1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for working with nested data structures."""
from collections import abc as collections_abc
import logging
import sys
from typing import Mapping, Sequence, TypeVar, Union
from .sequence import _is_attrs
from .sequence import _is_namedtuple
from .sequence import _sequence_like
from .sequence import _sorted
# pylint: disable=g-import-not-at-top
try:
import wrapt
ObjectProxy = wrapt.ObjectProxy
except ImportError:
class ObjectProxy(object):
"""Stub-class for `wrapt.ObjectProxy``."""
# pylint: enable=g-import-not-at-top
__all__ = [
"is_nested",
"assert_same_structure",
"unflatten_as",
"flatten",
"flatten_up_to",
"flatten_with_path",
"flatten_with_path_up_to",
"map_structure",
"map_structure_up_to",
"map_structure_with_path",
"map_structure_with_path_up_to",
"traverse",
"MAP_TO_NONE",
]
__version__ = "0.1.9"
# Note: this is *not* the same as `six.string_types`, which in Python3 is just
# `(str,)` (i.e. it does not include byte strings).
_TEXT_OR_BYTES = (str, bytes)
_SHALLOW_TREE_HAS_INVALID_KEYS = (
"The shallow_tree's keys are not a subset of the input_tree's keys. The "
"shallow_tree has the following keys that are not in the input_tree: {}.")
_STRUCTURES_HAVE_MISMATCHING_TYPES = (
"The two structures don't have the same sequence type. Input structure has "
"type {input_type}, while shallow structure has type {shallow_type}.")
_STRUCTURES_HAVE_MISMATCHING_LENGTHS = (
"The two structures don't have the same sequence length. Input "
"structure has length {input_length}, while shallow structure has length "
"{shallow_length}."
)
_INPUT_TREE_SMALLER_THAN_SHALLOW_TREE = (
"The input_tree has fewer elements than the shallow_tree. Input structure "
"has length {input_size}, while shallow structure has length "
"{shallow_size}.")
_IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ = (
"If shallow structure is a sequence, input must also be a sequence. "
"Input has type: {}.")
_IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ_WITH_PATH = (
"If shallow structure is a sequence, input must also be a sequence. "
"Input at path: {path} has type: {input_type}.")
K = TypeVar("K")
V = TypeVar("V")
# A generic monomorphic structure type, e.g. ``StructureKV[str, int]``
# is an arbitrarily nested structure where keys must be of type ``str``
# and values are integers.
StructureKV = Union[
Sequence["StructureKV[K, V]"],
Mapping[K, "StructureKV[K, V]"],
V,
]
Structure = StructureKV[str, V]
def _get_attrs_items(obj):
"""Returns a list of (name, value) pairs from an attrs instance.
The list will be sorted by name.
Args:
obj: an object.
Returns:
A list of (attr_name, attr_value) pairs.
"""
return [(attr.name, getattr(obj, attr.name))
for attr in obj.__class__.__attrs_attrs__]
def _yield_value(iterable):
for _, v in _yield_sorted_items(iterable):
yield v
def _yield_sorted_items(iterable):
"""Yield (key, value) pairs for `iterable` in a deterministic order.
For Sequences, the key will be an int, the array index of a value.
For Mappings, the key will be the dictionary key.
For objects (e.g. namedtuples), the key will be the attribute name.
In all cases, the keys will be iterated in sorted order.
Args:
iterable: an iterable.
Yields:
The iterable's (key, value) pairs, in order of sorted keys.
"""
if isinstance(iterable, collections_abc.Mapping):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for key in _sorted(iterable):
yield key, iterable[key]
elif _is_attrs(iterable):
for item in _get_attrs_items(iterable):
yield item
elif _is_namedtuple(iterable):
for field in iterable._fields:
yield (field, getattr(iterable, field))
else:
for item in enumerate(iterable):
yield item
def _num_elements(structure):
if _is_attrs(structure):
return len(getattr(structure.__class__, "__attrs_attrs__"))
else:
return len(structure)
def is_nested(structure):
"""Checks if a given structure is nested.
>>> tree.is_nested(42)
False
>>> tree.is_nested({"foo": 42})
True
Args:
structure: A structure to check.
Returns:
`True` if a given structure is nested, i.e. is a sequence, a mapping,
or a namedtuple, and `False` otherwise.
