File: remove_unobtainable_rectangles.h

package info (click to toggle)
dlib 20.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 293,056 kB
  • sloc: cpp: 331,568; xml: 27,095; python: 1,631; sh: 290; java: 229; makefile: 179; javascript: 73; perl: 18
file content (317 lines) | stat: -rw-r--r-- 12,376 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_REMOVE_UnOBTAINABLE_RECTANGLES_Hh_
#define DLIB_REMOVE_UnOBTAINABLE_RECTANGLES_Hh_

#include "remove_unobtainable_rectangles_abstract.h"
#include "scan_image_pyramid.h"
#include "scan_image_boxes.h"
#include "scan_image_custom.h"
#include "scan_fhog_pyramid.h"
#include "../svm/structural_object_detection_trainer.h"
#include "../geometry.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        inline bool matches_rect (
            const std::vector<rectangle>& rects,
            const rectangle& rect,
            const double eps
        )
        {
            for (unsigned long i = 0; i < rects.size(); ++i)
            {
                const double score = (rect.intersect(rects[i])).area()/(double)(rect+rects[i]).area();
                if (score > eps)
                    return true;
            }

            return false;
        }

        inline rectangle get_best_matching_rect (
            const std::vector<rectangle>& rects,
            const rectangle& rect
        ) 
        {
            double best_score = -1;
            rectangle best_rect;
            for (unsigned long i = 0; i < rects.size(); ++i)
            {
                const double score = (rect.intersect(rects[i])).area()/(double)(rect+rects[i]).area();
                if (score > best_score)
                {
                    best_score = score;
                    best_rect = rects[i];
                }
            }
            return best_rect;
        }

    // ------------------------------------------------------------------------------------

        template <
            typename image_array_type,
            typename image_scanner_type
            >
        std::vector<std::vector<rectangle> > pyramid_remove_unobtainable_rectangles (
            const structural_object_detection_trainer<image_scanner_type>& trainer,
            const image_array_type& images,
            std::vector<std::vector<rectangle> >& object_locations
        )
        {
            using namespace dlib::impl;
            // make sure requires clause is not broken
            DLIB_ASSERT(images.size() == object_locations.size(),
                "\t std::vector<std::vector<rectangle>> remove_unobtainable_rectangles()"
                << "\n\t Invalid inputs were given to this function."
            );


            std::vector<std::vector<rectangle> > rejects(images.size());

            // If the trainer is setup to automatically fit the overlap tester to the data then
            // we should use the loosest possible overlap tester here.  Otherwise we should use
            // the tester the trainer will use.
            test_box_overlap boxes_overlap(0.9999999,1); 
            if (!trainer.auto_set_overlap_tester())
                boxes_overlap = trainer.get_overlap_tester();

            for (unsigned long k = 0; k < images.size(); ++k)
            {
                std::vector<rectangle> objs = object_locations[k];

                // First remove things that don't have any matches with the candidate object
                // locations.
                std::vector<rectangle> good_rects;
                for (unsigned long j = 0; j < objs.size(); ++j)
                {
                    const rectangle rect = trainer.get_scanner().get_best_matching_rect(objs[j]);
                    const double score = (objs[j].intersect(rect)).area()/(double)(objs[j] + rect).area();
                    if (score > trainer.get_match_eps())
                        good_rects.push_back(objs[j]);
                    else
                        rejects[k].push_back(objs[j]);
                }
                object_locations[k] = good_rects;


                // Remap these rectangles to the ones that can come out of the scanner.  That
                // way when we compare them to each other in the following loop we will know if
                // any distinct truth rectangles get mapped to overlapping boxes.
                objs.resize(good_rects.size());
                for (unsigned long i = 0; i < good_rects.size(); ++i)
                    objs[i] = trainer.get_scanner().get_best_matching_rect(good_rects[i]);

                good_rects.clear();
                // now check for truth rects that are too close together.
                for (unsigned long i = 0; i < objs.size(); ++i)
                {
                    // check if objs[i] hits another box
                    bool hit_box = false;
                    for (unsigned long j = i+1; j < objs.size(); ++j)
                    {
                        if (boxes_overlap(objs[i], objs[j]))
                        {
                            hit_box = true;
                            break;
                        }
                    }
                    if (hit_box)
                        rejects[k].push_back(object_locations[k][i]);
                    else
                        good_rects.push_back(object_locations[k][i]);
                }
                object_locations[k] = good_rects;
            }

            return rejects;
        }

    }

// ----------------------------------------------------------------------------------------

    template <
        typename image_array_type,
        typename Pyramid_type,
        typename Feature_extractor_type
        >
    std::vector<std::vector<rectangle> > remove_unobtainable_rectangles (
        const structural_object_detection_trainer<scan_image_pyramid<Pyramid_type, Feature_extractor_type> >& trainer,
        const image_array_type& images,
        std::vector<std::vector<rectangle> >& object_locations
    )
    {
        return impl::pyramid_remove_unobtainable_rectangles(trainer, images, object_locations);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename image_array_type,
        typename Pyramid_type,
        typename Feature_extractor_type
        >
    std::vector<std::vector<rectangle> > remove_unobtainable_rectangles (
        const structural_object_detection_trainer<scan_fhog_pyramid<Pyramid_type,Feature_extractor_type> >& trainer,
        const image_array_type& images,
        std::vector<std::vector<rectangle> >& object_locations
    )
    {
        return impl::pyramid_remove_unobtainable_rectangles(trainer, images, object_locations);
    }

