1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
import datetime
import warnings
from django.conf import settings
from haystack.backends import BaseEngine
from haystack.backends.elasticsearch_backend import (
ElasticsearchSearchBackend,
ElasticsearchSearchQuery,
)
from haystack.constants import DJANGO_CT
from haystack.exceptions import MissingDependency
from haystack.utils import get_identifier, get_model_ct
try:
import elasticsearch
if not ((2, 0, 0) <= elasticsearch.__version__ < (3, 0, 0)):
raise ImportError
from elasticsearch.helpers import bulk, scan
warnings.warn(
"ElasticSearch 2.x support deprecated, will be removed in 4.0",
DeprecationWarning,
)
except ImportError:
raise MissingDependency(
"The 'elasticsearch2' backend requires the \
installation of 'elasticsearch>=2.0.0,<3.0.0'. \
Please refer to the documentation."
)
class Elasticsearch2SearchBackend(ElasticsearchSearchBackend):
def __init__(self, connection_alias, **connection_options):
super().__init__(connection_alias, **connection_options)
self.content_field_name = None
def clear(self, models=None, commit=True):
"""
Clears the backend of all documents/objects for a collection of models.
:param models: List or tuple of models to clear.
:param commit: Not used.
"""
if models is not None:
assert isinstance(models, (list, tuple))
try:
if models is None:
self.conn.indices.delete(index=self.index_name, ignore=404)
self.setup_complete = False
self.existing_mapping = {}
self.content_field_name = None
else:
models_to_delete = []
for model in models:
models_to_delete.append("%s:%s" % (DJANGO_CT, get_model_ct(model)))
# Delete using scroll API
query = {
"query": {"query_string": {"query": " OR ".join(models_to_delete)}}
}
generator = scan(
self.conn,
query=query,
index=self.index_name,
**self._get_doc_type_option(),
)
actions = (
{"_op_type": "delete", "_id": doc["_id"]} for doc in generator
)
bulk(
self.conn,
actions=actions,
index=self.index_name,
**self._get_doc_type_option(),
)
self.conn.indices.refresh(index=self.index_name)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
if models is not None:
self.log.exception(
"Failed to clear Elasticsearch index of models '%s'",
",".join(models_to_delete),
)
else:
self.log.exception("Failed to clear Elasticsearch index")
def build_search_kwargs(
self,
query_string,
sort_by=None,
start_offset=0,
end_offset=None,
fields="",
highlight=False,
facets=None,
date_facets=None,
query_facets=None,
narrow_queries=None,
spelling_query=None,
within=None,
dwithin=None,
distance_point=None,
models=None,
limit_to_registered_models=None,
result_class=None,
):
kwargs = super().build_search_kwargs(
query_string,
sort_by,
start_offset,
end_offset,
fields,
highlight,
spelling_query=spelling_query,
within=within,
dwithin=dwithin,
distance_point=distance_point,
models=models,
limit_to_registered_models=limit_to_registered_models,
result_class=result_class,
)
filters = []
if start_offset is not None:
kwargs["from"] = start_offset
if end_offset is not None:
kwargs["size"] = end_offset - start_offset
if narrow_queries is None:
narrow_queries = set()
if facets is not None:
kwargs.setdefault("aggs", {})
for facet_fieldname, extra_options in facets.items():
facet_options = {
"meta": {"_type": "terms"},
"terms": {"field": facet_fieldname},
}
if "order" in extra_options:
facet_options["meta"]["order"] = extra_options.pop("order")
# Special cases for options applied at the facet level (not the terms level).
if extra_options.pop("global_scope", False):
# Renamed "global_scope" since "global" is a python keyword.
facet_options["global"] = True
if "facet_filter" in extra_options:
facet_options["facet_filter"] = extra_options.pop("facet_filter")
facet_options["terms"].update(extra_options)
kwargs["aggs"][facet_fieldname] = facet_options
if date_facets is not None:
kwargs.setdefault("aggs", {})
for facet_fieldname, value in date_facets.items():
# Need to detect on gap_by & only add amount if it's more than one.
interval = value.get("gap_by").lower()
# Need to detect on amount (can't be applied on months or years).
if value.get("gap_amount", 1) != 1 and interval not in (
"month",
"year",
):
