File: tree.cc

package info (click to toggle)
dm-tree 0.1.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 368 kB
  • sloc: python: 1,472; cpp: 614; makefile: 17; sh: 5
file content (782 lines) | stat: -rw-r--r-- 24,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/* Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tree.h"

#include <functional>
#include <memory>
#include <string>
#include <unordered_map>

// logging
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include <pybind11/pybind11.h>

#ifdef LOG
#define LOG_WARNING(w) LOG(WARNING) << w;
#else
#include <iostream>
#define LOG_WARNING(w) std::cerr << w << "\n";
#endif

#ifndef DCHECK
#define DCHECK(stmt)
#endif

namespace py = pybind11;

namespace tree {
namespace {

// PyObjectPtr wraps an underlying Python object and decrements the
// reference count in the destructor.
//
// This class does not acquire the GIL in the destructor, so the GIL must be
// held when the destructor is called.
using PyObjectPtr = std::unique_ptr<PyObject, DecrementsPyRefcount>;

const int kMaxItemsInCache = 1024;

bool WarnedThatSetIsNotSequence = false;

bool IsString(PyObject* o) {
  return PyBytes_Check(o) || PyByteArray_Check(o) || PyUnicode_Check(o);
}

// Equivalent to Python's 'o.__class__.__name__'
// Note that '__class__' attribute is set only in new-style classes.
// A lot of tensorflow code uses __class__ without checks, so it seems like
// we only support new-style classes.
absl::string_view GetClassName(PyObject* o) {
  // __class__ is equivalent to type() for new style classes.
  // type() is equivalent to PyObject_Type()
  // (https://docs.python.org/3.5/c-api/object.html#c.PyObject_Type)
  // PyObject_Type() is equivalent to o->ob_type except for Py_INCREF, which
  // we don't need here.
  PyTypeObject* type = o->ob_type;

  // __name__ is the value of `tp_name` after the last '.'
  // (https://docs.python.org/2/c-api/typeobj.html#c.PyTypeObject.tp_name)
  absl::string_view name(type->tp_name);
  size_t pos = name.rfind('.');
  if (pos != absl::string_view::npos) {
    name.remove_prefix(pos + 1);
  }
  return name;
}

std::string PyObjectToString(PyObject* o) {
  if (o == nullptr) {
    return "<null object>";
  }
  PyObject* str = PyObject_Str(o);
  if (str) {
    std::string s(PyUnicode_AsUTF8(str));
    Py_DECREF(str);
    return absl::StrCat("type=", GetClassName(o), " str=", s);
  } else {
    return "<failed to execute str() on object>";
  }
}

class CachedTypeCheck {
 public:
  explicit CachedTypeCheck(std::function<int(PyObject*)> ternary_predicate)
      : ternary_predicate_(std::move(ternary_predicate)) {}

  ~CachedTypeCheck() {
    for (const auto& pair : type_to_sequence_map_) {
      Py_DECREF(pair.first);
    }
  }

  // Caches successful executions of the one-argument (PyObject*) callable
  // "ternary_predicate" based on the type of "o". -1 from the callable
  // indicates an unsuccessful check (not cached), 0 indicates that "o"'s type
  // does not match the predicate, and 1 indicates that it does. Used to avoid
  // calling back into Python for expensive isinstance checks.
  int CachedLookup(PyObject* o) {
    // Try not to return to Python - see if the type has already been seen
    // before.
    auto* type = Py_TYPE(o);

    {
      auto it = type_to_sequence_map_.find(type);
      if (it != type_to_sequence_map_.end()) {
        return it->second;
      }
    }

    int check_result = ternary_predicate_(o);

    if (check_result == -1) {
      return -1;  // Type check error, not cached.
    }

