1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the dlib C++
Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the
dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example
program we are going to show how one can train a YOLO detector. In particular, we will train
the YOLOv3 model like the one introduced in this paper:
"YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi.
This example program will work with any imglab dataset, such as:
- faces: http://dlib.net/files/data/dlib_face_detection_dataset-2016-09-30.tar.gz
- vehicles: http://dlib.net/files/data/dlib_rear_end_vehicles_v1.tar
Just uncompress the dataset and give the directory containing the training.xml and testing.xml
files as an argument to this program.
*/
#include <dlib/cmd_line_parser.h>
#include <dlib/data_io.h>
#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <tools/imglab/src/metadata_editor.h>
using namespace std;
using namespace dlib;
// In the darknet namespace we define:
// - the network architecture: DarkNet53 backbone and detection head for YOLO.
// - a helper function to setup the detector: change the number of classes, etc.
namespace darknet
{
// backbone tags
template <typename SUBNET> using btag8 = add_tag_layer<8008, SUBNET>;
template <typename SUBNET> using btag16 = add_tag_layer<8016, SUBNET>;
template <typename SUBNET> using bskip8 = add_skip_layer<btag8, SUBNET>;
template <typename SUBNET> using bskip16 = add_skip_layer<btag16, SUBNET>;
// neck tags
template <typename SUBNET> using ntag8 = add_tag_layer<6008, SUBNET>;
template <typename SUBNET> using ntag16 = add_tag_layer<6016, SUBNET>;
template <typename SUBNET> using ntag32 = add_tag_layer<6032, SUBNET>;
template <typename SUBNET> using nskip8 = add_skip_layer<ntag8, SUBNET>;
template <typename SUBNET> using nskip16 = add_skip_layer<ntag16, SUBNET>;
template <typename SUBNET> using nskip32 = add_skip_layer<ntag32, SUBNET>;
// head tags
template <typename SUBNET> using htag8 = add_tag_layer<7008, SUBNET>;
template <typename SUBNET> using htag16 = add_tag_layer<7016, SUBNET>;
template <typename SUBNET> using htag32 = add_tag_layer<7032, SUBNET>;
template <typename SUBNET> using hskip8 = add_skip_layer<htag8, SUBNET>;
template <typename SUBNET> using hskip16 = add_skip_layer<htag16, SUBNET>;
// yolo tags
template <typename SUBNET> using ytag8 = add_tag_layer<4008, SUBNET>;
template <typename SUBNET> using ytag16 = add_tag_layer<4016, SUBNET>;
template <typename SUBNET> using ytag32 = add_tag_layer<4032, SUBNET>;
template <template <typename> class ACT, template <typename> class BN>
struct def
{
template <long nf, long ks, int s, typename SUBNET>
using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks / 2, ks / 2>, SUBNET>>>;
template <long nf, typename SUBNET>
using residual = add_prev1<conblock<nf, 3, 1, conblock<nf / 2, 1, 1, tag1<SUBNET>>>>;
template <long nf, long factor, typename SUBNET>
using conblock5 = conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1, SUBNET>>>>>;
template <typename SUBNET> using res_64 = residual<64, SUBNET>;
template <typename SUBNET> using res_128 = residual<128, SUBNET>;
template <typename SUBNET> using res_256 = residual<256, SUBNET>;
template <typename SUBNET> using res_512 = residual<512, SUBNET>;
template <typename SUBNET> using res_1024 = residual<1024, SUBNET>;
template <typename INPUT>
using backbone53 = repeat<4, res_1024, conblock<1024, 3, 2,
btag16<repeat<8, res_512, conblock<512, 3, 2,
btag8<repeat<8, res_256, conblock<256, 3, 2,
repeat<2, res_128, conblock<128, 3, 2,
res_64< conblock<64, 3, 2,
conblock<32, 3, 1,
INPUT>>>>>>>>>>>>>;
// This is the layer that will be passed to the loss layer to get the detections from the network.
// The main thing to pay attention to when defining the YOLO output layer is that it should be
// a tag layer, followed by a sigmoid layer and a 1x1 convolution. The tag layer should be unique
// in the whole network definition, as the loss layer will use it to get the outputs. The number of
// filters in the convolutional layer should be (1 + 4 + num_classes) * num_anchors at that output.