"""
from . import _tree
return _tree.is_sequence(structure)
def flatten(structure):
r"""Flattens a possibly nested structure into a list.
>>> tree.flatten([[1, 2, 3], [4, [5], [[6]]]])
[1, 2, 3, 4, 5, 6]
If `structure` is not nested, the result is a single-element list.
>>> tree.flatten(None)
[None]
>>> tree.flatten(1)
[1]
In the case of dict instances, the sequence consists of the values,
sorted by key to ensure deterministic behavior. This is true also for
:class:`~collections.OrderedDict` instances: their sequence order is
ignored, the sorting order of keys is used instead. The same convention
is followed in :func:`~tree.unflatten`. This correctly unflattens dicts
and ``OrderedDict``\ s after they have been flattened, and also allows
flattening an ``OrderedDict`` and then unflattening it back using a
corresponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be flattened.
>>> tree.flatten({100: 'world!', 6: 'Hello'})
['Hello', 'world!']
Args:
structure: An arbitrarily nested structure.
Returns:
A list, the flattened version of the input `structure`.
Raises:
TypeError: If `structure` is or contains a mapping with non-sortable keys.
"""
from . import _tree
return _tree.flatten(structure)
class _DotString(object):
def __str__(self):
return "."
def __repr__(self):
return "."
_DOT = _DotString()
def assert_same_structure(a, b, check_types=True):
"""Asserts that two structures are nested in the same way.
>>> tree.assert_same_structure([(0, 1)], [(2, 3)])
Note that namedtuples with identical name and fields are always considered
to have the same shallow structure (even with `check_types=True`).
>>> Foo = collections.namedtuple('Foo', ['a', 'b'])
>>> AlsoFoo = collections.namedtuple('Foo', ['a', 'b'])
>>> tree.assert_same_structure(Foo(0, 1), AlsoFoo(2, 3))
Named tuples with different names are considered to have different shallow
structures:
>>> Bar = collections.namedtuple('Bar', ['a', 'b'])
>>> tree.assert_same_structure(Foo(0, 1), Bar(2, 3))
Traceback (most recent call last):
...
TypeError: The two structures don't have the same nested structure.
...
Args:
a: an arbitrarily nested structure.
b: an arbitrarily nested structure.
check_types: if `True` (default) types of sequences are checked as
well, including the keys of dictionaries. If set to `False`, for example
a list and a tuple of objects will look the same if they have the same
size. Note that namedtuples with identical name and fields are always
considered to have the same shallow structure.
Raises:
ValueError: If the two structures do not have the same number of elements or
if the two structures are not nested in the same way.
TypeError: If the two structures differ in the type of sequence in any of
their substructures. Only possible if `check_types` is `True`.
"""
from . import _tree
try:
_tree.assert_same_structure(a, b, check_types)
except (ValueError, TypeError) as e:
str1 = str(map_structure(lambda _: _DOT, a))
str2 = str(map_structure(lambda _: _DOT, b))
raise type(e)("%s\n"
"Entire first structure:\n%s\n"
"Entire second structure:\n%s"
% (e, str1, str2))
def _packed_nest_with_indices(structure, flat, index):
"""Helper function for ``unflatten_as``.
Args:
structure: Substructure (list / tuple / dict) to mimic.
flat: Flattened values to output substructure for.
index: Index at which to start reading from flat.
Returns:
The tuple (new_index, child), where:
* new_index - the updated index into `flat` having processed `structure`.
* packed - the subset of `flat` corresponding to `structure`,
having started at `index`, and packed into the same nested
format.
Raises:
ValueError: if `structure` contains more elements than `flat`
(assuming indexing starts from `index`).
"""
packed = []
for s in _yield_value(structure):
if is_nested(s):
new_index, child = _packed_nest_with_indices(s, flat, index)
packed.append(_sequence_like(s, child))
index = new_index
else:
packed.append(flat[index])
index += 1
return index, packed
def unflatten_as(structure, flat_sequence):
r"""Unflattens a sequence into a given structure.
>>> tree.unflatten_as([[1, 2], [[3], [4]]], [5, 6, 7, 8])
[[5, 6], [[7], [8]]]
If `structure` is a scalar, `flat_sequence` must be a single-element list;
in this case the return value is ``flat_sequence[0]``.