    // NOTE: This is never decref'd as long as the object lives, which is likely
    // forever, but we don't want the type to get deleted as long as it is in
    // the map. This should not be too much of a leak, as there should only be a
    // relatively small number of types in the map, and an even smaller number
    // that are eligible for decref. As a precaution, we limit the size of the
    // map to 1024.
    {
      if (type_to_sequence_map_.size() < kMaxItemsInCache) {
        Py_INCREF(type);
        type_to_sequence_map_.insert({type, check_result});
      }
    }

    return check_result;
  }

 private:
  std::function<int(PyObject*)> ternary_predicate_;
  std::unordered_map<PyTypeObject*, bool> type_to_sequence_map_;
};

py::object GetCollectionsSequenceType() {
  static py::object type =
      py::module::import("collections.abc").attr("Sequence");
  return type;
}

py::object GetCollectionsMappingType() {
  static py::object type =
      py::module::import("collections.abc").attr("Mapping");
  return type;
}

py::object GetCollectionsMappingViewType() {
  static py::object type =
      py::module::import("collections.abc").attr("MappingView");
  return type;
}

py::object GetWraptObjectProxyTypeUncached() {
  try {
    return py::module::import("wrapt").attr("ObjectProxy");
  } catch (const py::error_already_set& e) {
    if (e.matches(PyExc_ImportError)) return py::none();
    throw e;
  }
}

py::object GetWraptObjectProxyType() {
  // TODO(gregthornton): Restore caching when deadlock issue is fixed.
  return GetWraptObjectProxyTypeUncached();
}

// Returns 1 if `o` is considered a mapping for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsMappingHelper(PyObject* o) {
  static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
    return PyObject_IsInstance(to_check, GetCollectionsMappingType().ptr());
  });
  if (PyDict_Check(o)) return true;
  return check_cache->CachedLookup(o);
}

// Returns 1 if `o` is considered a mapping view for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsMappingViewHelper(PyObject* o) {
  static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
    return PyObject_IsInstance(to_check, GetCollectionsMappingViewType().ptr());
  });
  return check_cache->CachedLookup(o);
}

// Returns 1 if `o` is considered an object proxy
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsObjectProxy(PyObject* o) {
  static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
    auto type = GetWraptObjectProxyType();
    return !type.is_none() && PyObject_IsInstance(to_check, type.ptr()) == 1;
  });
  return check_cache->CachedLookup(o);
}

// Returns 1 if `o` is an instance of attrs-decorated class.
// Returns 0 otherwise.
int IsAttrsHelper(PyObject* o) {
  static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
    PyObjectPtr cls(PyObject_GetAttrString(to_check, "__class__"));
    if (cls) {
      return PyObject_HasAttrString(cls.get(), "__attrs_attrs__");
    }

    // PyObject_GetAttrString returns null on error
    PyErr_Clear();
    return 0;
  });
  return check_cache->CachedLookup(o);
}

// Returns 1 if `o` is considered a sequence for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsSequenceHelper(PyObject* o) {
  static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
    int is_instance =
        PyObject_IsInstance(to_check, GetCollectionsSequenceType().ptr());

    // Don't cache a failed is_instance check.
    if (is_instance == -1) return -1;

    return static_cast<int>(is_instance != 0 && !IsString(to_check));
  });  // We treat dicts and other mappings as special cases of sequences.
  if (IsMappingHelper(o)) return true;
  if (IsMappingViewHelper(o)) return true;
  if (IsAttrsHelper(o)) return true;
  if (PySet_Check(o) && !WarnedThatSetIsNotSequence) {
    LOG_WARNING(
        "Sets are not currently considered sequences, "
        "but this may change in the future, "
        "so consider avoiding using them.");
    WarnedThatSetIsNotSequence = true;
  }
  return check_cache->CachedLookup(o);
}

using ValueIteratorPtr = std::unique_ptr<ValueIterator>;

// Iterate through dictionaries in a deterministic order by sorting the
// keys. Notice this means that we ignore the original order of
// `OrderedDict` instances. This is intentional, to avoid potential
// bugs caused by mixing ordered and plain dicts (e.g., flattening
// a dict but using a corresponding `OrderedDict` to pack it back).
class DictValueIterator : public ValueIterator {
 public:
  explicit DictValueIterator(PyObject* dict)
      : dict_(dict), keys_(PyDict_Keys(dict)) {
    if (PyList_Sort(keys_.get()) == -1) {
      invalidate();
    } else {
      iter_.reset(PyObject_GetIter(keys_.get()));
    }
  }

  PyObjectPtr next() override {
    PyObjectPtr result;
    PyObjectPtr key(PyIter_Next(iter_.get()));
    if (key) {
      // PyDict_GetItem returns a borrowed reference.
      PyObject* elem = PyDict_GetItem(dict_, key.get());
      if (elem) {
        Py_INCREF(elem);
        result.reset(elem);
      } else {
        PyErr_SetString(PyExc_RuntimeError,
                        "Dictionary was modified during iteration over it");
      }
    }
    return result;
  }

 private:
  PyObject* dict_;
  PyObjectPtr keys_;
  PyObjectPtr iter_;
};