// The 1 corresponds to the objectness in the loss layer and the 4 to the bounding box coordinates.
template <long num_classes, long nf, template <typename> class YTAG, template <typename> class NTAG, typename SUBNET>
using yolo = YTAG<sig<con<3 * (num_classes + 5), 1, 1, 1, 1,
conblock<nf, 3, 1,
NTAG<conblock5<nf / 2, 2,
SUBNET>>>>>>;
template <long num_classes>
using yolov3 = yolo<num_classes, 256, ytag8, ntag8,
concat2<htag8, btag8,
htag8<upsample<2, conblock<128, 1, 1,
nskip16<
yolo<num_classes, 512, ytag16, ntag16,
concat2<htag16, btag16,
htag16<upsample<2, conblock<256, 1, 1,
nskip32<
yolo<num_classes, 1024, ytag32, ntag32,
backbone53<input_rgb_image>>>>>>>>>>>>>>;
};
using yolov3_train_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, bn_con>::yolov3<80>>;
using yolov3_infer_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, affine>::yolov3<80>>;
void setup_detector(yolov3_train_type& net, const yolo_options& options)
{
// remove bias from bn inputs
disable_duplicative_biases(net);
// setup leaky relus
visit_computational_layers(net, [](leaky_relu_& l) { l = leaky_relu_(0.1); });
// enlarge the batch normalization stats window
set_all_bn_running_stats_window_sizes(net, 1000);
// set the number of filters for detection layers (they are located after the tag and sig layers)
const long nfo1 = options.anchors.at(tag_id<ytag8>::id).size() * (options.labels.size() + 5);
const long nfo2 = options.anchors.at(tag_id<ytag16>::id).size() * (options.labels.size() + 5);
const long nfo3 = options.anchors.at(tag_id<ytag32>::id).size() * (options.labels.size() + 5);
layer<ytag8, 2>(net).layer_details().set_num_filters(nfo1);
layer<ytag16, 2>(net).layer_details().set_num_filters(nfo2);
layer<ytag32, 2>(net).layer_details().set_num_filters(nfo3);
}
}
// In this example, YOLO expects square images, and we choose to transform them by letterboxing them.
rectangle_transform preprocess_image(const matrix<rgb_pixel>& image, matrix<rgb_pixel>& output)
{
return rectangle_transform(inv(letterbox_image(image, output)));
}
// YOLO outputs the bounding boxes in the coordinate system of the input (letterboxed) image, so we need to convert them
// back to the original image.
void postprocess_detections(const rectangle_transform& tform, std::vector<yolo_rect>& detections)
{
for (auto& d : detections)
d.rect = tform(d.rect);
}
int main(const int argc, const char** argv)
try
{
command_line_parser parser;
parser.add_option("size", "image size for training (default: 416)", 1);
parser.add_option("learning-rate", "initial learning rate (default: 0.001)", 1);
parser.add_option("batch-size", "mini batch size (default: 8)", 1);
parser.add_option("burnin", "learning rate burnin steps (default: 1000)", 1);
parser.add_option("patience", "number of steps without progress (default: 10000)", 1);
parser.add_option("workers", "number of worker threads to load data (default: 4)", 1);
parser.add_option("gpus", "number of GPUs to run the training on (default: 1)", 1);
parser.add_option("test", "test the detector with a threshold (default: 0.01)", 1);
parser.add_option("visualize", "visualize data augmentation instead of training");
parser.add_option("map", "compute the mean average precision");
parser.add_option("anchors", "Do nothing but compute <arg1> anchor boxes using K-Means and print their shapes.", 1);
parser.set_group_name("Help Options");
parser.add_option("h", "alias of --help");
parser.add_option("help", "display this message and exit");
parser.parse(argc, argv);
if (parser.number_of_arguments() == 0 || parser.option("h") || parser.option("help"))
{
parser.print_options();
cout << "Give the path to a folder containing the training.xml file." << endl;
return 0;
}
const double learning_rate = get_option(parser, "learning-rate", 0.001);
const size_t patience = get_option(parser, "patience", 10000);
const size_t batch_size = get_option(parser, "batch-size", 8);
const size_t burnin = get_option(parser, "burnin", 1000);
const size_t image_size = get_option(parser, "size", 416);
const size_t num_workers = get_option(parser, "workers", 4);
const size_t num_gpus = get_option(parser, "gpus", 1);
const string data_directory = parser[0];
const string sync_file_name = "yolov3_sync";
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/training.xml");
cout << "# images: " << dataset.images.size() << endl;
std::map<string, size_t> labels;
size_t num_objects = 0;
for (const auto& im : dataset.images)
{
for (const auto& b : im.boxes)
{
labels[b.label]++;
++num_objects;
}
}
cout << "# labels: " << labels.size() << endl;
yolo_options options;
color_mapper string_to_color;
for (const auto& label : labels)
{
cout << " - " << label.first << ": " << label.second;
cout << " (" << (100.0*label.second)/num_objects << "%)\n";
options.labels.push_back(label.first);
string_to_color(label.first);
}
// If the default anchor boxes don't fit your data well you should recompute them.
