1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
# django-prometheus
Export Django monitoring metrics for Prometheus.io
[](https://gitter.im/django-prometheus/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[](http://badge.fury.io/py/django-prometheus)
[](https://github.com/korfuri/django-prometheus/actions/workflows/ci.yml)
[](https://coveralls.io/github/korfuri/django-prometheus?branch=master)
[](https://pypi.python.org/pypi/django-prometheus)
## Features
This library provides Prometheus metrics for Django related operations:
* Requests & Responses
* Database access done via [Django ORM](https://docs.djangoproject.com/en/3.2/topics/db/)
* Cache access done via [Django Cache framework](https://docs.djangoproject.com/en/3.2/topics/cache/)
## Usage
### Requirements
* Django >= 4.2
* Python 3.9 and above.
### Installation
Install with:
```shell
pip install django-prometheus
```
Or, if you're using a development version cloned from this repository:
```shell
python path-to-where-you-cloned-django-prometheus/setup.py install
```
This will install [prometheus_client](https://github.com/prometheus/client_python) as a dependency.
### Quickstart
In your settings.py:
```python
INSTALLED_APPS = [
...
'django_prometheus',
...
]
MIDDLEWARE = [
'django_prometheus.middleware.PrometheusBeforeMiddleware',
# All your other middlewares go here, including the default
# middlewares like SessionMiddleware, CommonMiddleware,
# CsrfViewmiddleware, SecurityMiddleware, etc.
'django_prometheus.middleware.PrometheusAfterMiddleware',
]
```
In your urls.py:
```python
urlpatterns = [
...
path('', include('django_prometheus.urls')),
]
```
### Configuration
Prometheus uses Histogram based grouping for monitoring latencies. The default
buckets are:
```python
PROMETHEUS_LATENCY_BUCKETS = (0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 25.0, 50.0, 75.0, float("inf"),)
```
You can define custom buckets for latency, adding more buckets decreases performance but
increases accuracy: <https://prometheus.io/docs/practices/histograms/>
```python
PROMETHEUS_LATENCY_BUCKETS = (.1, .2, .5, .6, .8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.5, 9.0, 12.0, 15.0, 20.0, 30.0, float("inf"))
```
---
You can have a custom namespace for your metrics:
```python
PROMETHEUS_METRIC_NAMESPACE = "project"
```
This will prefix all metrics with `project_` word like this:
```text
project_django_http_requests_total_by_method_total{method="GET"} 1.0
```
### Monitoring your databases
SQLite, MySQL, and PostgreSQL databases can be monitored. Just
replace the `ENGINE` property of your database, replacing
`django.db.backends` with `django_prometheus.db.backends`.
```python
DATABASES = {
'default': {
'ENGINE': 'django_prometheus.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
},
}
```
### Monitoring your caches
Filebased, memcached, redis caches can be monitored. Just replace
the cache backend to use the one provided by django_prometheus
`django.core.cache.backends` with `django_prometheus.cache.backends`.
```python
CACHES = {
'default': {
'BACKEND': 'django_prometheus.cache.backends.filebased.FileBasedCache',
'LOCATION': '/var/tmp/django_cache',
}
}
```
### Monitoring your models
You may want to monitor the creation/deletion/update rate for your
model. This can be done by adding a mixin to them. This is safe to do
on existing models (it does not require a migration).
If your model is:
```python
class Dog(models.Model):
name = models.CharField(max_length=100, unique=True)
breed = models.CharField(max_length=100, blank=True, null=True)
age = models.PositiveIntegerField(blank=True, null=True)
```
Just add the `ExportModelOperationsMixin` as such:
```python
from django_prometheus.models import ExportModelOperationsMixin
class Dog(ExportModelOperationsMixin('dog'), models.Model):
name = models.CharField(max_length=100, unique=True)
breed = models.CharField(max_length=100, blank=True, null=True)
age = models.PositiveIntegerField(blank=True, null=True)
```
This will export 3 metrics, `django_model_inserts_total{model="dog"}`,
`django_model_updates_total{model="dog"}` and
`django_model_deletes_total{model="dog"}`.
Note that the exported metrics are counters of creations,
modifications and deletions done in the current process. They are not
gauges of the number of objects in the model.
Starting with Django 1.7, migrations are also monitored. Two gauges
are exported, `django_migrations_applied_by_connection` and
`django_migrations_unapplied_by_connection`. You may want to alert if
there are unapplied migrations.
If you want to disable the Django migration metrics, set the
`PROMETHEUS_EXPORT_MIGRATIONS` setting to False.
### Monitoring and aggregating the metrics
Prometheus is quite easy to set up. An example prometheus.conf to
scrape `127.0.0.1:8001` can be found in `examples/prometheus`.
Here's an example of a PromDash displaying some of the metrics
collected by django-prometheus:

## Adding your own metrics
You can add application-level metrics in your code by using
[prometheus_client](https://github.com/prometheus/client_python)
directly. The exporter is global and will pick up your metrics.
To add metrics to the Django internals, the easiest way is to extend
django-prometheus' classes. Please consider contributing your metrics,
pull requests are welcome. Make sure to read the Prometheus best
practices on
[instrumentation](http://prometheus.io/docs/practices/instrumentation/)
and [naming](http://prometheus.io/docs/practices/naming/).
## Importing Django Prometheus using only local settings
If you wish to use Django Prometheus but are not able to change
the code base, it's possible to have all the default metrics by
modifying only the settings.
First step is to inject prometheus' middlewares and to add
django_prometheus in INSTALLED_APPS
```python
MIDDLEWARE = \
['django_prometheus.middleware.PrometheusBeforeMiddleware'] + \
MIDDLEWARE + \
['django_prometheus.middleware.PrometheusAfterMiddleware']
INSTALLED_APPS += ['django_prometheus']
```
Second step is to create the /metrics end point, for that we need
another file (called urls_prometheus_wrapper.py in this example) that
will wraps the apps URLs and add one on top:
```python
from django.urls import include, path
urlpatterns = []
urlpatterns.append(path('prometheus/', include('django_prometheus.urls')))
urlpatterns.append(path('', include('myapp.urls')))
```
This file will add a "/prometheus/metrics" end point to the URLs of django
that will export the metrics (replace myapp by your project name).
Then we inject the wrapper in settings:
```python
ROOT_URLCONF = "graphite.urls_prometheus_wrapper"
```
## Adding custom labels to middleware (request/response) metrics
You can add application specific labels to metrics reported by the django-prometheus middleware.
This involves extending the classes defined in middleware.py.
* Extend the Metrics class and override the `register_metric` method to add the application specific labels.
* Extend middleware classes, set the metrics_cls class attribute to the the extended metric class and override the label_metric method to attach custom metrics.
See implementation example in [the test app](django_prometheus/tests/end2end/testapp/test_middleware_custom_labels.py#L19-L46)
|