// Iterate over mapping objects by sorting the keys first
class MappingValueIterator : public ValueIterator {
 public:
  explicit MappingValueIterator(PyObject* mapping)
      : mapping_(mapping), keys_(PyMapping_Keys(mapping)) {
    if (!keys_ || PyList_Sort(keys_.get()) == -1) {
      invalidate();
    } else {
      iter_.reset(PyObject_GetIter(keys_.get()));
    }
  }

  PyObjectPtr next() override {
    PyObjectPtr result;
    PyObjectPtr key(PyIter_Next(iter_.get()));
    if (key) {
      // Unlike PyDict_GetItem, PyObject_GetItem returns a new reference.
      PyObject* elem = PyObject_GetItem(mapping_, key.get());
      if (elem) {
        result.reset(elem);
      } else {
        PyErr_SetString(PyExc_RuntimeError,
                        "Mapping was modified during iteration over it");
      }
    }
    return result;
  }

 private:
  PyObject* mapping_;
  PyObjectPtr keys_;
  PyObjectPtr iter_;
};

// Iterate over a sequence, by index.
class SequenceValueIterator : public ValueIterator {
 public:
  explicit SequenceValueIterator(PyObject* iterable)
      : seq_(PySequence_Fast(iterable, "")),
        size_(seq_.get() ? PySequence_Fast_GET_SIZE(seq_.get()) : 0),
        index_(0) {}

  PyObjectPtr next() override {
    PyObjectPtr result;
    if (index_ < size_) {
      // PySequence_Fast_GET_ITEM returns a borrowed reference.
      PyObject* elem = PySequence_Fast_GET_ITEM(seq_.get(), index_);
      ++index_;
      if (elem) {
        Py_INCREF(elem);
        result.reset(elem);
      }
    }

    return result;
  }

 private:
  PyObjectPtr seq_;
  const Py_ssize_t size_;
  Py_ssize_t index_;
};

class AttrsValueIterator : public ValueIterator {
 public:
  explicit AttrsValueIterator(PyObject* nested) : nested_(nested) {
    Py_INCREF(nested);
    cls_.reset(PyObject_GetAttrString(nested_.get(), "__class__"));
    if (cls_) {
      attrs_.reset(PyObject_GetAttrString(cls_.get(), "__attrs_attrs__"));
      if (attrs_) {
        iter_.reset(PyObject_GetIter(attrs_.get()));
      }
    }
    if (!iter_ || PyErr_Occurred()) invalidate();
  }

  PyObjectPtr next() override {
    PyObjectPtr result;
    PyObjectPtr item(PyIter_Next(iter_.get()));
    if (item) {
      PyObjectPtr name(PyObject_GetAttrString(item.get(), "name"));
      result.reset(PyObject_GetAttr(nested_.get(), name.get()));
    }

    return result;
  }

 private:
  PyObjectPtr nested_;
  PyObjectPtr cls_;
  PyObjectPtr attrs_;
  PyObjectPtr iter_;
};


bool FlattenHelper(
    PyObject* nested, PyObject* list,
    const std::function<int(PyObject*)>& is_sequence_helper,
    const std::function<ValueIteratorPtr(PyObject*)>& value_iterator_getter) {
  // if nested is not a sequence, append itself and exit
  int is_seq = is_sequence_helper(nested);
  if (is_seq == -1) return false;
  if (!is_seq) {
    return PyList_Append(list, nested) != -1;
  }

  ValueIteratorPtr iter = value_iterator_getter(nested);
  if (!iter->valid()) return false;

  for (PyObjectPtr item = iter->next(); item; item = iter->next()) {
    if (Py_EnterRecursiveCall(" in flatten")) {
      return false;
    }
    const bool success = FlattenHelper(item.get(), list, is_sequence_helper,
                                       value_iterator_getter);
    Py_LeaveRecursiveCall();
    if (!success) {
      return false;
    }
  }
  return true;
}