>>> tree.unflatten_as(None, [1])
1
If `structure` is or contains a dict instance, the keys will be sorted to
pack the flat sequence in deterministic order. This is true also for
:class:`~collections.OrderedDict` instances: their sequence order is
ignored, the sorting order of keys is used instead. The same convention
is followed in :func:`~tree.flatten`. This correctly unflattens dicts
and ``OrderedDict``\ s after they have been flattened, and also allows
flattening an ``OrderedDict`` and then unflattening it back using a
corresponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be unflattened.
>>> tree.unflatten_as({1: None, 2: None}, ['Hello', 'world!'])
{1: 'Hello', 2: 'world!'}
Args:
structure: Arbitrarily nested structure.
flat_sequence: Sequence to unflatten.
Returns:
`flat_sequence` unflattened into `structure`.
Raises:
ValueError: If `flat_sequence` and `structure` have different
element counts.
TypeError: If `structure` is or contains a mapping with non-sortable keys.
"""
if not is_nested(flat_sequence):
raise TypeError("flat_sequence must be a sequence not a {}:\n{}".format(
type(flat_sequence), flat_sequence))
if not is_nested(structure):
if len(flat_sequence) != 1:
raise ValueError("Structure is a scalar but len(flat_sequence) == %d > 1"
% len(flat_sequence))
return flat_sequence[0]
flat_structure = flatten(structure)
if len(flat_structure) != len(flat_sequence):
raise ValueError(
"Could not pack sequence. Structure had %d elements, but flat_sequence "
"had %d elements. Structure: %s, flat_sequence: %s."
% (len(flat_structure), len(flat_sequence), structure, flat_sequence))
_, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
return _sequence_like(structure, packed)
def map_structure(func, *structures, **kwargs): # pylint: disable=redefined-builtin
"""Maps `func` through given structures.
>>> structure = [[1], [2], [3]]
>>> tree.map_structure(lambda v: v**2, structure)
[[1], [4], [9]]
>>> tree.map_structure(lambda x, y: x * y, structure, structure)
[[1], [4], [9]]
>>> Foo = collections.namedtuple('Foo', ['a', 'b'])
>>> structure = Foo(a=1, b=2)
>>> tree.map_structure(lambda v: v * 2, structure)
Foo(a=2, b=4)
Args:
func: A callable that accepts as many arguments as there are structures.
*structures: Arbitrarily nested structures of the same layout.
**kwargs: The only valid keyword argument is `check_types`. If `True`
(default) the types of components within the structures have
to be match, e.g. ``tree.map_structure(func, [1], (1,))`` will raise
a `TypeError`, otherwise this is not enforced. Note that namedtuples
with identical name and fields are considered to be the same type.
Returns:
A new structure with the same layout as the given ones. If the
`structures` have components of varying types, the resulting structure
will use the same types as ``structures[0]``.
Raises:
TypeError: If `func` is not callable.
ValueError: If the two structures do not have the same number of elements or
if the two structures are not nested in the same way.
TypeError: If `check_types` is `True` and any two `structures`
differ in the types of their components.
ValueError: If no structures were given or if a keyword argument other
than `check_types` is provided.
"""
if not callable(func):
raise TypeError("func must be callable, got: %s" % func)
if not structures:
raise ValueError("Must provide at least one structure")
check_types = kwargs.pop("check_types", True)
if kwargs:
raise ValueError(
"Only valid keyword arguments are `check_types` "
"not: `%s`" % ("`, `".join(kwargs.keys())))
for other in structures[1:]:
assert_same_structure(structures[0], other, check_types=check_types)
return unflatten_as(structures[0],
[func(*args) for args in zip(*map(flatten, structures))])
def map_structure_with_path(func, *structures, **kwargs):
"""Maps `func` through given structures.
This is a variant of :func:`~tree.map_structure` which accumulates
a *path* while mapping through the structures. A path is a tuple of
indices and/or keys which uniquely identifies the positions of the
arguments passed to `func`.
>>> tree.map_structure_with_path(
... lambda path, v: (path, v**2),
... [{"foo": 42}])
[{'foo': ((0, 'foo'), 1764)}]
Args:
func: A callable that accepts a path and as many arguments as there are
structures.
*structures: Arbitrarily nested structures of the same layout.
