1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/* ****************************************************************************
*
* Copyright (c) Microsoft Corporation.
*
* This source code is subject to terms and conditions of the Microsoft Public License. A
* copy of the license can be found in the License.html file at the root of this distribution. If
* you cannot locate the Microsoft Public License, please send an email to
* dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound
* by the terms of the Microsoft Public License.
*
* You must not remove this notice, or any other, from this software.
*
*
* ***************************************************************************/
using System;
namespace Microsoft.Scripting.Utils {
using Math = System.Math;
public static class MathUtils {
/// <summary>
/// Calculates the quotient of two 32-bit signed integers rounded towards negative infinity.
/// </summary>
/// <param name="x">Dividend.</param>
/// <param name="y">Divisor.</param>
/// <returns>The quotient of the specified numbers rounded towards negative infinity, or <code>(int)Floor((double)x/(double)y)</code>.</returns>
/// <exception cref="DivideByZeroException"><paramref name="y"/> is 0.</exception>
/// <remarks>The caller must check for overflow (x = Int32.MinValue, y = -1)</remarks>
public static int FloorDivideUnchecked(int x, int y) {
int q = x / y;
if (x >= 0) {
if (y > 0) {
return q;
} else if (x % y == 0) {
return q;
} else {
return q - 1;
}
} else {
if (y > 0) {
if (x % y == 0) {
return q;
} else {
return q - 1;
}
} else {
return q;
}
}
}
/// <summary>
/// Calculates the quotient of two 32-bit signed integers rounded towards negative infinity.
/// </summary>
/// <param name="x">Dividend.</param>
/// <param name="y">Divisor.</param>
/// <returns>The quotient of the specified numbers rounded towards negative infinity, or <code>(int)Floor((double)x/(double)y)</code>.</returns>
/// <exception cref="DivideByZeroException"><paramref name="y"/> is 0.</exception>
/// <remarks>The caller must check for overflow (x = Int64.MinValue, y = -1)</remarks>
public static long FloorDivideUnchecked(long x, long y) {
long q = x / y;
if (x >= 0) {
if (y > 0) {
return q;
} else if (x % y == 0) {
return q;
} else {
return q - 1;
}
} else {
if (y > 0) {
if (x % y == 0) {
return q;
} else {
return q - 1;
}
} else {
return q;
}
}
}
/// <summary>
/// Calculates the remainder of floor division of two 32-bit signed integers.
/// </summary>
/// <param name="x">Dividend.</param>
/// <param name="y">Divisor.</param>
/// <returns>The remainder of of floor division of the specified numbers, or <code>x - (int)Floor((double)x/(double)y) * y</code>.</returns>
/// <exception cref="DivideByZeroException"><paramref name="y"/> is 0.</exception>
public static int FloorRemainder(int x, int y) {
if (y == -1) return 0;
int r = x % y;
if (x >= 0) {
if (y > 0) {
return r;
} else if (r == 0) {
return 0;
} else {
return r + y;
}
} else {
if (y > 0) {
if (r == 0) {
return 0;
} else {
return r + y;
}
} else {
return r;
}
}
}
/// <summary>
/// Calculates the remainder of floor division of two 32-bit signed integers.
/// </summary>
/// <param name="x">Dividend.</param>
/// <param name="y">Divisor.</param>
/// <returns>The remainder of of floor division of the specified numbers, or <code>x - (int)Floor((double)x/(double)y) * y</code>.</returns>
/// <exception cref="DivideByZeroException"><paramref name="y"/> is 0.</exception>
public static long FloorRemainder(long x, long y) {
if (y == -1) return 0;
long r = x % y;
if (x >= 0) {
if (y > 0) {
return r;
} else if (r == 0) {
return 0;
} else {
return r + y;
}
} else {
if (y > 0) {
if (r == 0) {
return 0;
} else {
return r + y;
}
} else {
return r;
}
}
}
/// <summary>
/// Behaves like Math.Round(value, MidpointRounding.AwayFromZero)
/// Needed because CoreCLR doesn't support this particular overload of Math.Round
/// </summary>
public static double RoundAwayFromZero(double value) {
#if !SILVERLIGHT
return Math.Round(value, MidpointRounding.AwayFromZero);
#else
if (value < 0) {
return -RoundAwayFromZero(-value);
}
// we can assume positive value
double result = Math.Floor(value);
if (value - result >= 0.5) {
result += 1.0;
}
return result;
#endif
}
private static readonly double[] _RoundPowersOfTens = new double[] { 1E0, 1E1, 1E2, 1E3, 1E4, 1E5, 1E6, 1E7, 1E8, 1E9, 1E10, 1E11, 1E12, 1E13, 1E14, 1E15 };
private static double GetPowerOf10(int precision) {
return (precision < 16) ? _RoundPowersOfTens[precision] : Math.Pow(10, precision);
}
/// <summary>
/// Behaves like Math.Round(value, precision, MidpointRounding.AwayFromZero)
/// However, it works correctly on negative precisions and cases where precision is
/// outside of the [-15, 15] range.
///
/// (This function is also needed because CoreCLR lacks this overload.)
/// </summary>
public static double RoundAwayFromZero(double value, int precision) {
if (precision >= 0) {
double num = GetPowerOf10(precision);
return RoundAwayFromZero(value * num) / num;
} else {
// Note: this code path could be merged with the precision >= 0 path,
// (by extending the cache to negative powers of 10)
// but the results seem to be more precise if we do it this way
double num = GetPowerOf10(-precision);
return RoundAwayFromZero(value / num) * num;
}
}
public static bool IsNegativeZero(double self) {
#if SILVERLIGHT // BitConverter.DoubleToInt64Bits
if ( self != 0.0 ) {
return false;
}
byte[] bits = BitConverter.GetBytes(self);
return (bits[7] == 0x80 && bits[6] == 0x00 && bits[5] == 0x00 && bits[4] == 0x00
&& bits[3] == 0x00 && bits[2] == 0x00 && bits[1] == 0x00 && bits[0] == 0x00);
#else
return (self == 0.0 && 1.0 / self < 0);
#endif
}
}
}
|