// Sets error using keys of 'dict1' and 'dict2'.
// 'dict1' and 'dict2' are assumed to be Python dictionaries.
void SetDifferentKeysError(PyObject* dict1, PyObject* dict2,
                           std::string* error_msg, bool* is_type_error) {
  PyObjectPtr k1(PyMapping_Keys(dict1));
  if (PyErr_Occurred() || k1.get() == nullptr) {
    *error_msg =
        ("The two dictionaries don't have the same set of keys. Failed to "
         "fetch keys.");
    return;
  }
  PyObjectPtr k2(PyMapping_Keys(dict2));
  if (PyErr_Occurred() || k2.get() == nullptr) {
    *error_msg =
        ("The two dictionaries don't have the same set of keys. Failed to "
         "fetch keys.");
    return;
  }
  *is_type_error = false;
  *error_msg = absl::StrCat(
      "The two dictionaries don't have the same set of keys. "
      "First structure has keys ",
      PyObjectToString(k1.get()), ", while second structure has keys ",
      PyObjectToString(k2.get()));
}

// Returns true iff there were no "internal" errors. In other words,
// errors that has nothing to do with structure checking.
// If an "internal" error occurred, the appropriate Python error will be
// set and the caller can propage it directly to the user.
//
// Both `error_msg` and `is_type_error` must be non-null. `error_msg` must
// be empty.
// Leaves `error_msg` empty if structures matched. Else, fills `error_msg`
// with appropriate error and sets `is_type_error` to true iff
// the error to be raised should be TypeError.
bool AssertSameStructureHelper(PyObject* o1, PyObject* o2, bool check_types,
                               std::string* error_msg, bool* is_type_error) {
  DCHECK(error_msg);
  DCHECK(is_type_error);
  const bool is_seq1 = IsSequence(o1);
  const bool is_seq2 = IsSequence(o2);
  if (PyErr_Occurred()) return false;
  if (is_seq1 != is_seq2) {
    std::string seq_str = is_seq1 ? PyObjectToString(o1) : PyObjectToString(o2);
    std::string non_seq_str =
        is_seq1 ? PyObjectToString(o2) : PyObjectToString(o1);
    *is_type_error = false;
    *error_msg = absl::StrCat("Substructure \"", seq_str,
                              "\" is a sequence, while substructure \"",
                              non_seq_str, "\" is not");
    return true;
  }

  // Got to scalars, so finished checking. Structures are the same.
  if (!is_seq1) return true;

  if (check_types) {
    // Unwrap wrapt.ObjectProxy if needed.
    PyObjectPtr o1_wrapped;
    if (IsObjectProxy(o1)) {
      o1_wrapped.reset(PyObject_GetAttrString(o1, "__wrapped__"));
      o1 = o1_wrapped.get();
    }
    PyObjectPtr o2_wrapped;
    if (IsObjectProxy(o2)) {
      o2_wrapped.reset(PyObject_GetAttrString(o2, "__wrapped__"));
      o2 = o2_wrapped.get();
    }

    const PyTypeObject* type1 = o1->ob_type;
    const PyTypeObject* type2 = o2->ob_type;

    // We treat two different namedtuples with identical name and fields
    // as having the same type.
    const PyObject* o1_tuple = IsNamedtuple(o1, true);
    if (o1_tuple == nullptr) return false;
    const PyObject* o2_tuple = IsNamedtuple(o2, true);
    if (o2_tuple == nullptr) {
      Py_DECREF(o1_tuple);
      return false;
    }
    bool both_tuples = o1_tuple == Py_True && o2_tuple == Py_True;
    Py_DECREF(o1_tuple);
    Py_DECREF(o2_tuple);

    if (both_tuples) {
      const PyObject* same_tuples = SameNamedtuples(o1, o2);
      if (same_tuples == nullptr) return false;
      bool not_same_tuples = same_tuples != Py_True;
      Py_DECREF(same_tuples);
      if (not_same_tuples) {
        *is_type_error = true;
        *error_msg = absl::StrCat(
            "The two namedtuples don't have the same sequence type. "
            "First structure ",
            PyObjectToString(o1), " has type ", type1->tp_name,
            ", while second structure ", PyObjectToString(o2), " has type ",
            type2->tp_name);
        return true;
      }
    } else if (type1 != type2
               /* If both sequences are list types, don't complain. This allows
                  one to be a list subclass (e.g. _ListWrapper used for
                  automatic dependency tracking.) */
               && !(PyList_Check(o1) && PyList_Check(o2))
               /* Two mapping types will also compare equal, making _DictWrapper
                  and dict compare equal. */
               && !(IsMappingHelper(o1) && IsMappingHelper(o2))) {
      *is_type_error = true;
      *error_msg = absl::StrCat(
          "The two namedtuples don't have the same sequence type. "
          "First structure ",
          PyObjectToString(o1), " has type ", type1->tp_name,
          ", while second structure ", PyObjectToString(o2), " has type ",
          type2->tp_name);
      return true;
    }

