File: BSEncodeByteStream.cpp

package info (click to toggle)
djvulibre 3.5.27.1-10
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 9,664 kB
  • sloc: cpp: 65,465; xml: 5,723; ansic: 4,936; sh: 865; makefile: 316
file content (1012 lines) | stat: -rw-r--r-- 25,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
//C-  -*- C++ -*-
//C- -------------------------------------------------------------------
//C- DjVuLibre-3.5
//C- Copyright (c) 2002  Leon Bottou and Yann Le Cun.
//C- Copyright (c) 2001  AT&T
//C-
//C- This software is subject to, and may be distributed under, the
//C- GNU General Public License, either Version 2 of the license,
//C- or (at your option) any later version. The license should have
//C- accompanied the software or you may obtain a copy of the license
//C- from the Free Software Foundation at http://www.fsf.org .
//C-
//C- This program is distributed in the hope that it will be useful,
//C- but WITHOUT ANY WARRANTY; without even the implied warranty of
//C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//C- GNU General Public License for more details.
//C- 
//C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library from
//C- Lizardtech Software.  Lizardtech Software has authorized us to
//C- replace the original DjVu(r) Reference Library notice by the following
//C- text (see doc/lizard2002.djvu and doc/lizardtech2007.djvu):
//C-
//C-  ------------------------------------------------------------------
//C- | DjVu (r) Reference Library (v. 3.5)
//C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved.
//C- | The DjVu Reference Library is protected by U.S. Pat. No.
//C- | 6,058,214 and patents pending.
//C- |
//C- | This software is subject to, and may be distributed under, the
//C- | GNU General Public License, either Version 2 of the license,
//C- | or (at your option) any later version. The license should have
//C- | accompanied the software or you may obtain a copy of the license
//C- | from the Free Software Foundation at http://www.fsf.org .
//C- |
//C- | The computer code originally released by LizardTech under this
//C- | license and unmodified by other parties is deemed "the LIZARDTECH
//C- | ORIGINAL CODE."  Subject to any third party intellectual property
//C- | claims, LizardTech grants recipient a worldwide, royalty-free, 
//C- | non-exclusive license to make, use, sell, or otherwise dispose of 
//C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the 
//C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU 
//C- | General Public License.   This grant only confers the right to 
//C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to 
//C- | the extent such infringement is reasonably necessary to enable 
//C- | recipient to make, have made, practice, sell, or otherwise dispose 
//C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to 
//C- | any greater extent that may be necessary to utilize further 
//C- | modifications or combinations.
//C- |
//C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY
//C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF
//C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//C- +------------------------------------------------------------------

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if NEED_GNUG_PRAGMAS
# pragma implementation
#endif

// - Author: Leon Bottou, 07/1998



#include "BSByteStream.h"
#include "GString.h"
#undef BSORT_TIMER
#ifdef BSORT_TIMER
#include "GOS.h"
#endif

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>


#ifdef HAVE_NAMESPACES
namespace DJVU {
# ifdef NOT_DEFINED // Just to fool emacs c++ mode
}
#endif
#endif


// ========================================
// --- Assertion

#define ASSERT(expr) do{if(!(expr))G_THROW("assertion ("#expr") failed");}while(0)



// ========================================
// --- Global Definitions
            

#ifdef OVERFLOW
#undef OVERFLOW
#endif
// Overflow required when encoding
static const int OVERFLOW=32;

// Sorting tresholds
static const int RANKSORT_THRESH=10;
static const int QUICKSORT_STACK=512;
static const int PRESORT_THRESH=10;
static const int PRESORT_DEPTH=8;
static const int RADIX_THRESH=32768;

static const int FREQS0=100000;
static const int FREQS1=1000000;

