,
        within=None,
        dwithin=None,
        distance_point=None,
        models=None,
        limit_to_registered_models=None,
        result_class=None,
    ):
        kwargs = super().build_search_kwargs(
            query_string,
            sort_by,
            start_offset,
            end_offset,
            fields,
            highlight,
            spelling_query=spelling_query,
            within=within,
            dwithin=dwithin,
            distance_point=distance_point,
            models=models,
            limit_to_registered_models=limit_to_registered_models,
            result_class=result_class,
        )

        filters = []
        if start_offset is not None:
            kwargs["from"] = start_offset

        if end_offset is not None:
            kwargs["size"] = end_offset - start_offset

        if narrow_queries is None:
            narrow_queries = set()

        if facets is not None:
            kwargs.setdefault("aggs", {})

            for facet_fieldname, extra_options in facets.items():
                facet_options = {
                    "meta": {"_type": "terms"},
                    "terms": {"field": facet_fieldname},
                }
                if "order" in extra_options:
                    facet_options["meta"]["order"] = extra_options.pop("order")
                # Special cases for options applied at the facet level (not the terms level).
                if extra_options.pop("global_scope", False):
                    # Renamed "global_scope" since "global" is a python keyword.
                    facet_options["global"] = True
                if "facet_filter" in extra_options:
                    facet_options["facet_filter"] = extra_options.pop("facet_filter")
                facet_options["terms"].update(extra_options)
                kwargs["aggs"][facet_fieldname] = facet_options

        if date_facets is not None:
            kwargs.setdefault("aggs", {})

            for facet_fieldname, value in date_facets.items():
                # Need to detect on gap_by & only add amount if it's more than one.
                interval = value.get("gap_by").lower()

                # Need to detect on amount (can't be applied on months or years).
                if value.get("gap_amount", 1) != 1 and interval not in (
                    "month",
                    "year",
                ):
                    # Just the first character is valid for use.
                    interval = "%s%s" % (value["gap_amount"], interval[:1])

                kwargs["aggs"][facet_fieldname] = {
                    "meta": {"_type": "date_histogram"},
                    "date_histogram": {"field": facet_fieldname, "interval": interval},
                    "aggs": {
                        facet_fieldname: {
                            "date_range": {
                                "field": facet_fieldname,
                                "ranges": [
                                    {
                                        "from": self._from_python(
                                            value.get("start_date")
                                        ),
                                        "to": self._from_python(value.get("end_date")),
                                    }
                                ],
                            }
                        }
                    },
                }

        if query_facets is not None:
            kwargs.setdefault("aggs", {})

            for facet_fieldname, value in query_facets:
                kwargs["aggs"][facet_fieldname] = {
                    "meta": {"_type": "query"},
                    "filter": {"query_string": {"query": value}},
                }

        for q in narrow_queries:
            filters.append({"query_string": {"query": q}})

        # if we want to filter, change the query type to filteres
        if filters:
            kwargs["query"] = {"filtered": {"query": kwargs.pop("query")}}
            filtered = kwargs["query"]["filtered"]
            if "filter" in filtered:
                if "bool" in filtered["filter"].keys():
                    another_filters = kwargs["query"]["filtered"]["filter"]["bool"][
                        "must"
                    ]
                else:
                    another_filters = [kwargs["query"]["filtered"]["filter"]]
            else:
                another_filters = filters

            if len(another_filters) == 1:
                kwargs["query"]["filtered"]["filter"] = another_filters[0]
            else:
                kwargs["query"]["filtered"]["filter"] = {
                    "bool": {"must": another_filters}
                }

        return kwargs

    def more_like_this(
        self,
        model_instance,
        additional_query_string=None,
        start_offset=0,
        end_offset=None,
        models=None,
        limit_to_registered_models=None,
        result_class=None,
        **kwargs
    ):
        from haystack import connections

        if not self.setup_complete:
            self.setup()