**kwargs: The only valid keyword argument is `check_types`. If `True`
(default) the types of components within the structures have to be match,
e.g. ``tree.map_structure_with_path(func, [1], (1,))`` will raise a
`TypeError`, otherwise this is not enforced. Note that namedtuples with
identical name and fields are considered to be the same type.
Returns:
A new structure with the same layout as the given ones. If the
`structures` have components of varying types, the resulting structure
will use the same types as ``structures[0]``.
Raises:
TypeError: If `func` is not callable or if the `structures` do not
have the same layout.
TypeError: If `check_types` is `True` and any two `structures`
differ in the types of their components.
ValueError: If no structures were given or if a keyword argument other
than `check_types` is provided.
"""
return map_structure_with_path_up_to(structures[0], func, *structures,
**kwargs)
def _yield_flat_up_to(shallow_tree, input_tree, path=()):
"""Yields (path, value) pairs of input_tree flattened up to shallow_tree.
Args:
shallow_tree: Nested structure. Traverse no further than its leaf nodes.
input_tree: Nested structure. Return the paths and values from this tree.
Must have the same upper structure as shallow_tree.
path: Tuple. Optional argument, only used when recursing. The path from the
root of the original shallow_tree, down to the root of the shallow_tree
arg of this recursive call.
Yields:
Pairs of (path, value), where path the tuple path of a leaf node in
shallow_tree, and value is the value of the corresponding node in
input_tree.
"""
if (isinstance(shallow_tree, _TEXT_OR_BYTES) or
not (isinstance(shallow_tree, (collections_abc.Mapping,
collections_abc.Sequence)) or
_is_namedtuple(shallow_tree) or
_is_attrs(shallow_tree))):
yield (path, input_tree)
else:
input_tree = dict(_yield_sorted_items(input_tree))
for shallow_key, shallow_subtree in _yield_sorted_items(shallow_tree):
subpath = path + (shallow_key,)
input_subtree = input_tree[shallow_key]
for leaf_path, leaf_value in _yield_flat_up_to(shallow_subtree,
input_subtree,
path=subpath):
yield (leaf_path, leaf_value)
def _multiyield_flat_up_to(shallow_tree, *input_trees):
"""Same as `_yield_flat_up_to`, but takes multiple input trees."""
zipped_iterators = zip(*[_yield_flat_up_to(shallow_tree, input_tree)
for input_tree in input_trees])
try:
for paths_and_values in zipped_iterators:
paths, values = zip(*paths_and_values)
yield paths[:1] + values
except KeyError as e:
paths = locals().get("paths", ((),))
raise ValueError(f"Could not find key '{e.args[0]}' in some `input_trees`. "
"Please ensure the structure of all `input_trees` are "
"compatible with `shallow_tree`. The last valid path "
f"yielded was {paths[0]}.") from e
def _assert_shallow_structure(shallow_tree,
input_tree,
path=None,
check_types=True):
"""Asserts that `shallow_tree` is a shallow structure of `input_tree`.
That is, this function recursively tests if each key in shallow_tree has its
corresponding key in input_tree.
Examples:
The following code will raise an exception:
>>> shallow_tree = {"a": "A", "b": "B"}
>>> input_tree = {"a": 1, "c": 2}
>>> _assert_shallow_structure(shallow_tree, input_tree)
Traceback (most recent call last):
...
ValueError: The shallow_tree's keys are not a subset of the input_tree's ...
The following code will raise an exception:
>>> shallow_tree = ["a", "b"]
>>> input_tree = ["c", ["d", "e"], "f"]
>>> _assert_shallow_structure(shallow_tree, input_tree)
Traceback (most recent call last):
...
ValueError: The two structures don't have the same sequence length. ...
By setting check_types=False, we drop the requirement that corresponding
nodes in shallow_tree and input_tree have to be the same type. Sequences
are treated equivalently to Mappables that map integer keys (indices) to
values. The following code will therefore not raise an exception:
>>> _assert_shallow_structure({0: "foo"}, ["foo"], check_types=False)
Args:
shallow_tree: an arbitrarily nested structure.
input_tree: an arbitrarily nested structure.
path: if not `None`, a tuple containing the current path in the nested
structure. This is only used for more informative errror messages.
check_types: if `True` (default) the sequence types of `shallow_tree` and
`input_tree` have to be the same.
