1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
|
import re
import warnings
from datetime import datetime, timedelta
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
import haystack
from haystack.backends import BaseEngine, BaseSearchBackend, BaseSearchQuery, log_query
from haystack.constants import (
ALL_FIELD,
DEFAULT_OPERATOR,
DJANGO_CT,
DJANGO_ID,
FUZZY_MAX_EXPANSIONS,
FUZZY_MIN_SIM,
ID,
)
from haystack.exceptions import MissingDependency, MoreLikeThisError, SkipDocument
from haystack.inputs import Clean, Exact, PythonData, Raw
from haystack.models import SearchResult
from haystack.utils import get_identifier, get_model_ct
from haystack.utils import log as logging
from haystack.utils.app_loading import haystack_get_model
try:
import elasticsearch
if (1, 0, 0) <= elasticsearch.__version__ < (2, 0, 0):
warnings.warn(
"ElasticSearch 1.x support deprecated, will be removed in 4.0",
DeprecationWarning,
)
try:
# let's try this, for elasticsearch > 1.7.0
from elasticsearch.helpers import bulk
except ImportError:
# let's try this, for elasticsearch <= 1.7.0
from elasticsearch.helpers import bulk_index as bulk
from elasticsearch.exceptions import NotFoundError
except ImportError:
raise MissingDependency(
"The 'elasticsearch' backend requires the installation of 'elasticsearch'. Please refer to the documentation."
)
DATETIME_REGEX = re.compile(
r"^(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})T"
r"(?P<hour>\d{2}):(?P<minute>\d{2}):(?P<second>\d{2})(\.\d+)?$"
)
class ElasticsearchSearchBackend(BaseSearchBackend):
# Word reserved by Elasticsearch for special use.
RESERVED_WORDS = ("AND", "NOT", "OR", "TO")
# Characters reserved by Elasticsearch for special use.
# The '\\' must come first, so as not to overwrite the other slash replacements.
RESERVED_CHARACTERS = (
"\\",
"+",
"-",
"&&",
"||",
"!",
"(",
")",
"{",
"}",
"[",
"]",
"^",
'"',
"~",
"*",
"?",
":",
"/",
)
# Settings to add an n-gram & edge n-gram analyzer.
DEFAULT_SETTINGS = {
"settings": {
"analysis": {
"analyzer": {
"ngram_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["haystack_ngram", "lowercase"],
},
"edgengram_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["haystack_edgengram", "lowercase"],
},
},
"tokenizer": {
"haystack_ngram_tokenizer": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15,
},
"haystack_edgengram_tokenizer": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15,
"side": "front",
},
},
"filter": {
"haystack_ngram": {"type": "nGram", "min_gram": 3, "max_gram": 15},
"haystack_edgengram": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15,
},
},
}
}
}
def __init__(self, connection_alias, **connection_options):
super().__init__(connection_alias, **connection_options)
if "URL" not in connection_options:
raise ImproperlyConfigured(
"You must specify a 'URL' in your settings for connection '%s'."
% connection_alias
)
if "INDEX_NAME" not in connection_options:
raise ImproperlyConfigured(
"You must specify a 'INDEX_NAME' in your settings for connection '%s'."
% connection_alias
)
self.conn = elasticsearch.Elasticsearch(
connection_options["URL"],
timeout=self.timeout,
**connection_options.get("KWARGS", {}),
)
self.index_name = connection_options["INDEX_NAME"]
self.log = logging.getLogger("haystack")
self.setup_complete = False
self.existing_mapping = {}
def _get_doc_type_option(self):
return {
"doc_type": "modelresult",
}
def _get_current_mapping(self, field_mapping):
return {"modelresult": {"properties": field_mapping}}
def setup(self):
"""
Defers loading until needed.