// Here's a simple way to do it using K-Means clustering. Note that the approach
// shown below is suboptimal, since it doesn't group the bounding boxes by size.
// Grouping the bounding boxes by size and computing the K-Means on each group
// would make more sense, since each stride of the network is meant to output
// boxes at a particular size, but that is very specific to the network architecture
// and the dataset itself.
if (parser.option("anchors"))
{
const auto num_clusers = std::stoul(parser.option("anchors").argument());
std::vector<dpoint> samples;
// First we need to rescale the bounding boxes to match the image size at training time.
for (const auto& image_info : dataset.images)
{
const auto scale = image_size / std::max<double>(image_info.width, image_info.height);
for (const auto& box : image_info.boxes)
{
dpoint sample(box.rect.width(), box.rect.height());
samples.push_back(sample*scale);
}
}
// Now we can compute K-Means clustering
randomize_samples(samples);
cout << "Computing anchors for " << samples.size() << " samples" << endl;
std::vector<dpoint> anchors;
pick_initial_centers(num_clusers, anchors, samples);
find_clusters_using_kmeans(samples, anchors);
std::sort(anchors.begin(), anchors.end(), [](const dpoint& a, const dpoint& b){ return prod(a) < prod(b); });
for (const dpoint& c : anchors)
cout << round(c(0)) << 'x' << round(c(1)) << endl;
// And check the average IoU of the newly computed anchor boxes and the training samples.
double average_iou = 0;
for (const dpoint& s : samples)
{
drectangle sample = centered_drect(dpoint(0, 0), s.x(), s.y());
double best_iou = 0;
for (const dpoint& a : anchors)
{
drectangle anchor = centered_drect(dpoint(0, 0), a.x(), a.y());
best_iou = std::max(best_iou, box_intersection_over_union(sample, anchor));
}
average_iou += best_iou;
}
cout << "Average IoU: " << average_iou / samples.size() << endl;
return EXIT_SUCCESS;
}
// When computing the objectness loss in YOLO, predictions that do not have an IoU
// with any ground truth box of at least options.iou_ignore_threshold, will be
// treated as not capable of detecting an object, an therefore incur loss.
// Similarly, predictions above this threshold are considered correct predictions
// by the loss. Typical settings for this threshold are in the range 0.5 to 0.7.
options.iou_ignore_threshold = 0.7;
// By setting this to a value < 1, we are telling the model to update all the predictions
// as long as the anchor box has an IoU > 0.2 with a ground truth.
options.iou_anchor_threshold = 0.2;
// These are the anchors computed on COCO dataset, presented in the YOLOv3 paper.
options.add_anchors<darknet::ytag8>({{10, 13}, {16, 30}, {33, 23}});
options.add_anchors<darknet::ytag16>({{30, 61}, {62, 45}, {59, 119}});
options.add_anchors<darknet::ytag32>({{116, 90}, {156, 198}, {373, 326}});
darknet::yolov3_train_type net(options);
darknet::setup_detector(net, options);
// The training process can be unstable at the beginning. For this reason, we exponentially
// increase the learning rate during the first burnin steps.