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        template <
            typename image_array_type,
            typename scanner_type, 
            typename get_boxes_functor
            >
        std::vector<std::vector<rectangle> > remove_unobtainable_rectangles (
            get_boxes_functor& bg,
            const structural_object_detection_trainer<scanner_type>& trainer,
            const image_array_type& images,
            std::vector<std::vector<rectangle> >& object_locations
        )
        {
            using namespace dlib::impl;
            // make sure requires clause is not broken
            DLIB_ASSERT(images.size() == object_locations.size(),
                "\t std::vector<std::vector<rectangle>> remove_unobtainable_rectangles()"
                << "\n\t Invalid inputs were given to this function."
            );

            std::vector<rectangle> rects;

            std::vector<std::vector<rectangle> > rejects(images.size());

            // If the trainer is setup to automatically fit the overlap tester to the data then
            // we should use the loosest possible overlap tester here.  Otherwise we should use
            // the tester the trainer will use.
            test_box_overlap boxes_overlap(0.9999999,1); 
            if (!trainer.auto_set_overlap_tester())
                boxes_overlap = trainer.get_overlap_tester();

            for (unsigned long k = 0; k < images.size(); ++k)
            {
                std::vector<rectangle> objs = object_locations[k];
                // Don't even bother computing the candidate rectangles if there aren't any
                // object locations for this image since there isn't anything to do anyway.
                if (objs.size() == 0)
                    continue;

                bg(images[k], rects);


                // First remove things that don't have any matches with the candidate object
                // locations.
                std::vector<rectangle> good_rects;
                for (unsigned long j = 0; j < objs.size(); ++j)
                {
                    if (matches_rect(rects, objs[j], trainer.get_match_eps()))
                        good_rects.push_back(objs[j]);
                    else
                        rejects[k].push_back(objs[j]);
                }
                object_locations[k] = good_rects;


                // Remap these rectangles to the ones that can come out of the scanner.  That
                // way when we compare them to each other in the following loop we will know if
                // any distinct truth rectangles get mapped to overlapping boxes.
                objs.resize(good_rects.size());
                for (unsigned long i = 0; i < good_rects.size(); ++i)
                    objs[i] = get_best_matching_rect(rects, good_rects[i]);

                good_rects.clear();
                // now check for truth rects that are too close together.
                for (unsigned long i = 0; i < objs.size(); ++i)
                {
                    // check if objs[i] hits another box
                    bool hit_box = false;
                    for (unsigned long j = i+1; j < objs.size(); ++j)
                    {
                        if (boxes_overlap(objs[i], objs[j]))
                        {
                            hit_box = true;
                            break;
                        }
                    }
                    if (hit_box)
                        rejects[k].push_back(object_locations[k][i]);
                    else
                        good_rects.push_back(object_locations[k][i]);
                }
                object_locations[k] = good_rects;
            }

            return rejects;
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        struct load_to_functor
        {
            load_to_functor(T& obj_) : obj(obj_) {}
            T& obj;

            template <typename U, typename V>
            void operator()(const U& u, V& v) 
            {
                obj.load(u,v);
            }
        };
    }

// ----------------------------------------------------------------------------------------

    template <
        typename image_array_type,
        typename feature_extractor, 
        typename box_generator
        >
    std::vector<std::vector<rectangle> > remove_unobtainable_rectangles (
        const structural_object_detection_trainer<scan_image_boxes<feature_extractor, box_generator> >& trainer,
        const image_array_type& images,
        std::vector<std::vector<rectangle> >& object_locations
    )
    {
        box_generator bg = trainer.get_scanner().get_box_generator();
        return impl::remove_unobtainable_rectangles(bg, trainer, images, object_locations);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename image_array_type,
        typename feature_extractor
        >
    std::vector<std::vector<rectangle> > remove_unobtainable_rectangles (
        const structural_object_detection_trainer<scan_image_custom<feature_extractor> >& trainer,
        const image_array_type& images,
        std::vector<std::vector<rectangle> >& object_locations
    )
    {
        feature_extractor fe;
        fe.copy_configuration(trainer.get_scanner().get_feature_extractor());
        impl::load_to_functor<feature_extractor> bg(fe);
        return impl::remove_unobtainable_rectangles(bg, trainer, images, object_locations);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_REMOVE_UnOBTAINABLE_RECTANGLES_Hh_