        # Deferred models will have a different class ("RealClass_Deferred_fieldname")
        # which won't be in our registry:
        model_klass = model_instance._meta.concrete_model

        index = (
            connections[self.connection_alias]
            .get_unified_index()
            .get_index(model_klass)
        )
        field_name = index.get_content_field()
        params = {}

        if start_offset is not None:
            params["from_"] = start_offset

        if end_offset is not None:
            params["size"] = end_offset - start_offset

        doc_id = get_identifier(model_instance)

        try:
            # More like this Query
            # https://www.elastic.co/guide/en/elasticsearch/reference/2.2/query-dsl-mlt-query.html
            mlt_query = {
                "query": {
                    "more_like_this": {
                        "fields": [field_name],
                        "like": [{"_id": doc_id}],
                    }
                }
            }

            narrow_queries = []

            if additional_query_string and additional_query_string != "*:*":
                additional_filter = {
                    "query": {"query_string": {"query": additional_query_string}}
                }
                narrow_queries.append(additional_filter)

            if limit_to_registered_models is None:
                limit_to_registered_models = getattr(
                    settings, "HAYSTACK_LIMIT_TO_REGISTERED_MODELS", True
                )

            if models and len(models):
                model_choices = sorted(get_model_ct(model) for model in models)
            elif limit_to_registered_models:
                # Using narrow queries, limit the results to only models handled
                # with the current routers.
                model_choices = self.build_models_list()
            else:
                model_choices = []

            if len(model_choices) > 0:
                model_filter = {"terms": {DJANGO_CT: model_choices}}
                narrow_queries.append(model_filter)

            if len(narrow_queries) > 0:
                mlt_query = {
                    "query": {
                        "filtered": {
                            "query": mlt_query["query"],
                            "filter": {"bool": {"must": list(narrow_queries)}},
                        }
                    }
                }

            raw_results = self.conn.search(
                body=mlt_query,
                index=self.index_name,
                _source=True,
                **self._get_doc_type_option(),
                **params,
            )
        except elasticsearch.TransportError:
            if not self.silently_fail:
                raise

            self.log.exception(
                "Failed to fetch More Like This from Elasticsearch for document '%s'",
                doc_id,
            )
            raw_results = {}

        return self._process_results(raw_results, result_class=result_class)

    def _process_results(
        self,
        raw_results,
        highlight=False,
        result_class=None,
        distance_point=None,
        geo_sort=False,
    ):
        results = super()._process_results(
            raw_results, highlight, result_class, distance_point, geo_sort
        )
        facets = {}
        if "aggregations" in raw_results:
            facets = {"fields": {}, "dates": {}, "queries": {}}

            for facet_fieldname, facet_info in raw_results["aggregations"].items():
                facet_type = facet_info["meta"]["_type"]
                if facet_type == "terms":
                    facets["fields"][facet_fieldname] = [
                        (individual["key"], individual["doc_count"])
                        for individual in facet_info["buckets"]
                    ]
                    if "order" in facet_info["meta"]:
                        if facet_info["meta"]["order"] == "reverse_count":
                            srt = sorted(
                                facets["fields"][facet_fieldname], key=lambda x: x[1]
                            )
                            facets["fields"][facet_fieldname] = srt
                elif facet_type == "date_histogram":
                    # Elasticsearch provides UTC timestamps with an extra three
                    # decimals of precision, which datetime barfs on.
                    facets["dates"][facet_fieldname] = [
                        (
                            datetime.datetime.utcfromtimestamp(
                                individual["key"] / 1000
                            ),
                            individual["doc_count"],
                        )
                        for individual in facet_info["buckets"]
                    ]
                elif facet_type == "query":
                    facets["queries"][facet_fieldname] = facet_info["doc_count"]
        results["facets"] = facets
        return results


class Elasticsearch2SearchQuery(ElasticsearchSearchQuery):
    pass


class Elasticsearch2SearchEngine(BaseEngine):
    backend = Elasticsearch2SearchBackend
    query = Elasticsearch2SearchQuery