Raises:
TypeError: If `shallow_tree` is a sequence but `input_tree` is not.
TypeError: If the sequence types of `shallow_tree` are different from
`input_tree`. Only raised if `check_types` is `True`.
ValueError: If the sequence lengths of `shallow_tree` are different from
`input_tree`.
"""
if is_nested(shallow_tree):
if not is_nested(input_tree):
if path is not None:
raise TypeError(
_IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ_WITH_PATH.format(
path=list(path), input_type=type(input_tree)))
else:
raise TypeError(
_IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ.format(
type(input_tree)))
if isinstance(shallow_tree, ObjectProxy):
shallow_type = type(shallow_tree.__wrapped__)
else:
shallow_type = type(shallow_tree)
if check_types and not isinstance(input_tree, shallow_type):
# Duck-typing means that nest should be fine with two different
# namedtuples with identical name and fields.
shallow_is_namedtuple = _is_namedtuple(shallow_tree, False)
input_is_namedtuple = _is_namedtuple(input_tree, False)
if shallow_is_namedtuple and input_is_namedtuple:
# pylint: disable=protected-access
if not _tree.same_namedtuples(shallow_tree, input_tree):
raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format(
input_type=type(input_tree),
shallow_type=shallow_type))
# pylint: enable=protected-access
elif not (isinstance(shallow_tree, collections_abc.Mapping)
and isinstance(input_tree, collections_abc.Mapping)):
raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format(
input_type=type(input_tree),
shallow_type=shallow_type))
if _num_elements(input_tree) != _num_elements(shallow_tree):
raise ValueError(
_STRUCTURES_HAVE_MISMATCHING_LENGTHS.format(
input_length=_num_elements(input_tree),
shallow_length=_num_elements(shallow_tree)))
elif _num_elements(input_tree) < _num_elements(shallow_tree):
raise ValueError(
_INPUT_TREE_SMALLER_THAN_SHALLOW_TREE.format(
input_size=_num_elements(input_tree),
shallow_size=_num_elements(shallow_tree)))
shallow_iter = _yield_sorted_items(shallow_tree)
input_iter = _yield_sorted_items(input_tree)
def get_matching_input_branch(shallow_key):
for input_key, input_branch in input_iter:
if input_key == shallow_key:
return input_branch
raise ValueError(_SHALLOW_TREE_HAS_INVALID_KEYS.format([shallow_key]))
for shallow_key, shallow_branch in shallow_iter:
input_branch = get_matching_input_branch(shallow_key)
_assert_shallow_structure(
shallow_branch,
input_branch,
path + (shallow_key,) if path is not None else None,
check_types=check_types)
def flatten_up_to(shallow_structure, input_structure, check_types=True):
"""Flattens `input_structure` up to `shallow_structure`.
All further nested components in `input_structure` are retained as-is.
>>> structure = [[1, 1], [2, 2]]
>>> tree.flatten_up_to([None, None], structure)
[[1, 1], [2, 2]]
>>> tree.flatten_up_to([None, [None, None]], structure)
[[1, 1], 2, 2]
If `shallow_structure` and `input_structure` are not nested, the
result is a single-element list:
>>> tree.flatten_up_to(42, 1)
[1]
>>> tree.flatten_up_to(42, [1, 2, 3])
[[1, 2, 3]]
Args:
shallow_structure: A structure with the same (but possibly more shallow)
layout as `input_structure`.
input_structure: An arbitrarily nested structure.
check_types: If `True`, check that each node in shallow_tree has the
same type as the corresponding node in `input_structure`.
Returns:
A list, the partially flattened version of `input_structure` wrt
`shallow_structure`.
Raises:
TypeError: If the layout of `shallow_structure` does not match that of
`input_structure`.
TypeError: If `check_types` is `True` and `shallow_structure` and
`input_structure` differ in the types of their components.
"""
_assert_shallow_structure(
shallow_structure, input_structure, path=None, check_types=check_types)
# Discard paths returned by _yield_flat_up_to.
return [v for _, v in _yield_flat_up_to(shallow_structure, input_structure)]
def flatten_with_path_up_to(shallow_structure,
input_structure,
check_types=True):
"""Flattens `input_structure` up to `shallow_structure`.
