1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/matrix.h>
#include <sstream>
#include <string>
#include <ctime>
#include <vector>
#include <dlib/statistics.h>
#include "tester.h"
#include <dlib/svm.h>
namespace
{
using namespace test;
using namespace dlib;
using namespace std;
logger dlog("test.svr_linear_trainer");
typedef matrix<double, 0, 1> sample_type;
typedef std::vector<std::pair<unsigned int, double> > sparse_sample_type;
// ----------------------------------------------------------------------------------------
double sinc(double x)
{
if (x == 0)
return 1;
return sin(x)/x;
}
template <typename scalar_type>
void test1()
{
typedef matrix<scalar_type,0,1> sample_type;
typedef radial_basis_kernel<sample_type> kernel_type;
print_spinner();
std::vector<sample_type> samples;
std::vector<scalar_type> targets;
// The first thing we do is pick a few training points from the sinc() function.
sample_type m(1);
for (scalar_type x = -10; x <= 4; x += 1)
{
m(0) = x;
samples.push_back(m);
targets.push_back(sinc(x)+1.1);
}
randomize_samples(samples, targets);
empirical_kernel_map<kernel_type> ekm;
ekm.load(kernel_type(0.1), samples);
for (unsigned long i = 0; i < samples.size(); ++i)
samples[i] = ekm.project(samples[i]);
svr_linear_trainer<linear_kernel<sample_type> > linear_trainer;
linear_trainer.set_epsilon(0.0001);
linear_trainer.set_c(30);
linear_trainer.set_epsilon_insensitivity(0.001);
matrix<double> res = cross_validate_regression_trainer(linear_trainer, samples, targets, 5);
dlog << LINFO << "MSE and R-Squared: "<< res;
DLIB_TEST(res(0) < 1e-4);
DLIB_TEST(res(1) > 0.99);
dlib::rand rnd;
samples.clear();
targets.clear();
std::vector<scalar_type> noisefree_targets;
for (scalar_type x = 0; x <= 5; x += 0.1)
{
m(0) = x;
samples.push_back(matrix_cast<scalar_type>(linpiece(m, linspace(0,5,20))));
targets.push_back(x*x + rnd.get_random_gaussian());
noisefree_targets.push_back(x*x);
}
linear_trainer.set_learns_nonnegative_weights(true);
linear_trainer.set_epsilon_insensitivity(1.0);
decision_function<linear_kernel<sample_type> > df2 = linear_trainer.train(samples, targets);
print_spinner();
res = test_regression_function(df2, samples, noisefree_targets);
dlog << LINFO << "MSE and R-Squared: "<< res;
DLIB_TEST(res(0) < 0.15);
DLIB_TEST(res(1) > 0.98);
DLIB_TEST(df2.basis_vectors.size()==1);
DLIB_TEST(max(df2.basis_vectors(0)) >= 0);
linear_trainer.force_last_weight_to_1(true);
df2 = linear_trainer.train(samples, targets);
DLIB_TEST(std::abs(df2.basis_vectors(0)(samples[0].size()-1) - 1.0) < 1e-14);
res = test_regression_function(df2, samples, noisefree_targets);
dlog << LINFO << "MSE and R-Squared: "<< res;
DLIB_TEST(res(0) < 0.20);
DLIB_TEST(res(1) > 0.98);
// convert into sparse vectors and try it out
typedef std::vector<std::pair<unsigned long, scalar_type> > sparse_samp;
std::vector<sparse_samp> ssamples;
for (unsigned long i = 0; i < samples.size(); ++i)
{
sparse_samp s;
for (long j = 0; j < samples[i].size(); ++j)
s.push_back(make_pair(j,samples[i](j)));
ssamples.push_back(s);
}
svr_linear_trainer<sparse_linear_kernel<sparse_samp> > strainer;
strainer.set_learns_nonnegative_weights(true);
strainer.set_epsilon_insensitivity(1.0);
strainer.set_c(30);
decision_function<sparse_linear_kernel<sparse_samp> > df;
df = strainer.train(ssamples, targets);
res = test_regression_function(df, ssamples, noisefree_targets);
dlog << LINFO << "MSE and R-Squared: "<< res;
DLIB_TEST(res(0) < 0.15);
DLIB_TEST(res(1) > 0.98);
DLIB_TEST(df2.basis_vectors.size()==1);
DLIB_TEST(max(sparse_to_dense(df2.basis_vectors(0))) >= 0);
}
// ----------------------------------------------------------------------------------------
class tester_svr_linear_trainer : public tester
{
public:
tester_svr_linear_trainer (
) :
tester ("test_svr_linear_trainer",
"Runs tests on the svr_linear_trainer.")
{}
void perform_test (
)
{
dlog << LINFO << "TEST double";
test1<double>();
dlog << LINFO << "TEST float";
test1<float>();
}
} a;
}
|