// ========================================
// -- Sorting Routines

  
class _BSort  // DJVU_CLASS
{
public:
  ~_BSort();
  _BSort(unsigned char *data, int size);
  void run(int &markerpos);
private:
  // Members
  int            size;
  unsigned char *data;
  unsigned int  *posn;
  GPBuffer<unsigned int> gposn;
  int           *rank;
  GPBuffer<int> grank;
  // Helpers
  inline int GT(int p1, int p2, int depth);
  inline int GTD(int p1, int p2, int depth);
  // -- final in-depth sort
  void ranksort(int lo, int hi, int d);
  // -- doubling sort
  int  pivot3r(int *rr, int lo, int hi);
  void quicksort3r(int lo, int hi, int d);
  // -- presort to depth PRESORT_DEPTH
  unsigned char pivot3d(unsigned char *dd, int lo, int hi);
  void quicksort3d(int lo, int hi, int d);
  // -- radixsort
  void radixsort16(void);
  void radixsort8(void);
};


// blocksort -- the main entry point

static void 
blocksort(unsigned char *data, int size, int &markerpos)
{
  _BSort bsort(data, size);
  bsort.run(markerpos);
}


// _BSort construction

_BSort::_BSort(unsigned char *xdata, int xsize)
  : size(xsize), data(xdata), gposn(posn,xsize), grank(rank,xsize+1)
{
  ASSERT(size>0 && size<0x1000000);
  rank[size] = -1;
}

_BSort::~_BSort()
{
}



// GT -- compare suffixes using rank information

inline int 
_BSort::GT(int p1, int p2, int depth)
{
  int r1, r2;
  int twod = depth + depth;
  while (1)
    {
      r1=rank[p1+depth]; r2=rank[p2+depth];
      p1+=twod;  p2+=twod;
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1]; r2=rank[p2];
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1+depth]; r2=rank[p2+depth];
      p1+=twod;  p2+=twod;
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1]; r2=rank[p2];
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1+depth]; r2=rank[p2+depth];
      p1+=twod;  p2+=twod;
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1]; r2=rank[p2];
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1+depth]; r2=rank[p2+depth];
      p1+=twod;  p2+=twod;
      if (r1!=r2) 
        return (r1>r2);
      r1=rank[p1]; r2=rank[p2];
      if (r1!=r2) 
        return (r1>r2);
    };
}


// _BSort::ranksort -- 
// -- a simple insertion sort based on GT

void 
_BSort::ranksort(int lo, int hi, int depth)
{
  int i,j;
  for (i=lo+1; i<=hi; i++)
    {
      int tmp = posn[i];
      for(j=i-1; j>=lo && GT(posn[j], tmp, depth); j--)
        posn[j+1] = posn[j];
      posn[j+1] = tmp;
    }
  for(i=lo;i<=hi;i++) 
    rank[posn[i]]=i;
}

// pivot -- return suitable pivot

inline int
_BSort::pivot3r(int *rr, int lo, int hi)
{
  int c1, c2, c3;
  if (hi-lo > 256)
    {
      c1 = pivot3r(rr, lo, (6*lo+2*hi)/8);
      c2 = pivot3r(rr, (5*lo+3*hi)/8, (3*lo+5*hi)/8);
      c3 = pivot3r(rr, (2*lo+6*hi)/8, hi);
    }
  else
    {
      c1 = rr[posn[lo]];
      c2 = rr[posn[(lo+hi)/2]];
      c3 = rr[posn[hi]];
    }
  // Extract median
  if (c1>c3)
    { int tmp=c1; c1=c3; c3=tmp; }
  if (c2<=c1)
    return c1;
  else if (c2>=c3)
    return c3;
  else
    return c2;
}


// _BSort::quicksort3r -- Three way quicksort algorithm 
//    Sort suffixes based on rank at pos+depth
//    The algorithm breaks into ranksort when size is 
//    smaller than RANKSORT_THRESH

static inline int
mini(int a, int b) 
{
  return (a<=b) ? a : b;
}

static inline void
vswap(int i, int j, int n, unsigned int *x)
{
  while (n-- > 0) 
    { int tmp = x[i]; x[i++]=x[j]; x[j++]=tmp; }
}