# Just the first character is valid for use.
interval = "%s%s" % (value["gap_amount"], interval[:1])
kwargs["aggs"][facet_fieldname] = {
"meta": {"_type": "date_histogram"},
"date_histogram": {"field": facet_fieldname, "interval": interval},
"aggs": {
facet_fieldname: {
"date_range": {
"field": facet_fieldname,
"ranges": [
{
"from": self._from_python(
value.get("start_date")
),
"to": self._from_python(value.get("end_date")),
}
],
}
}
},
}
if query_facets is not None:
kwargs.setdefault("aggs", {})
for facet_fieldname, value in query_facets:
kwargs["aggs"][facet_fieldname] = {
"meta": {"_type": "query"},
"filter": {"query_string": {"query": value}},
}
for q in narrow_queries:
filters.append({"query_string": {"query": q}})
# if we want to filter, change the query type to filteres
if filters:
kwargs["query"] = {"filtered": {"query": kwargs.pop("query")}}
filtered = kwargs["query"]["filtered"]
if "filter" in filtered:
if "bool" in filtered["filter"].keys():
another_filters = kwargs["query"]["filtered"]["filter"]["bool"][
"must"
]
else:
another_filters = [kwargs["query"]["filtered"]["filter"]]
else:
another_filters = filters
if len(another_filters) == 1:
kwargs["query"]["filtered"]["filter"] = another_filters[0]
else:
kwargs["query"]["filtered"]["filter"] = {
"bool": {"must": another_filters}
}
return kwargs
def more_like_this(
self,
model_instance,
additional_query_string=None,
start_offset=0,
end_offset=None,
models=None,
limit_to_registered_models=None,
result_class=None,
**kwargs
):
from haystack import connections
if not self.setup_complete:
self.setup()
# Deferred models will have a different class ("RealClass_Deferred_fieldname")
# which won't be in our registry:
model_klass = model_instance._meta.concrete_model
index = (
connections[self.connection_alias]
.get_unified_index()
.get_index(model_klass)
)
field_name = index.get_content_field()
params = {}
if start_offset is not None:
params["from_"] = start_offset
if end_offset is not None:
params["size"] = end_offset - start_offset
doc_id = get_identifier(model_instance)
try:
# More like this Query
# https://www.elastic.co/guide/en/elasticsearch/reference/2.2/query-dsl-mlt-query.html
mlt_query = {
"query": {
"more_like_this": {
"fields": [field_name],
"like": [{"_id": doc_id}],
}
}
}
narrow_queries = []
if additional_query_string and additional_query_string != "*:*":
additional_filter = {
"query": {"query_string": {"query": additional_query_string}}
}
narrow_queries.append(additional_filter)
if limit_to_registered_models is None:
limit_to_registered_models = getattr(
settings, "HAYSTACK_LIMIT_TO_REGISTERED_MODELS", True
)
if models and len(models):
model_choices = sorted(get_model_ct(model) for model in models)
elif limit_to_registered_models:
# Using narrow queries, limit the results to only models handled
# with the current routers.
model_choices = self.build_models_list()
else:
model_choices = []
if len(model_choices) > 0:
model_filter = {"terms": {DJANGO_CT: model_choices}}
narrow_queries.append(model_filter)
if len(narrow_queries) > 0:
mlt_query = {
"query": {
"filtered": {
"query": mlt_query["query"],
"filter": {"bool": {"must": list(narrow_queries)}},
}
}
}
raw_results = self.conn.search(
body=mlt_query,
index=self.index_name,
_source=True,
**self._get_doc_type_option(),
**params,
)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception(
"Failed to fetch More Like This from Elasticsearch for document '%s'",
doc_id,
)
raw_results = {}
return self._process_results(raw_results, result_class=result_class)
def _process_results(
self,
raw_results,
highlight=False,
result_class=None,
distance_point=None,
geo_sort=False,
):
results = super()._process_results(
raw_results, highlight, result_class, distance_point, geo_sort
)
facets = {}
if "aggregations" in raw_results:
facets = {"fields": {}, "dates": {}, "queries": {}}
for facet_fieldname, facet_info in raw_results["aggregations"].items():
facet_type = facet_info["meta"]["_type"]
if facet_type == "terms":
facets["fields"][facet_fieldname] = [
(individual["key"], individual["doc_count"])
for individual in facet_info["buckets"]
]
if "order" in facet_info["meta"]:
if facet_info["meta"]["order"] == "reverse_count":
srt = sorted(
facets["fields"][facet_fieldname], key=lambda x: x[1]
)
facets["fields"][facet_fieldname] = srt
elif facet_type == "date_histogram":
# Elasticsearch provides UTC timestamps with an extra three
# decimals of precision, which datetime barfs on.
facets["dates"][facet_fieldname] = [
(
datetime.datetime.utcfromtimestamp(
individual["key"] / 1000
),
individual["doc_count"],
)
for individual in facet_info["buckets"]
]
elif facet_type == "query":
facets["queries"][facet_fieldname] = facet_info["doc_count"]
results["facets"] = facets
return results
class Elasticsearch2SearchQuery(ElasticsearchSearchQuery):
pass
class Elasticsearch2SearchEngine(BaseEngine):
backend = Elasticsearch2SearchBackend
query = Elasticsearch2SearchQuery
|