File: Complex64.cs

package info (click to toggle)
dlr-languages 20090805%2Bgit.e6b28d27%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 51,484 kB
  • ctags: 59,257
  • sloc: cs: 298,829; ruby: 159,643; xml: 19,872; python: 2,820; yacc: 1,960; makefile: 96; sh: 65
file content (275 lines) | stat: -rw-r--r-- 9,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Microsoft Public License. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Microsoft Public License, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Microsoft Public License.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

using System;

namespace Microsoft.Scripting.Math {
    /// <summary>
    /// Implementation of the complex number data type.
    /// </summary>
    [Serializable]
    public struct Complex64 {
        private readonly double real, imag;

        public static Complex64 MakeImaginary(double imag) {
            return new Complex64(0.0, imag);
        }

        public static Complex64 MakeReal(double real) {
            return new Complex64(real, 0.0);
        }

        public static Complex64 Make(double real, double imag) {
            return new Complex64(real, imag);
        }

        public Complex64(double real)
            : this(real, 0.0) {
        }

        public Complex64(double real, double imag) {
            this.real = real;
            this.imag = imag;
        }

        public bool IsZero {
            get {
                return real == 0.0 && imag == 0.0;
            }
        }

        public double Real {
            get {
                return real;
            }
        }

        public double Imag {
            get {
                return imag;
            }
        }

        public Complex64 Conjugate() {
            return new Complex64(real, -imag);
        }


        public override string ToString() {
            if (real == 0.0) return imag.ToString(System.Globalization.CultureInfo.InvariantCulture.NumberFormat) + "j";
            else if (imag < 0.0) return string.Format(System.Globalization.CultureInfo.InvariantCulture.NumberFormat, "({0}{1}j)", real, imag);
            else return string.Format(System.Globalization.CultureInfo.InvariantCulture.NumberFormat, "({0}+{1}j)", real, imag);
        }

        public static implicit operator Complex64(int i) {
            return MakeReal(i);
        }

        [CLSCompliant(false)]
        public static implicit operator Complex64(uint i) {
            return MakeReal(i);
        }

        public static implicit operator Complex64(short i) {
            return MakeReal(i);
        }
        
        [CLSCompliant(false)]
        public static implicit operator Complex64(ushort i) {
            return MakeReal(i);
        }

        public static implicit operator Complex64(long l) {
            return MakeReal(l);
        }
        [CLSCompliant(false)]
        public static implicit operator Complex64(ulong i) {
            return MakeReal(i);
        }

        [CLSCompliant(false)]
        public static implicit operator Complex64(sbyte i) {
            return MakeReal(i);
        }

        public static implicit operator Complex64(byte i) {
            return MakeReal(i);
        }

        public static implicit operator Complex64(float f) {
            return MakeReal(f);
        }

        public static implicit operator Complex64(double d) {
            return MakeReal(d);
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Design", "CA1065:DoNotRaiseExceptionsInUnexpectedLocations")] // TODO: fix
        public static implicit operator Complex64(BigInteger i) {
            if (object.ReferenceEquals(i, null)) {
                throw new ArgumentException(MathResources.InvalidArgument, "i");
            }

            // throws an overflow exception if we can't handle the value.
            return MakeReal(i.ToFloat64());
        }

        public static bool operator ==(Complex64 x, Complex64 y) {
            return x.real == y.real && x.imag == y.imag;
        }

        public static bool operator !=(Complex64 x, Complex64 y) {
            return x.real != y.real || x.imag != y.imag;
        }

        public static Complex64 Add(Complex64 x, Complex64 y) {
            return x + y;
        }

        public static Complex64 operator +(Complex64 x, Complex64 y) {
            return new Complex64(x.real + y.real, x.imag + y.imag);
        }

        public static Complex64 Subtract(Complex64 x, Complex64 y) {
            return x - y;
        }

        public static Complex64 operator -(Complex64 x, Complex64 y) {
            return new Complex64(x.real - y.real, x.imag - y.imag);
        }