This is a combination of :func:`~tree.flatten_up_to` and
:func:`~tree.flatten_with_path`
Args:
shallow_structure: A structure with the same (but possibly more shallow)
layout as `input_structure`.
input_structure: An arbitrarily nested structure.
check_types: If `True`, check that each node in shallow_tree has the
same type as the corresponding node in `input_structure`.
Returns:
A list of ``(path, item)`` pairs corresponding to the partially flattened
version of `input_structure` wrt `shallow_structure`.
Raises:
TypeError: If the layout of `shallow_structure` does not match that of
`input_structure`.
TypeError: If `input_structure` is or contains a mapping with non-sortable
keys.
TypeError: If `check_types` is `True` and `shallow_structure` and
`input_structure` differ in the types of their components.
"""
_assert_shallow_structure(
shallow_structure, input_structure, path=(), check_types=check_types)
return list(_yield_flat_up_to(shallow_structure, input_structure))
def map_structure_up_to(shallow_structure, func, *structures, **kwargs):
"""Maps `func` through given structures up to `shallow_structure`.
This is a variant of :func:`~tree.map_structure` which only maps
the given structures up to `shallow_structure`. All further nested
components are retained as-is.
>>> structure = [[1, 1], [2, 2]]
>>> tree.map_structure_up_to([None, None], len, structure)
[2, 2]
>>> tree.map_structure_up_to([None, [None, None]], str, structure)
['[1, 1]', ['2', '2']]
Args:
shallow_structure: A structure with layout common to all `structures`.
func: A callable that accepts as many arguments as there are structures.
*structures: Arbitrarily nested structures of the same layout.
**kwargs: No valid keyword arguments.
Raises:
ValueError: If `func` is not callable or if `structures` have different
layout or if the layout of `shallow_structure` does not match that of
`structures` or if no structures were given.
Returns:
A new structure with the same layout as `shallow_structure`.
"""
return map_structure_with_path_up_to(
shallow_structure,
lambda _, *args: func(*args), # Discards path.
*structures,
**kwargs)
def map_structure_with_path_up_to(shallow_structure, func, *structures,
**kwargs):
"""Maps `func` through given structures up to `shallow_structure`.
This is a combination of :func:`~tree.map_structure_up_to` and
:func:`~tree.map_structure_with_path`
Args:
shallow_structure: A structure with layout common to all `structures`.
func: A callable that accepts a path and as many arguments as there are
structures.
*structures: Arbitrarily nested structures of the same layout.
**kwargs: No valid keyword arguments.
Raises:
ValueError: If `func` is not callable or if `structures` have different
layout or if the layout of `shallow_structure` does not match that of
`structures` or if no structures were given.
Returns:
Result of repeatedly applying `func`. Has the same structure layout
as `shallow_tree`.
"""
if "check_types" in kwargs:
logging.warning("The use of `check_types` is deprecated and does not have "
"any effect.")
del kwargs
results = []
for path_and_values in _multiyield_flat_up_to(shallow_structure, *structures):
results.append(func(*path_and_values))
return unflatten_as(shallow_structure, results)
def flatten_with_path(structure):
r"""Flattens a possibly nested structure into a list.
This is a variant of :func:`~tree.flattens` which produces a list of
pairs: ``(path, item)``. A path is a tuple of indices and/or keys
which uniquely identifies the position of the corresponding ``item``.
>>> tree.flatten_with_path([{"foo": 42}])
[((0, 'foo'), 42)]
Args:
structure: An arbitrarily nested structure.
Returns:
A list of ``(path, item)`` pairs corresponding to the flattened version
of the input `structure`.
Raises:
TypeError:
If ``structure`` is or contains a mapping with non-sortable keys.
"""
return list(_yield_flat_up_to(structure, structure))
#: Special value for use with :func:`traverse`.
MAP_TO_NONE = object()
def traverse(fn, structure, top_down=True):
"""Traverses the given nested structure, applying the given function.
The traversal is depth-first. If ``top_down`` is True (default), parents
are returned before their children (giving the option to avoid traversing
into a sub-tree).