void 
_BSort::quicksort3r(int lo, int hi, int depth)
{
  /* Initialize stack */
  int slo[QUICKSORT_STACK];
  int shi[QUICKSORT_STACK];
  int sp = 1;
  slo[0] = lo;
  shi[0] = hi;
  // Recursion elimination loop
  while (--sp>=0)
    {
      lo = slo[sp];
      hi = shi[sp];
      // Test for insertion sort
      if (hi-lo<RANKSORT_THRESH)
        {
          ranksort(lo, hi, depth);
        }
      else
        {
          int tmp;
          int *rr=rank+depth;
          int med = pivot3r(rr,lo,hi);
          // -- positions are organized as follows:
          //   [lo..l1[ [l1..l[ ]h..h1] ]h1..hi]
          //      =        <       >        =
          int l1 = lo;
          int h1 = hi;
          while (rr[posn[l1]]==med && l1<h1) { l1++; }
          while (rr[posn[h1]]==med && l1<h1) { h1--; }
          int l = l1;
          int h = h1;
          // -- partition set
          for (;;)
            {
              while (l<=h)
                {
                  int c = rr[posn[l]] - med;
                  if (c > 0) break;
                  if (c == 0) { tmp=posn[l]; posn[l]=posn[l1]; posn[l1++]=tmp; }
                  l++;
                }
              while (l<=h)
                {
                  int c = rr[posn[h]] - med;
                  if (c < 0) break;
                  if (c == 0) { tmp=posn[h]; posn[h]=posn[h1]; posn[h1--]=tmp; }
                  h--;
                }
              if (l>h) break;
              tmp=posn[l]; posn[l]=posn[h]; posn[h]=tmp;
            }
          // -- reorganize as follows
          //   [lo..l1[ [l1..h1] ]h1..hi]
          //      <        =        > 
          tmp = mini(l1-lo, l-l1);
          vswap(lo, l-tmp, tmp, posn);
          l1 = lo + (l-l1);
          tmp = mini(hi-h1, h1-h);
          vswap(hi-tmp+1, h+1, tmp, posn);
          h1 = hi - (h1-h);
          // -- process segments
          ASSERT(sp+2<QUICKSORT_STACK);
          // ----- middle segment (=?) [l1, h1]
          for(int i=l1;i<=h1;i++) 
            rank[posn[i]] = h1;
          // ----- lower segment (<) [lo, l1[
          if (l1 > lo)
            {
              for(int i=lo;i<l1;i++) 
                rank[posn[i]]=l1-1;
              slo[sp]=lo;
              shi[sp]=l1-1;
              if (slo[sp] < shi[sp])  
                sp++;
            }
          // ----- upper segment (>) ]h1, hi]
          if (h1 < hi)
            {
              slo[sp]=h1+1;
              shi[sp]=hi;
              if (slo[sp] < shi[sp])  
                sp++;
            }
        }
    }
}






// GTD -- compare suffixes using data information 
//  (up to depth PRESORT_DEPTH)

inline int 
_BSort::GTD(int p1, int p2, int depth)
{
  unsigned char c1, c2;
  p1+=depth; p2+=depth;
  while (depth < PRESORT_DEPTH)
    {
      // Perform two
      c1=data[p1]; c2=data[p2];
      if (c1!=c2) 
        return (c1>c2);
      c1=data[p1+1]; c2=data[p2+1];
      p1+=2;  p2+=2; depth+=2;
      if (c1!=c2) 
        return (c1>c2);
    }
  if (p1<size && p2<size)
    return 0;
  return (p1<p2);
}

// pivot3d -- return suitable pivot

inline unsigned char
_BSort::pivot3d(unsigned char *rr, int lo, int hi)
{
  unsigned char c1, c2, c3;
  if (hi-lo > 256)
    {
      c1 = pivot3d(rr, lo, (6*lo+2*hi)/8);
      c2 = pivot3d(rr, (5*lo+3*hi)/8, (3*lo+5*hi)/8);
      c3 = pivot3d(rr, (2*lo+6*hi)/8, hi);
    }
  else
    {
      c1 = rr[posn[lo]];
      c2 = rr[posn[(lo+hi)/2]];
      c3 = rr[posn[hi]];
    }
  // Extract median
  if (c1>c3)
    { int tmp=c1; c1=c3; c3=tmp; }
  if (c2<=c1)
    return c1;
  else if (c2>=c3)
    return c3;
  else
    return c2;
}