        public static Complex64 Multiply(Complex64 x, Complex64 y) {
            return x * y;
        }

        public static Complex64 operator *(Complex64 x, Complex64 y) {
            return new Complex64(x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real);
        }

        public static Complex64 Divide(Complex64 x, Complex64 y) {
            return x / y;
        }

        public static Complex64 operator /(Complex64 a, Complex64 b) {
            if (b.IsZero) throw new DivideByZeroException(MathResources.ComplexDivizionByZero);

            double real, imag, den, r;

            if (System.Math.Abs(b.real) >= System.Math.Abs(b.imag)) {
                r = b.imag / b.real;
                den = b.real + r * b.imag;
                real = (a.real + a.imag * r) / den;
                imag = (a.imag - a.real * r) / den;
            } else {
                r = b.real / b.imag;
                den = b.imag + r * b.real;
                real = (a.real * r + a.imag) / den;
                imag = (a.imag * r - a.real) / den;
            }

            return new Complex64(real, imag);
        }

        public static Complex64 Negate(Complex64 x) {
            return -x;
        }

        public static Complex64 operator -(Complex64 x) {
            return new Complex64(-x.real, -x.imag);
        }

        public static Complex64 Plus(Complex64 x) {
            return +x;
        }

        public static Complex64 operator +(Complex64 x) {
            return x;
        }

        public static double Hypot(double x, double y) {
            //
            // sqrt(x*x + y*y) == sqrt(x*x * (1 + (y*y)/(x*x))) ==
            // sqrt(x*x) * sqrt(1 + (y/x)*(y/x)) ==
            // abs(x) * sqrt(1 + (y/x)*(y/x))
            //

            //  First, get abs
            if (x < 0.0) x = -x;
            if (y < 0.0) y = -y;

            // Obvious cases
            if (x == 0.0) return y;
            if (y == 0.0) return x;

            // Divide smaller number by bigger number to safeguard the (y/x)*(y/x)
            if (x < y) { double temp = y; y = x; x = temp; }

            y /= x;

            // calculate abs(x) * sqrt(1 + (y/x)*(y/x))
            return x * System.Math.Sqrt(1 + y * y);
        }

        public double Abs() {
            return Hypot(real, imag);
        }

        public Complex64 Power(Complex64 y) {
            double c = y.real;
            double d = y.imag;
            int power = (int)c;

            if (power == c && power >= 0 && d == .0) {
                Complex64 result = new Complex64(1.0);
                if (power == 0) return result;
                Complex64 factor = this;
                while (power != 0) {
                    if ((power & 1) != 0) {
                        result = result * factor;
                    }
                    factor = factor * factor;
                    power >>= 1;
                }
                return result;
            } else if (IsZero) {
                return y.IsZero ? Complex64.MakeReal(1.0) : Complex64.MakeReal(0.0);
            } else {
                double a = real;
                double b = imag;
                double powers = a * a + b * b;
                double arg = System.Math.Atan2(b, a);
                double mul = System.Math.Pow(powers, c / 2) * System.Math.Exp(-d * arg);
                double common = c * arg + .5 * d * System.Math.Log(powers);
                return new Complex64(mul * System.Math.Cos(common), mul * System.Math.Sin(common));
            }
        }

        public override int GetHashCode() {
            // The Object.GetHashCode function needs to be consistent with the Object.Equals function.
            // Languages that build on top of this may have a more flexible equality function and 
            // so may not be able to use this hash function directly.
            // For example, Python allows that c=Complex64(1.5, 0), f = 1.5f,  c==f.
            // so then the hash(f) == hash(c). Since the python (and other languages) can define an arbitrary
            // hash(float) function, the language may need to define a matching hash(complex) function for
            // the cases where the float and complex numbers overlap.
            return (int)real + (int)imag * 1000003;
        }

        public override bool Equals(object obj) {
            if (!(obj is Complex64)) return false;
            return this == ((Complex64)obj);
        }
    }
}