"""
# Get the existing mapping & cache it. We'll compare it
# during the ``update`` & if it doesn't match, we'll put the new
# mapping.
try:
self.existing_mapping = self.conn.indices.get_mapping(index=self.index_name)
except NotFoundError:
pass
except Exception:
if not self.silently_fail:
raise
unified_index = haystack.connections[self.connection_alias].get_unified_index()
self.content_field_name, field_mapping = self.build_schema(
unified_index.all_searchfields()
)
current_mapping = self._get_current_mapping(field_mapping)
if current_mapping != self.existing_mapping:
try:
# Make sure the index is there first.
self.conn.indices.create(
index=self.index_name, body=self.DEFAULT_SETTINGS, ignore=400
)
self.conn.indices.put_mapping(
index=self.index_name,
body=current_mapping,
**self._get_doc_type_option(),
)
self.existing_mapping = current_mapping
except Exception:
if not self.silently_fail:
raise
self.setup_complete = True
def _prepare_object(self, index, obj):
return index.full_prepare(obj)
def update(self, index, iterable, commit=True):
if not self.setup_complete:
try:
self.setup()
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception("Failed to add documents to Elasticsearch")
return
prepped_docs = []
for obj in iterable:
try:
prepped_data = self._prepare_object(index, obj)
final_data = {}
# Convert the data to make sure it's happy.
for key, value in prepped_data.items():
final_data[key] = self._from_python(value)
final_data["_id"] = final_data[ID]
prepped_docs.append(final_data)
except SkipDocument:
self.log.debug("Indexing for object `%s` skipped", obj)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
# We'll log the object identifier but won't include the actual object
# to avoid the possibility of that generating encoding errors while
# processing the log message:
self.log.exception(
"Preparing object for update",
extra={"data": {"index": index, "object": get_identifier(obj)}},
)
bulk(
self.conn,
prepped_docs,
index=self.index_name,
**self._get_doc_type_option(),
)
if commit:
self.conn.indices.refresh(index=self.index_name)
def remove(self, obj_or_string, commit=True):
doc_id = get_identifier(obj_or_string)
if not self.setup_complete:
try:
self.setup()
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception(
"Failed to remove document '%s' from Elasticsearch",
doc_id,
)
return
try:
self.conn.delete(
index=self.index_name,
id=doc_id,
ignore=404,
**self._get_doc_type_option(),
)
if commit:
self.conn.indices.refresh(index=self.index_name)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception(
"Failed to remove document '%s' from Elasticsearch",
doc_id,
)
def clear(self, models=None, commit=True):
# We actually don't want to do this here, as mappings could be
# very different.
# if not self.setup_complete:
# self.setup()
if models is not None:
assert isinstance(models, (list, tuple))
try:
if models is None:
self.conn.indices.delete(index=self.index_name, ignore=404)
self.setup_complete = False
self.existing_mapping = {}
else:
models_to_delete = []
for model in models:
models_to_delete.append("%s:%s" % (DJANGO_CT, get_model_ct(model)))
# Delete by query in Elasticsearch assumes you're dealing with
# a ``query`` root object. :/
query = {
"query": {"query_string": {"query": " OR ".join(models_to_delete)}}
}
self.conn.delete_by_query(
index=self.index_name,
body=query,
**self._get_doc_type_option(),
)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
if models is not None:
self.log.exception(
"Failed to clear Elasticsearch index of models '%s'",
",".join(models_to_delete),
)
else:
self.log.exception("Failed to clear Elasticsearch index")
def build_search_kwargs(
self,
query_string,
sort_by=None,
start_offset=0,
end_offset=None,
fields="",
highlight=False,
facets=None,
date_facets=None,
query_facets=None,
narrow_queries=None,
spelling_query=None,
within=None,
dwithin=None,
distance_point=None,
models=None,
limit_to_registered_models=None,
result_class=None,
**extra_kwargs
):
index = haystack.connections[self.connection_alias].get_unified_index()
content_field = index.document_field
if query_string == "*:*":
kwargs = {"query": {"match_all": {}}}
else:
kwargs = {
"query": {
"query_string": {
"default_field": content_field,
"default_operator": DEFAULT_OPERATOR,
"query": query_string,
"analyze_wildcard": True,
"auto_generate_phrase_queries": True,
"fuzzy_min_sim": FUZZY_MIN_SIM,
"fuzzy_max_expansions": FUZZY_MAX_EXPANSIONS,
}
}
}
# so far, no filters
filters = []
if fields:
if isinstance(fields, (list, set)):
fields = " ".join(fields)
kwargs["fields"] = fields
if sort_by is not None:
order_list = []
for field, direction in sort_by:
if field == "distance" and distance_point:
# Do the geo-enabled sort.
lng, lat = distance_point["point"].coords
sort_kwargs = {
"_geo_distance": {
distance_point["field"]: [lng, lat],
"order": direction,
"unit": "km",
}
}
else:
if field == "distance":
warnings.warn(
"In order to sort by distance, you must call the '.distance(...)' method."
)
# Regular sorting.
sort_kwargs = {field: {"order": direction}}
order_list.append(sort_kwargs)
kwargs["sort"] = order_list
# From/size offsets don't seem to work right in Elasticsearch's DSL. :/
# if start_offset is not None:
# kwargs['from'] = start_offset
# if end_offset is not None:
# kwargs['size'] = end_offset - start_offset
if highlight:
# `highlight` can either be True or a dictionary containing custom parameters
# which will be passed to the backend and may override our default settings:
kwargs["highlight"] = {"fields": {content_field: {"store": "yes"}}}
if isinstance(highlight, dict):
kwargs["highlight"].update(highlight)
if self.include_spelling:
kwargs["suggest"] = {
"suggest": {
"text": spelling_query or query_string,
"term": {
# Using content_field here will result in suggestions of stemmed words.
"field": ALL_FIELD,
},
}
}
if narrow_queries is None:
narrow_queries = set()
if facets is not None:
kwargs.setdefault("facets", {})
for facet_fieldname, extra_options in facets.items():
facet_options = {"terms": {"field": facet_fieldname, "size": 100}}
# Special cases for options applied at the facet level (not the terms level).
if extra_options.pop("global_scope", False):
# Renamed "global_scope" since "global" is a python keyword.
facet_options["global"] = True
if "facet_filter" in extra_options:
facet_options["facet_filter"] = extra_options.pop("facet_filter")
facet_options["terms"].update(extra_options)
kwargs["facets"][facet_fieldname] = facet_options
if date_facets is not None:
kwargs.setdefault("facets", {})
for facet_fieldname, value in date_facets.items():
# Need to detect on gap_by & only add amount if it's more than one.
interval = value.get("gap_by").lower()
# Need to detect on amount (can't be applied on months or years).
if value.get("gap_amount", 1) != 1 and interval not in (
"month",
"year",
):
# Just the first character is valid for use.
interval = "%s%s" % (value["gap_amount"], interval[:1])
kwargs["facets"][facet_fieldname] = {
"date_histogram": {"field": facet_fieldname, "interval": interval},
"facet_filter": {
"range": {
facet_fieldname: {
"from": self._from_python(value.get("start_date")),
"to": self._from_python(value.get("end_date")),
}
}
},
}
if query_facets is not None:
kwargs.setdefault("facets", {})
for facet_fieldname, value in query_facets:
kwargs["facets"][facet_fieldname] = {
"query": {"query_string": {"query": value}}
}
if limit_to_registered_models is None:
limit_to_registered_models = getattr(
settings, "HAYSTACK_LIMIT_TO_REGISTERED_MODELS", True
)
if models and len(models):
model_choices = sorted(get_model_ct(model) for model in models)
elif limit_to_registered_models:
# Using narrow queries, limit the results to only models handled
# with the current routers.
model_choices = self.build_models_list()
else:
model_choices = []
if len(model_choices) > 0:
filters.append({"terms": {DJANGO_CT: model_choices}})
for q in narrow_queries:
filters.append(
{"fquery": {"query": {"query_string": {"query": q}}, "_cache": True}}
)
if within is not None:
from haystack.utils.geo import generate_bounding_box
((south, west), (north, east)) = generate_bounding_box(
within["point_1"], within["point_2"]
)
within_filter = {
"geo_bounding_box": {
within["field"]: {
"top_left": {"lat": north, "lon": west},
"bottom_right": {"lat": south, "lon": east},
}
}
}
filters.append(within_filter)
if dwithin is not None:
lng, lat = dwithin["point"].coords
# NB: the 1.0.0 release of elasticsearch introduce an
# incompatible change on the distance filter formating
if elasticsearch.VERSION >= (1, 0, 0):
distance = "%(dist).6f%(unit)s" % {
"dist": dwithin["distance"].km,
"unit": "km",
}
else:
distance = dwithin["distance"].km
dwithin_filter = {
"geo_distance": {
"distance": distance,
dwithin["field"]: {"lat": lat, "lon": lng},
}
}
filters.append(dwithin_filter)
# if we want to filter, change the query type to filteres
if filters:
kwargs["query"] = {"filtered": {"query": kwargs.pop("query")}}
if len(filters) == 1:
kwargs["query"]["filtered"]["filter"] = filters[0]
else:
kwargs["query"]["filtered"]["filter"] = {"bool": {"must": filters}}
if extra_kwargs:
kwargs.update(extra_kwargs)
return kwargs
@log_query
def search(self, query_string, **kwargs):
if len(query_string) == 0:
return {"results": [], "hits": 0}
if not self.setup_complete:
self.setup()
search_kwargs = self.build_search_kwargs(query_string, **kwargs)
search_kwargs["from"] = kwargs.get("start_offset", 0)
order_fields = set()
for order in search_kwargs.get("sort", []):
for key in order.keys():
order_fields.add(key)
geo_sort = "_geo_distance" in order_fields
end_offset = kwargs.get("end_offset")
start_offset = kwargs.get("start_offset", 0)
if end_offset is not None and end_offset > start_offset:
search_kwargs["size"] = end_offset - start_offset
try:
raw_results = self.conn.search(
body=search_kwargs,
index=self.index_name,
_source=True,
**self._get_doc_type_option(),
)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception(
"Failed to query Elasticsearch using '%s'",
query_string,
)
raw_results = {}
return self._process_results(
raw_results,
highlight=kwargs.get("highlight"),
result_class=kwargs.get("result_class", SearchResult),
distance_point=kwargs.get("distance_point"),
geo_sort=geo_sort,
)
def more_like_this(
self,
model_instance,
additional_query_string=None,
start_offset=0,
end_offset=None,
models=None,
limit_to_registered_models=None,
result_class=None,
**kwargs
):
from haystack import connections
if not self.setup_complete:
self.setup()
# Deferred models will have a different class ("RealClass_Deferred_fieldname")
# which won't be in our registry:
model_klass = model_instance._meta.concrete_model
index = (
connections[self.connection_alias]
.get_unified_index()
.get_index(model_klass)
)
field_name = index.get_content_field()
params = {}
if start_offset is not None:
params["search_from"] = start_offset
if end_offset is not None:
params["search_size"] = end_offset - start_offset
doc_id = get_identifier(model_instance)
try:
raw_results = self.conn.mlt(
index=self.index_name,
id=doc_id,
mlt_fields=[field_name],
**self._get_doc_type_option(),
**params,
)
except elasticsearch.TransportError:
if not self.silently_fail:
raise
self.log.exception(
"Failed to fetch More Like This from Elasticsearch for document '%s'",
doc_id,
)
raw_results = {}
return self._process_results(raw_results, result_class=result_class)
def _process_hits(self, raw_results):
return raw_results.get("hits", {}).get("total", 0)
def _process_results(
self,
raw_results,
highlight=False,
result_class=None,
distance_point=None,
geo_sort=False,
):
from haystack import connections
results = []
hits = self._process_hits(raw_results)
facets = {}
spelling_suggestion = None
if result_class is None:
result_class = SearchResult
if self.include_spelling and "suggest" in raw_results:
raw_suggest = raw_results["suggest"].get("suggest")
if raw_suggest:
spelling_suggestion = " ".join(
[
(
word["text"]
if len(word["options"]) == 0
else word["options"][0]["text"]
)
for word in raw_suggest
]
)
if "facets" in raw_results:
facets = {"fields": {}, "dates": {}, "queries": {}}
# ES can return negative timestamps for pre-1970 data. Handle it.
def from_timestamp(tm):
if tm >= 0:
return datetime.utcfromtimestamp(tm)
else:
return datetime(1970, 1, 1) + timedelta(seconds=tm)
for facet_fieldname, facet_info in raw_results["facets"].items():
if facet_info.get("_type", "terms") == "terms":
facets["fields"][facet_fieldname] = [
(individual["term"], individual["count"])
for individual in facet_info["terms"]
]
elif facet_info.get("_type", "terms") == "date_histogram":
# Elasticsearch provides UTC timestamps with an extra three
# decimals of precision, which datetime barfs on.
facets["dates"][facet_fieldname] = [
(from_timestamp(individual["time"] / 1000), individual["count"])
for individual in facet_info["entries"]
]
elif facet_info.get("_type", "terms") == "query":
facets["queries"][facet_fieldname] = facet_info["count"]
unified_index = connections[self.connection_alias].get_unified_index()
indexed_models = unified_index.get_indexed_models()
content_field = unified_index.document_field
for raw_result in raw_results.get("hits", {}).get("hits", []):
source = raw_result["_source"]
app_label, model_name = source[DJANGO_CT].split(".")
additional_fields = {}
model = haystack_get_model(app_label, model_name)
if model and model in indexed_models:
index = source and unified_index.get_index(model)
for key, value in source.items():
string_key = str(key)
if string_key in index.fields and hasattr(
index.fields[string_key], "convert"
):
additional_fields[string_key] = index.fields[
string_key
].convert(value)
else:
additional_fields[string_key] = self._to_python(value)
del additional_fields[DJANGO_CT]
del additional_fields[DJANGO_ID]
if "highlight" in raw_result:
additional_fields["highlighted"] = raw_result["highlight"].get(
content_field, ""
)
if distance_point:
additional_fields["_point_of_origin"] = distance_point
if geo_sort and raw_result.get("sort"):
from django.contrib.gis.measure import Distance
additional_fields["_distance"] = Distance(
km=float(raw_result["sort"][0])
)
else:
additional_fields["_distance"] = None
result = result_class(
app_label,
model_name,
source[DJANGO_ID],
raw_result["_score"],
**additional_fields,
)
results.append(result)
else:
hits -= 1
return {
"results": results,
"hits": hits,
"facets": facets,
"spelling_suggestion": spelling_suggestion,
}
def _get_common_mapping(self):
return {
DJANGO_CT: {
"type": "string",
"index": "not_analyzed",
"include_in_all": False,
},
DJANGO_ID: {
"type": "string",
"index": "not_analyzed",
"include_in_all": False,
},
}
def build_schema(self, fields):
content_field_name = ""
mapping = self._get_common_mapping()
for _, field_class in fields.items():
field_mapping = FIELD_MAPPINGS.get(
field_class.field_type, DEFAULT_FIELD_MAPPING
).copy()
if field_class.boost != 1.0:
field_mapping["boost"] = field_class.boost
if field_class.document is True:
content_field_name = field_class.index_fieldname
# Do this last to override `text` fields.
if field_mapping["type"] == "string":
if field_class.indexed is False or hasattr(field_class, "facet_for"):
field_mapping["index"] = "not_analyzed"
del field_mapping["analyzer"]
mapping[field_class.index_fieldname] = field_mapping
return (content_field_name, mapping)
def _iso_datetime(self, value):
"""
If value appears to be something datetime-like, return it in ISO format.
Otherwise, return None.