// _BSort::quicksort3d -- Three way quicksort algorithm 
//    Sort suffixes based on strings until reaching
//    depth rank at pos+depth
//    The algorithm breaks into ranksort when size is 
//    smaller than PRESORT_THRESH

void 
_BSort::quicksort3d(int lo, int hi, int depth)
{
  /* Initialize stack */
  int slo[QUICKSORT_STACK];
  int shi[QUICKSORT_STACK];
  int sd[QUICKSORT_STACK];
  int sp = 1;
  slo[0] = lo;
  shi[0] = hi;
  sd[0] = depth;
  // Recursion elimination loop
  while (--sp>=0)
    {
      lo = slo[sp];
      hi = shi[sp];
      depth = sd[sp];
      // Test for insertion sort
      if (depth >= PRESORT_DEPTH)
        {
          for (int i=lo; i<=hi; i++)
            rank[posn[i]] = hi;
        }
      else if (hi-lo<PRESORT_THRESH)
        {
          int i,j;
          for (i=lo+1; i<=hi; i++)
            {
              int tmp = posn[i];
              for(j=i-1; j>=lo && GTD(posn[j], tmp, depth); j--)
                posn[j+1] = posn[j];
              posn[j+1] = tmp;
            }
          for(i=hi;i>=lo;i=j)
            {
              int tmp = posn[i];
              rank[tmp] = i;
              for (j=i-1; j>=lo && !GTD(tmp,posn[j],depth); j--)
                rank[posn[j]] = i;
            }
        }
        else
        {
          int tmp;
          unsigned char *dd=data+depth;
          unsigned char med = pivot3d(dd,lo,hi);
          // -- positions are organized as follows:
          //   [lo..l1[ [l1..l[ ]h..h1] ]h1..hi]
          //      =        <       >        =
          int l1 = lo;
          int h1 = hi;
          while (dd[posn[l1]]==med && l1<h1) { l1++; }
          while (dd[posn[h1]]==med && l1<h1) { h1--; }
          int l = l1;
          int h = h1;
          // -- partition set
          for (;;)
            {
              while (l<=h)
                {
                  int c = (int)dd[posn[l]] - (int)med;
                  if (c > 0) break;
                  if (c == 0) { tmp=posn[l]; posn[l]=posn[l1]; posn[l1++]=tmp; }
                  l++;
                }
              while (l<=h)
                {
                  int c = (int)dd[posn[h]] - (int)med;
                  if (c < 0) break;
                  if (c == 0) { tmp=posn[h]; posn[h]=posn[h1]; posn[h1--]=tmp; }
                  h--;
                }
              if (l>h) break;
              tmp=posn[l]; posn[l]=posn[h]; posn[h]=tmp;
            }
          // -- reorganize as follows
          //   [lo..l1[ [l1..h1] ]h1..hi]
          //      <        =        > 
          tmp = mini(l1-lo, l-l1);
          vswap(lo, l-tmp, tmp, posn);
          l1 = lo + (l-l1);
          tmp = mini(hi-h1, h1-h);
          vswap(hi-tmp+1, h+1, tmp, posn);
          h1 = hi - (h1-h);
          // -- process segments
          ASSERT(sp+3<QUICKSORT_STACK);
          // ----- middle segment (=?) [l1, h1]
          l = l1; h = h1;
          if (med==0) // special case for marker [slow]
            for (int i=l; i<=h; i++)
              if ((int)posn[i]+depth == size-1)
                { 
                  tmp=posn[i]; posn[i]=posn[l]; posn[l]=tmp; 
                  rank[tmp]=l++; break; 
                }
          if (l<h)
            { slo[sp] = l; shi[sp] = h; sd[sp++] = depth+1; }
          else if (l==h)
            { rank[posn[h]] = h; }
          // ----- lower segment (<) [lo, l1[
          l = lo;
          h = l1-1;
          if (l<h)
            { slo[sp] = l; shi[sp] = h; sd[sp++] = depth; }
          else if (l==h)
            { rank[posn[h]] = h; }
          // ----- upper segment (>) ]h1, hi]
          l = h1+1;
          h = hi;
          if (l<h)
            { slo[sp] = l; shi[sp] = h; sd[sp++] = depth; }
          else if (l==h)
            { rank[posn[h]] = h; }
        }
    }
}