>>> visited = []
>>> tree.traverse(visited.append, [(1, 2), [3], {"a": 4}], top_down=True)
[(1, 2), [3], {'a': 4}]
>>> visited
[[(1, 2), [3], {'a': 4}], (1, 2), 1, 2, [3], 3, {'a': 4}, 4]
>>> visited = []
>>> tree.traverse(visited.append, [(1, 2), [3], {"a": 4}], top_down=False)
[(1, 2), [3], {'a': 4}]
>>> visited
[1, 2, (1, 2), 3, [3], 4, {'a': 4}, [(1, 2), [3], {'a': 4}]]
Args:
fn: The function to be applied to each sub-nest of the structure.
When traversing top-down:
If ``fn(subtree) is None`` the traversal continues into the sub-tree.
If ``fn(subtree) is not None`` the traversal does not continue into
the sub-tree. The sub-tree will be replaced by ``fn(subtree)`` in the
returned structure (to replace the sub-tree with None, use the special
value :data:`MAP_TO_NONE`).
When traversing bottom-up:
If ``fn(subtree) is None`` the traversed sub-tree is returned unaltered.
If ``fn(subtree) is not None`` the sub-tree will be replaced by
``fn(subtree)`` in the returned structure (to replace the sub-tree
with None, use the special value :data:`MAP_TO_NONE`).
structure: The structure to traverse.
top_down: If True, parent structures will be visited before their children.
Returns:
The structured output from the traversal.
"""
return traverse_with_path(lambda _, x: fn(x), structure, top_down=top_down)
def traverse_with_path(fn, structure, top_down=True):
"""Traverses the given nested structure, applying the given function.
The traversal is depth-first. If ``top_down`` is True (default), parents
are returned before their children (giving the option to avoid traversing
into a sub-tree).
>>> visited = []
>>> tree.traverse_with_path(
... lambda path, subtree: visited.append((path, subtree)),
... [(1, 2), [3], {"a": 4}],
... top_down=True)
[(1, 2), [3], {'a': 4}]
>>> visited == [
... ((), [(1, 2), [3], {'a': 4}]),
... ((0,), (1, 2)),
... ((0, 0), 1),
... ((0, 1), 2),
... ((1,), [3]),
... ((1, 0), 3),
... ((2,), {'a': 4}),
... ((2, 'a'), 4)]
True
>>> visited = []
>>> tree.traverse_with_path(
... lambda path, subtree: visited.append((path, subtree)),
... [(1, 2), [3], {"a": 4}],
... top_down=False)
[(1, 2), [3], {'a': 4}]
>>> visited == [
... ((0, 0), 1),
... ((0, 1), 2),
... ((0,), (1, 2)),
... ((1, 0), 3),
... ((1,), [3]),
... ((2, 'a'), 4),
... ((2,), {'a': 4}),
... ((), [(1, 2), [3], {'a': 4}])]
True
Args:
fn: The function to be applied to the path to each sub-nest of the structure
and the sub-nest value.
When traversing top-down: If ``fn(path, subtree) is None`` the traversal
continues into the sub-tree. If ``fn(path, subtree) is not None`` the
traversal does not continue into the sub-tree. The sub-tree will be
replaced by ``fn(path, subtree)`` in the returned structure (to replace
the sub-tree with None, use the special
value :data:`MAP_TO_NONE`).
When traversing bottom-up: If ``fn(path, subtree) is None`` the traversed
sub-tree is returned unaltered. If ``fn(path, subtree) is not None`` the
sub-tree will be replaced by ``fn(path, subtree)`` in the returned
structure (to replace the sub-tree
with None, use the special value :data:`MAP_TO_NONE`).
structure: The structure to traverse.
top_down: If True, parent structures will be visited before their children.
Returns:
The structured output from the traversal.
"""
def traverse_impl(path, structure):
"""Recursive traversal implementation."""
def subtree_fn(item):
subtree_path, subtree = item
return traverse_impl(path + (subtree_path,), subtree)
def traverse_subtrees():
if is_nested(structure):
return _sequence_like(structure,
map(subtree_fn, _yield_sorted_items(structure)))
else:
return structure
if top_down:
ret = fn(path, structure)
if ret is None:
return traverse_subtrees()
elif ret is MAP_TO_NONE:
return None
else:
return ret
else:
traversed_structure = traverse_subtrees()
ret = fn(path, traversed_structure)
if ret is None:
return traversed_structure
elif ret is MAP_TO_NONE:
return None
else:
return ret
return traverse_impl((), structure)
|