"""
if hasattr(value, "strftime"):
if hasattr(value, "hour"):
return value.isoformat()
else:
return "%sT00:00:00" % value.isoformat()
def _from_python(self, value):
"""Convert more Python data types to ES-understandable JSON."""
iso = self._iso_datetime(value)
if iso:
return iso
elif isinstance(value, bytes):
# TODO: Be stricter.
return str(value, errors="replace")
elif isinstance(value, set):
return list(value)
return value
def _to_python(self, value):
"""Convert values from ElasticSearch to native Python values."""
if isinstance(value, (int, float, complex, list, tuple, bool)):
return value
if isinstance(value, str):
possible_datetime = DATETIME_REGEX.search(value)
if possible_datetime:
date_values = possible_datetime.groupdict()
for dk, dv in date_values.items():
date_values[dk] = int(dv)
return datetime(
date_values["year"],
date_values["month"],
date_values["day"],
date_values["hour"],
date_values["minute"],
date_values["second"],
)
try:
# This is slightly gross but it's hard to tell otherwise what the
# string's original type might have been. Be careful who you trust.
converted_value = eval(value)
# Try to handle most built-in types.
if isinstance(
converted_value, (int, list, tuple, set, dict, float, complex)
):
return converted_value
except Exception:
# If it fails (SyntaxError or its ilk) or we don't trust it,
# continue on.
pass
return value
# DRL_FIXME: Perhaps move to something where, if none of these
# match, call a custom method on the form that returns, per-backend,
# the right type of storage?
DEFAULT_FIELD_MAPPING = {"type": "string", "analyzer": "snowball"}
FIELD_MAPPINGS = {
"edge_ngram": {"type": "string", "analyzer": "edgengram_analyzer"},
"ngram": {"type": "string", "analyzer": "ngram_analyzer"},
"date": {"type": "date"},
"datetime": {"type": "date"},
"location": {"type": "geo_point"},
"boolean": {"type": "boolean"},
"float": {"type": "float"},
"long": {"type": "long"},
"integer": {"type": "long"},
}
# Sucks that this is almost an exact copy of what's in the Solr backend,
# but we can't import due to dependencies.
class ElasticsearchSearchQuery(BaseSearchQuery):
def matching_all_fragment(self):
return "*:*"
def build_query_fragment(self, field, filter_type, value):
from haystack import connections
query_frag = ""
if not hasattr(value, "input_type_name"):
# Handle when we've got a ``ValuesListQuerySet``...
if hasattr(value, "values_list"):
value = list(value)
if isinstance(value, str):
# It's not an ``InputType``. Assume ``Clean``.
value = Clean(value)
else:
value = PythonData(value)
# Prepare the query using the InputType.
prepared_value = value.prepare(self)
if not isinstance(prepared_value, (set, list, tuple)):
# Then convert whatever we get back to what pysolr wants if needed.
prepared_value = self.backend._from_python(prepared_value)
# 'content' is a special reserved word, much like 'pk' in
# Django's ORM layer. It indicates 'no special field'.
if field == "content":
index_fieldname = ""
else:
index_fieldname = "%s:" % connections[
self._using
].get_unified_index().get_index_fieldname(field)
filter_types = {
"content": "%s",
"contains": "*%s*",
"endswith": "*%s",
"startswith": "%s*",
"exact": "%s",
"gt": "{%s TO *}",
"gte": "[%s TO *]",
"lt": "{* TO %s}",
"lte": "[* TO %s]",
"fuzzy": "%s~",
}
if value.post_process is False:
query_frag = prepared_value
else:
if filter_type in [
"content",
"contains",
"startswith",
"endswith",
"fuzzy",
]:
if value.input_type_name == "exact":
query_frag = prepared_value
else:
# Iterate over terms & incorporate the converted form of each into the query.
terms = []
if isinstance(prepared_value, str):
for possible_value in prepared_value.split(" "):
terms.append(
filter_types[filter_type]
% self.backend._from_python(possible_value)
)
else:
terms.append(
filter_types[filter_type]
% self.backend._from_python(prepared_value)
)
if len(terms) == 1:
query_frag = terms[0]
else:
query_frag = "(%s)" % " AND ".join(terms)
elif filter_type == "in":
in_options = []
if not prepared_value:
query_frag = "(!*:*)"
else:
for possible_value in prepared_value:
in_options.append(
'"%s"' % self.backend._from_python(possible_value)
)
query_frag = "(%s)" % " OR ".join(in_options)
elif filter_type == "range":
start = self.backend._from_python(prepared_value[0])
end = self.backend._from_python(prepared_value[1])
query_frag = '["%s" TO "%s"]' % (start, end)
elif filter_type == "exact":
if value.input_type_name == "exact":
query_frag = prepared_value
else:
prepared_value = Exact(prepared_value).prepare(self)
query_frag = filter_types[filter_type] % prepared_value
else:
if value.input_type_name != "exact":
prepared_value = Exact(prepared_value).prepare(self)
query_frag = filter_types[filter_type] % prepared_value
if len(query_frag) and not isinstance(value, Raw):
if not query_frag.startswith("(") and not query_frag.endswith(")"):
query_frag = "(%s)" % query_frag
return "%s%s" % (index_fieldname, query_frag)
def build_alt_parser_query(self, parser_name, query_string="", **kwargs):
if query_string:
kwargs["v"] = query_string
kwarg_bits = []
for key in sorted(kwargs.keys()):
if isinstance(kwargs[key], str) and " " in kwargs[key]:
kwarg_bits.append("%s='%s'" % (key, kwargs[key]))
else:
kwarg_bits.append("%s=%s" % (key, kwargs[key]))
return "{!%s %s}" % (parser_name, " ".join(kwarg_bits))
def build_params(self, spelling_query=None, **kwargs):
search_kwargs = {
"start_offset": self.start_offset,
"result_class": self.result_class,
}
order_by_list = None
if self.order_by:
if order_by_list is None:
order_by_list = []
for field in self.order_by:
direction = "asc"
if field.startswith("-"):
direction = "desc"
field = field[1:]
order_by_list.append((field, direction))
search_kwargs["sort_by"] = order_by_list
if self.date_facets:
search_kwargs["date_facets"] = self.date_facets
if self.distance_point:
search_kwargs["distance_point"] = self.distance_point
if self.dwithin:
search_kwargs["dwithin"] = self.dwithin
if self.end_offset is not None:
search_kwargs["end_offset"] = self.end_offset
if self.facets:
search_kwargs["facets"] = self.facets
if self.fields:
search_kwargs["fields"] = self.fields
if self.highlight:
search_kwargs["highlight"] = self.highlight
if self.models:
search_kwargs["models"] = self.models
if self.narrow_queries:
search_kwargs["narrow_queries"] = self.narrow_queries
if self.query_facets:
search_kwargs["query_facets"] = self.query_facets
if self.within:
search_kwargs["within"] = self.within
if spelling_query:
search_kwargs["spelling_query"] = spelling_query
elif self.spelling_query:
search_kwargs["spelling_query"] = self.spelling_query
return search_kwargs
def run(self, spelling_query=None, **kwargs):
"""Builds and executes the query. Returns a list of search results."""
final_query = self.build_query()
search_kwargs = self.build_params(spelling_query, **kwargs)
if kwargs:
search_kwargs.update(kwargs)
results = self.backend.search(final_query, **search_kwargs)
self._results = results.get("results", [])
self._hit_count = results.get("hits", 0)
self._facet_counts = self.post_process_facets(results)
self._spelling_suggestion = results.get("spelling_suggestion", None)
def run_mlt(self, **kwargs):
"""Builds and executes the query. Returns a list of search results."""
if self._more_like_this is False or self._mlt_instance is None:
raise MoreLikeThisError(
"No instance was provided to determine 'More Like This' results."
)
additional_query_string = self.build_query()
search_kwargs = {
"start_offset": self.start_offset,
"result_class": self.result_class,
"models": self.models,
}
if self.end_offset is not None:
search_kwargs["end_offset"] = self.end_offset - self.start_offset
results = self.backend.more_like_this(
self._mlt_instance, additional_query_string, **search_kwargs
)
self._results = results.get("results", [])
self._hit_count = results.get("hits", 0)
class ElasticsearchSearchEngine(BaseEngine):
backend = ElasticsearchSearchBackend
query = ElasticsearchSearchQuery
|