// _BSort::radixsort8 -- 8 bit radix sort

void 
_BSort::radixsort8(void)
{
  int i;
  // Initialize frequency array
  int lo[256], hi[256];
  for (i=0; i<256; i++)
    hi[i] = lo[i] = 0;
  // Count occurences
  for (i=0; i<size-1; i++)
    hi[data[i]] ++;
  // Compute positions (lo)
  int last = 1;
  for (i=0; i<256; i++)
    {
      lo[i] = last;
      hi[i] = last + hi[i] - 1;
      last = hi[i] + 1;
    }
  for (i=0; i<size-1; i++)
    {
      posn[ lo[data[i]]++ ] = i;
      rank[ i ] = hi[data[i]];
    }
  // Process marker "$"
  posn[0] = size-1;
  rank[size-1] = 0;
  // Extra element
  rank[size] = -1;
}


// _BSort::radixsort16 -- 16 bit radix sort

void 
_BSort::radixsort16(void)
{
  int i;
  // Initialize frequency array
  int *ftab;
  GPBuffer<int> gftab(ftab,65536);
  for (i=0; i<65536; i++)
    ftab[i] = 0;
  // Count occurences
  unsigned char c1 = data[0];
  for (i=0; i<size-1; i++)
    {
      unsigned char c2 = data[i+1];
      ftab[(c1<<8)|c2] ++;
      c1 = c2;
    }
  // Generate upper position
  for (i=1;i<65536;i++)
    ftab[i] += ftab[i-1];
  // Fill rank array with upper bound
  c1 = data[0];
  for (i=0; i<size-2; i++)
    {
      unsigned char c2 = data[i+1];
      rank[i] = ftab[(c1<<8)|c2];
      c1 = c2;
    }
  // Fill posn array (backwards)
  c1 = data[size-2];
  for (i=size-3; i>=0; i--)
    {
      unsigned char c2 = data[i];
      posn[ ftab[(c2<<8)|c1]-- ] = i;
      c1 = c2;
    }
  // Fixup marker stuff
  ASSERT(data[size-1]==0);
  c1 = data[size-2];
  posn[0] = size-1;
  posn[ ftab[(c1<<8)] ] = size-2;
  rank[size-1] = 0;
  rank[size-2] = ftab[(c1<<8)];
  // Extra element
  rank[size] = -1;
}



// _BSort::run -- main sort loop

void
_BSort::run(int &markerpos)
{
  int lo, hi;
  ASSERT(size>0);
  ASSERT(data[size-1]==0);
#ifdef BSORT_TIMER
  long start = GOS::ticks();
#endif  
  // Step 1: Radix sort 
  int depth = 0;
  if (size > RADIX_THRESH)
    { 
      radixsort16();
      depth=2;
    }
  else
    { 
      radixsort8(); 
      depth=1;
    }
  // Step 2: Perform presort to depth PRESORT_DEPTH
  for (lo=0; lo<size; lo++)
    {
      hi = rank[posn[lo]];
      if (lo < hi)
        quicksort3d(lo, hi, depth);
      lo = hi;
    }
  depth = PRESORT_DEPTH;
#ifdef BSORT_TIMER
  long middle = GOS::ticks();
#endif  
  // Step 3: Perform rank doubling
  int again = 1;
  while (again)
    {
      again = 0;
      int sorted_lo = 0;
      for (lo=0; lo<size; lo++)
        {
          hi = rank[posn[lo]&0xffffff];
          if (lo == hi)
            {
              lo += (posn[lo]>>24) & 0xff;
            }
          else
            {
              if (hi-lo < RANKSORT_THRESH)
                {
                  ranksort(lo, hi, depth);
                }
              else
                {
                  again += 1;
                  while (sorted_lo < lo-1)
                    {
                      int step = mini(255, lo-1-sorted_lo);
                      posn[sorted_lo] = (posn[sorted_lo]&0xffffff) | (step<<24);
                      sorted_lo += step+1;
                    }
                  quicksort3r(lo, hi, depth);
                  sorted_lo = hi + 1;
                }
              lo = hi;
            }
        }
      // Finish threading
      while (sorted_lo < lo-1)
        {
          int step = mini(255, lo-1-sorted_lo);
          posn[sorted_lo] = (posn[sorted_lo]&0xffffff) | (step<<24);
          sorted_lo += step+1;
        }
      // Double depth
      depth += depth;
    }
  // Step 4: Permute data
  int i;
  markerpos = -1;
  for (i=0; i<size; i++)
    rank[i] = data[i];
  for (i=0; i<size; i++)
    {
      int j = posn[i] & 0xffffff;
      if (j>0) 
        { 
          data[i] = rank[j-1];
        } 
      else 
        {
          data[i] = 0;
          markerpos = i;
        }
    }
  ASSERT(markerpos>=0 && markerpos<size);
#ifdef BSORT_TIMER
  long end = GOS::ticks();
  DjVuPrintErrorUTF8("Sorting time: %d bytes in %ld + %ld = %ld ms\n", 
          size-1, middle-start, end-middle, end-start);
#endif  
}


