1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/* ****************************************************************************
*
* Copyright (c) Microsoft Corporation.
*
* This source code is subject to terms and conditions of the Microsoft Public License. A
* copy of the license can be found in the License.html file at the root of this distribution. If
* you cannot locate the Microsoft Public License, please send an email to
* dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound
* by the terms of the Microsoft Public License.
*
* You must not remove this notice, or any other, from this software.
*
*
* ***************************************************************************/
using System;
namespace Microsoft.Scripting.Math {
/// <summary>
/// Implementation of the complex number data type.
/// </summary>
[Serializable]
public struct Complex64 {
private readonly double real, imag;
public static Complex64 MakeImaginary(double imag) {
return new Complex64(0.0, imag);
}
public static Complex64 MakeReal(double real) {
return new Complex64(real, 0.0);
}
public static Complex64 Make(double real, double imag) {
return new Complex64(real, imag);
}
public Complex64(double real)
: this(real, 0.0) {
}
public Complex64(double real, double imag) {
this.real = real;
this.imag = imag;
}
public bool IsZero {
get {
return real == 0.0 && imag == 0.0;
}
}
public double Real {
get {
return real;
}
}
public double Imag {
get {
return imag;
}
}
public Complex64 Conjugate() {
return new Complex64(real, -imag);
}
public override string ToString() {
if (real == 0.0) return imag.ToString(System.Globalization.CultureInfo.InvariantCulture.NumberFormat) + "j";
else if (imag < 0.0) return string.Format(System.Globalization.CultureInfo.InvariantCulture.NumberFormat, "({0}{1}j)", real, imag);
else return string.Format(System.Globalization.CultureInfo.InvariantCulture.NumberFormat, "({0}+{1}j)", real, imag);
}
public static implicit operator Complex64(int i) {
return MakeReal(i);
}
[CLSCompliant(false)]
public static implicit operator Complex64(uint i) {
return MakeReal(i);
}
public static implicit operator Complex64(short i) {
return MakeReal(i);
}
[CLSCompliant(false)]
public static implicit operator Complex64(ushort i) {
return MakeReal(i);
}
public static implicit operator Complex64(long l) {
return MakeReal(l);
}
[CLSCompliant(false)]
public static implicit operator Complex64(ulong i) {
return MakeReal(i);
}
[CLSCompliant(false)]
public static implicit operator Complex64(sbyte i) {
return MakeReal(i);
}
public static implicit operator Complex64(byte i) {
return MakeReal(i);
}
public static implicit operator Complex64(float f) {
return MakeReal(f);
}
public static implicit operator Complex64(double d) {
return MakeReal(d);
}
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Design", "CA1065:DoNotRaiseExceptionsInUnexpectedLocations")] // TODO: fix
public static implicit operator Complex64(BigInteger i) {
if (object.ReferenceEquals(i, null)) {
throw new ArgumentException(MathResources.InvalidArgument, "i");
}
// throws an overflow exception if we can't handle the value.
return MakeReal(i.ToFloat64());
}
public static bool operator ==(Complex64 x, Complex64 y) {
return x.real == y.real && x.imag == y.imag;
}
public static bool operator !=(Complex64 x, Complex64 y) {
return x.real != y.real || x.imag != y.imag;
}
public static Complex64 Add(Complex64 x, Complex64 y) {
return x + y;
}
public static Complex64 operator +(Complex64 x, Complex64 y) {
return new Complex64(x.real + y.real, x.imag + y.imag);
}
public static Complex64 Subtract(Complex64 x, Complex64 y) {
return x - y;
}
public static Complex64 operator -(Complex64 x, Complex64 y) {
return new Complex64(x.real - y.real, x.imag - y.imag);
}
public static Complex64 Multiply(Complex64 x, Complex64 y) {
return x * y;
}
public static Complex64 operator *(Complex64 x, Complex64 y) {
return new Complex64(x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real);
}
public static Complex64 Divide(Complex64 x, Complex64 y) {
return x / y;
}
public static Complex64 operator /(Complex64 a, Complex64 b) {
if (b.IsZero) throw new DivideByZeroException(MathResources.ComplexDivizionByZero);
double real, imag, den, r;
if (System.Math.Abs(b.real) >= System.Math.Abs(b.imag)) {
r = b.imag / b.real;
den = b.real + r * b.imag;
real = (a.real + a.imag * r) / den;
imag = (a.imag - a.real * r) / den;
} else {
r = b.real / b.imag;
den = b.imag + r * b.real;
real = (a.real * r + a.imag) / den;
imag = (a.imag * r - a.real) / den;
}
return new Complex64(real, imag);
}
public static Complex64 Negate(Complex64 x) {
return -x;
}
public static Complex64 operator -(Complex64 x) {
return new Complex64(-x.real, -x.imag);
}
public static Complex64 Plus(Complex64 x) {
return +x;
}
public static Complex64 operator +(Complex64 x) {
return x;
}
public static double Hypot(double x, double y) {
//
// sqrt(x*x + y*y) == sqrt(x*x * (1 + (y*y)/(x*x))) ==
// sqrt(x*x) * sqrt(1 + (y/x)*(y/x)) ==
// abs(x) * sqrt(1 + (y/x)*(y/x))
//
// First, get abs
if (x < 0.0) x = -x;
if (y < 0.0) y = -y;
// Obvious cases
if (x == 0.0) return y;
if (y == 0.0) return x;
// Divide smaller number by bigger number to safeguard the (y/x)*(y/x)
if (x < y) { double temp = y; y = x; x = temp; }
y /= x;
// calculate abs(x) * sqrt(1 + (y/x)*(y/x))
return x * System.Math.Sqrt(1 + y * y);
}
public double Abs() {
return Hypot(real, imag);
}
public Complex64 Power(Complex64 y) {
double c = y.real;
double d = y.imag;
int power = (int)c;
if (power == c && power >= 0 && d == .0) {
Complex64 result = new Complex64(1.0);
if (power == 0) return result;
Complex64 factor = this;
while (power != 0) {
if ((power & 1) != 0) {
result = result * factor;
}
factor = factor * factor;
power >>= 1;
}
return result;
} else if (IsZero) {
return y.IsZero ? Complex64.MakeReal(1.0) : Complex64.MakeReal(0.0);
} else {
double a = real;
double b = imag;
double powers = a * a + b * b;
double arg = System.Math.Atan2(b, a);
double mul = System.Math.Pow(powers, c / 2) * System.Math.Exp(-d * arg);
double common = c * arg + .5 * d * System.Math.Log(powers);
return new Complex64(mul * System.Math.Cos(common), mul * System.Math.Sin(common));
}
}
public override int GetHashCode() {
// The Object.GetHashCode function needs to be consistent with the Object.Equals function.
// Languages that build on top of this may have a more flexible equality function and
// so may not be able to use this hash function directly.
// For example, Python allows that c=Complex64(1.5, 0), f = 1.5f, c==f.
// so then the hash(f) == hash(c). Since the python (and other languages) can define an arbitrary
// hash(float) function, the language may need to define a matching hash(complex) function for
// the cases where the float and complex numbers overlap.
return (int)real + (int)imag * 1000003;
}
public override bool Equals(object obj) {
if (!(obj is Complex64)) return false;
return this == ((Complex64)obj);
}
}
}
|