const matrix<double> learning_rate_schedule = learning_rate * pow(linspace(1e-12, 1, burnin), 4);
// In case we have several GPUs, we can tell the dnn_trainer to make use of them.
std::vector<int> gpus(num_gpus);
iota(gpus.begin(), gpus.end(), 0);
// We initialize the trainer here, as it will be used in several contexts, depending on the
// arguments passed the the program.
dnn_trainer<darknet::yolov3_train_type> trainer(net, sgd(0.0005, 0.9), gpus);
trainer.be_verbose();
trainer.set_mini_batch_size(batch_size);
trainer.set_learning_rate_schedule(learning_rate_schedule);
trainer.set_synchronization_file(sync_file_name, chrono::minutes(15));
cout << trainer;
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --test option and a confidence threshold to see
// how the training is going.
if (parser.option("test"))
{
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
const double threshold = get_option(parser, "test", 0.01);
image_window win;
matrix<rgb_pixel> image, resized(image_size, image_size);
for (const auto& im : dataset.images)
{
win.clear_overlay();
load_image(image, data_directory + "/" + im.filename);
win.set_title(im.filename);
win.set_image(image);
const auto tform = preprocess_image(image, resized);
auto detections = net.process(resized, threshold);
postprocess_detections(tform, detections);
cout << "# detections: " << detections.size() << endl;
for (const auto& det : detections)
{
win.add_overlay(det.rect, string_to_color(det.label), det.label);
cout << det.label << ": " << det.rect << " " << det.detection_confidence << endl;
}
cin.get();
}
return EXIT_SUCCESS;
}
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --map option to compute the mean average precision
// on the test set.
if (parser.option("map"))
{
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/testing.xml");
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
matrix<rgb_pixel> image, resized(image_size, image_size);
std::map<std::string, std::vector<std::pair<double, bool>>> hits;
std::map<std::string, unsigned long> missing;
for (const auto& label : options.labels)
{
hits[label] = std::vector<std::pair<double, bool>>();
missing[label] = 0;
}
cout << "computing mean average precision for " << dataset.images.size() << " images..." << endl;
for (size_t i = 0; i < dataset.images.size(); ++i)
{
const auto& im = dataset.images[i];
load_image(image, data_directory + "/" + im.filename);
const auto tform = preprocess_image(image, resized);
auto dets = net.process(resized, 0.005);
postprocess_detections(tform, dets);
std::vector<bool> used(dets.size(), false);
// true positives: truths matched by detections
for (size_t t = 0; t < im.boxes.size(); ++t)
{
bool found_match = false;
for (size_t d = 0; d < dets.size(); ++d)
{
if (used[d])
continue;
if (im.boxes[t].label == dets[d].label &&
box_intersection_over_union(drectangle(im.boxes[t].rect), dets[d].rect) > 0.5)
{
used[d] = true;
found_match = true;
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, true);
break;
}
}
// false negatives: truths not matched
if (!found_match)
missing.at(im.boxes[t].label)++;
}
// false positives: detections not matched
for (size_t d = 0; d < dets.size(); ++d)
{
if (!used[d])
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, false);
}
cout << "progress: " << i << '/' << dataset.images.size() << "\t\t\t\r" << flush;
}
double map = 0;
for (auto& item : hits)
{
std::sort(item.second.rbegin(), item.second.rend());
const double ap = average_precision(item.second, missing[item.first]);
cout << rpad(item.first + ": ", 16, " ") << ap * 100 << '%' << endl;
map += ap;
}
cout << rpad(string("mAP: "), 16, " ") << map / hits.size() * 100 << '%' << endl;
return EXIT_SUCCESS;
}
// Create some data loaders which will load the data, and perform some data augmentation.