// ========================================
// -- Encoding

static void
encode_raw(ZPCodec &zp, int bits, int x)
{
  int n = 1;
  int m = (1<<bits);
  while (n < m)
    {
      x = (x & (m-1)) << 1;
      int b = (x >> bits);
      zp.encoder(b);
      n = (n<<1) | b;
    }
}

static inline void
encode_binary(ZPCodec &zp, BitContext *ctx, int bits, int x)
{
  // Require 2^bits-1  contexts
  int n = 1;
  int m = (1<<bits);
  ctx = ctx - 1;
  while (n < m)
    {
      x = (x & (m-1)) << 1;
      int b = (x >> bits);
      zp.encoder(b, ctx[n]);
      n = (n<<1) | b;
    }
}

class BSByteStream::Encode : public BSByteStream
{
public:
  /** Creates a Static object for allocating the memory area of
      length #sz# starting at address #buffer#. */
  Encode(GP<ByteStream> bs);
  ~Encode();
  void init(const int encoding);
  // Virtual functions
  virtual size_t write(const void *buffer, size_t sz);
  virtual void flush(void);
protected:
  unsigned int encode(void);
};

unsigned int
BSByteStream::Encode::encode()
{ 
  /////////////////////////////////
  ////////////  Block Sort Tranform

  int markerpos = size-1;
  blocksort(data,size,markerpos);