dlib::pipe<std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>>> train_data(1000);
const auto loader = [&dataset, &data_directory, &train_data, &image_size](time_t seed)
{
dlib::rand rnd(time(nullptr) + seed);
matrix<rgb_pixel> image, rotated;
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
random_cropper cropper;
cropper.set_seed(time(nullptr) + seed);
cropper.set_chip_dims(image_size, image_size);
cropper.set_max_object_size(0.9);
cropper.set_min_object_size(10, 10);
cropper.set_max_rotation_degrees(10);
cropper.set_translate_amount(0.5);
cropper.set_randomly_flip(true);
cropper.set_background_crops_fraction(0);
cropper.set_min_object_coverage(0.8);
while (train_data.is_enabled())
{
const auto idx = rnd.get_random_32bit_number() % dataset.images.size();
load_image(image, data_directory + "/" + dataset.images[idx].filename);
for (const auto& box : dataset.images[idx].boxes)
temp.second.emplace_back(box.rect, 1, box.label);
// We alternate between augmenting the full image and random cropping
if (rnd.get_random_double() > 0.5)
{
rectangle_transform tform = rotate_image(
image,
rotated,
rnd.get_double_in_range(-5 * pi / 180, 5 * pi / 180),
interpolate_bilinear());
for (auto& box : temp.second)
box.rect = tform(box.rect);
temp.first.set_size(image_size, image_size);
tform = letterbox_image(rotated, temp.first);
for (auto& box : temp.second)
box.rect = tform(box.rect);
if (rnd.get_random_double() > 0.5)
{
tform = flip_image_left_right(temp.first);
for (auto& box : temp.second)
box.rect = tform(box.rect);
}
}
else
{
std::vector<yolo_rect> boxes = temp.second;
cropper(image, boxes, temp.first, temp.second);
}
disturb_colors(temp.first, rnd);
train_data.enqueue(temp);
}
};
std::vector<thread> data_loaders;
for (size_t i = 0; i < num_workers; ++i)
data_loaders.emplace_back([loader, i]() { loader(i + 1); });
// It is always a good idea to visualize the training samples. By passing the --visualize
// flag, we can see the training samples that will be fed to the dnn_trainer.
if (parser.option("visualize"))
{
image_window win;
while (true)
{
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
train_data.dequeue(temp);
win.clear_overlay();
win.set_image(temp.first);
for (const auto& r : temp.second)
{
auto color = string_to_color(r.label);
// make semi-transparent and cross-out the ignored boxes
if (r.ignore)
{
color.alpha = 128;
win.add_overlay(r.rect.tl_corner(), r.rect.br_corner(), color);
win.add_overlay(r.rect.tr_corner(), r.rect.bl_corner(), color);
}
win.add_overlay(r.rect, color, r.label);
}
cout << "Press enter to visualize the next training sample.";
cin.get();
}
}
std::vector<matrix<rgb_pixel>> images;
std::vector<std::vector<yolo_rect>> bboxes;
// The main training loop, that we will reuse for the warmup and the rest of the training.
const auto train = [&images, &bboxes, &train_data, &trainer]()
{
images.clear();
bboxes.clear();
pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
while (images.size() < trainer.get_mini_batch_size())
{
train_data.dequeue(temp);
images.push_back(move(temp.first));
bboxes.push_back(move(temp.second));
}
trainer.train_one_step(images, bboxes);
};
cout << "training started with " << burnin << " burn-in steps" << endl;
while (trainer.get_train_one_step_calls() < burnin)
train();
cout << "burn-in finished" << endl;
trainer.get_net();
trainer.set_learning_rate(learning_rate);
trainer.set_min_learning_rate(learning_rate * 1e-3);
trainer.set_learning_rate_shrink_factor(0.1);
trainer.set_iterations_without_progress_threshold(patience);
cout << trainer << endl;
while (trainer.get_learning_rate() >= trainer.get_min_learning_rate())
train();
cout << "training done" << endl;
trainer.get_net();
train_data.disable();
for (auto& worker : data_loaders)
worker.join();
// Before saving the network, we can assign it to the "infer" version, so that it won't
// perform batch normalization with batch sizes larger than one, as usual. Moreover,
// we can also fuse the batch normalization (affine) layers into the convolutional
// layers, so that the network can run a bit faster. Notice that, after fusing the
// layers, the network can no longer be used for training, so you should save the
// yolov3_train_type network if you plan to further train or finetune the network.
darknet::yolov3_infer_type inet(net);
fuse_layers(inet);
serialize("yolov3.dnn") << inet;
return EXIT_SUCCESS;
}
catch (const std::exception& e)
{
cout << e.what() << endl;
return EXIT_FAILURE;
}
|