  /////////////////////////////////
  //////////// Encode Output Stream

  // Header
  ZPCodec &zp=*gzp;
  encode_raw(zp, 24, size);
  // Determine and Encode Estimation Speed
  int fshift = 0;
  if (size < FREQS0)
    { fshift=0; zp.encoder(0); }
  else if (size < FREQS1)
    { fshift = 1; zp.encoder(1); zp.encoder(0); }
  else
    { fshift = 2; zp.encoder(1); zp.encoder(1); }
  // MTF
  unsigned char mtf[256];
  unsigned char rmtf[256];
  unsigned int  freq[FREQMAX];
  int m = 0;
  for (m=0; m<256; m++)
    mtf[m] = m;
  for (m=0; m<256; m++)
    rmtf[mtf[m]] = m;
  int fadd = 4;
  for (m=0; m<FREQMAX; m++)
    freq[m] = 0;
  // Encode
  int i;
  int mtfno = 3;
  for (i=0; i<size; i++)
    {
      // Get MTF data
      int c = data[i];
      int ctxid = CTXIDS-1;
      if (ctxid>mtfno) ctxid=mtfno;
      mtfno = rmtf[c];
      if (i==markerpos)
        mtfno = 256;
      // Encode using ZPCoder
      int b;
      BitContext *cx = ctx;
      b = (mtfno==0);
      zp.encoder(b, cx[ctxid]);
      if (b) goto rotate;
      cx+=CTXIDS;
      b = (mtfno==1);
      zp.encoder(b, cx[ctxid]);
      if (b) goto rotate;
      cx+=CTXIDS;
      b = (mtfno<4);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,1,mtfno-2); goto rotate; } 
      cx+=1+1;
      b = (mtfno<8);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,2,mtfno-4); goto rotate; } 
      cx+=1+3;
      b = (mtfno<16);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,3,mtfno-8); goto rotate; } 
      cx+=1+7;
      b = (mtfno<32);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,4,mtfno-16); goto rotate; } 
      cx+=1+15;
      b = (mtfno<64);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,5,mtfno-32); goto rotate; } 
      cx+=1+31;
      b = (mtfno<128);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,6,mtfno-64); goto rotate; } 
      cx+=1+63;
      b = (mtfno<256);
      zp.encoder(b, cx[0]);
      if (b) { encode_binary(zp,cx+1,7,mtfno-128); goto rotate; } 
      continue;
      // Rotate MTF according to empirical frequencies (new!)
    rotate:
      // Adjust frequencies for overflow
      fadd = fadd + (fadd>>fshift);
      if (fadd > 0x10000000) 
        {
          fadd = fadd>>24;
          freq[0] >>= 24;
          freq[1] >>= 24;
          freq[2] >>= 24;
          freq[3] >>= 24;
          for (int k=4; k<FREQMAX; k++)
            freq[k] = freq[k]>>24;
        }
      // Relocate new char according to new freq
      unsigned int fc = fadd;
      if (mtfno < FREQMAX)
        fc += freq[mtfno];
      int k;
      for (k=mtfno; k>=FREQMAX; k--)
        {
          mtf[k] = mtf[k-1];
          rmtf[mtf[k]] = k;
        }
      for (; k>0 && fc>=freq[k-1]; k--)
        {
          mtf[k] = mtf[k-1];
          freq[k] = freq[k-1];
          rmtf[mtf[k]] = k;
        }
      mtf[k] = c;
      freq[k] = fc;
      rmtf[mtf[k]] = k;
    }
  // Terminate
  return 0;
}

// ========================================
// --- Construction

BSByteStream::Encode::Encode(GP<ByteStream> xbs)
: BSByteStream(xbs) {}

void
BSByteStream::Encode::init(const int xencoding)
{
  gzp=ZPCodec::create(gbs,true,true);
  const int encoding=(xencoding<MINBLOCK)?MINBLOCK:xencoding;
  if (encoding > MAXBLOCK)
    G_THROW( ERR_MSG("ByteStream.blocksize") "\t" + GUTF8String(MAXBLOCK) );
  // Record block size
  blocksize = encoding * 1024;
  // Initialize context array
}

BSByteStream::Encode::~Encode()
{
  // Flush
  flush();
  // Encode EOF marker
  encode_raw(*gzp, 24, 0);
  // Free allocated memory
}

GP<ByteStream>
BSByteStream::create(GP<ByteStream> xbs,const int blocksize)
{
  BSByteStream::Encode *rbs=new BSByteStream::Encode(xbs);
  GP<ByteStream> retval=rbs;
  rbs->init(blocksize);
  return retval;
}

// ========================================
// -- ByteStream interface

void 
BSByteStream::Encode::flush()
{
  if (bptr>0)
  {
    ASSERT(bptr<(int)blocksize);
    memset(data+bptr, 0, OVERFLOW);
    size = bptr+1;
    encode();
  }
  size = bptr = 0;
}

size_t 
BSByteStream::Encode::write(const void *buffer, size_t sz)
{
  // Trivial checks
  if (sz == 0)
    return 0;
  // Loop
  int copied = 0;
  while (sz > 0)
    {
      // Initialize
      if (!data) 
        {
          bptr = 0;
          gdata.resize(blocksize+OVERFLOW);
        }
      // Compute remaining
      int bytes = blocksize - 1 - bptr;
      if (bytes > (int)sz)
        bytes = sz;
      // Store date (todo: rle)
      memcpy(data+bptr, buffer, bytes);
      buffer = (void*)((char*)buffer + bytes);
      bptr += bytes;
      sz -= bytes;
      copied += bytes;
      offset += bytes;
      // Flush when needed
      if (bptr + 1 >= (int)blocksize)
        flush();
    }
  // return
  return copied;
}


#ifdef HAVE_NAMESPACES
}
# ifndef NOT_USING_DJVU_NAMESPACE
using namespace DJVU;
# endif
#endif