    if (PyDict_Check(o1) && PyDict_Check(o2)) {
      if (PyDict_Size(o1) != PyDict_Size(o2)) {
        SetDifferentKeysError(o1, o2, error_msg, is_type_error);
        return true;
      }

      PyObject* key;
      Py_ssize_t pos = 0;
      while (PyDict_Next(o1, &pos, &key, nullptr)) {
        if (PyDict_GetItem(o2, key) == nullptr) {
          SetDifferentKeysError(o1, o2, error_msg, is_type_error);
          return true;
        }
      }
    } else if (IsMappingHelper(o1)) {
      // Fallback for custom mapping types. Instead of using PyDict methods
      // which stay in C, we call iter(o1).
      if (PyMapping_Size(o1) != PyMapping_Size(o2)) {
        SetDifferentKeysError(o1, o2, error_msg, is_type_error);
        return true;
      }

      PyObjectPtr iter(PyObject_GetIter(o1));
      PyObject* key;
      while ((key = PyIter_Next(iter.get())) != nullptr) {
        if (!PyMapping_HasKey(o2, key)) {
          SetDifferentKeysError(o1, o2, error_msg, is_type_error);
          Py_DECREF(key);
          return true;
        }
        Py_DECREF(key);
      }
    }
  }

  ValueIteratorPtr iter1 = GetValueIterator(o1);
  ValueIteratorPtr iter2 = GetValueIterator(o2);

  if (!iter1->valid() || !iter2->valid()) return false;

  while (true) {
    PyObjectPtr v1 = iter1->next();
    PyObjectPtr v2 = iter2->next();
    if (v1 && v2) {
      if (Py_EnterRecursiveCall(" in assert_same_structure")) {
        return false;
      }
      bool no_internal_errors = AssertSameStructureHelper(
          v1.get(), v2.get(), check_types, error_msg, is_type_error);
      Py_LeaveRecursiveCall();
      if (!no_internal_errors) return false;
      if (!error_msg->empty()) return true;
    } else if (!v1 && !v2) {
      // Done with all recursive calls. Structure matched.
      return true;
    } else {
      *is_type_error = false;
      *error_msg = absl::StrCat(
          "The two structures don't have the same number of elements. ",
          "First structure: ", PyObjectToString(o1),
          ". Second structure: ", PyObjectToString(o2));
      return true;
    }
  }
}

}  // namespace

bool IsSequence(PyObject* o) { return IsSequenceHelper(o) == 1; }
bool IsAttrs(PyObject* o) { return IsAttrsHelper(o) == 1; }

PyObject* Flatten(PyObject* nested) {
  PyObject* list = PyList_New(0);
  if (FlattenHelper(nested, list, IsSequenceHelper, GetValueIterator)) {
    return list;
  } else {
    Py_DECREF(list);
    return nullptr;
  }
}

PyObject* IsNamedtuple(PyObject* o, bool strict) {
  // Unwrap wrapt.ObjectProxy if needed.
  PyObjectPtr o_wrapped;
  if (IsObjectProxy(o)) {
    o_wrapped.reset(PyObject_GetAttrString(o, "__wrapped__"));
    o = o_wrapped.get();
  }

  // Must be subclass of tuple
  if (!PyTuple_Check(o)) {
    Py_RETURN_FALSE;
  }

  // If strict, o.__class__.__base__ must be tuple
  if (strict) {
    PyObject* klass = PyObject_GetAttrString(o, "__class__");
    if (klass == nullptr) return nullptr;
    PyObject* base = PyObject_GetAttrString(klass, "__base__");
    Py_DECREF(klass);
    if (base == nullptr) return nullptr;

    const PyTypeObject* base_type = reinterpret_cast<PyTypeObject*>(base);
    // built-in object types are singletons
    bool tuple_base = base_type == &PyTuple_Type;
    Py_DECREF(base);
    if (!tuple_base) {
      Py_RETURN_FALSE;
    }
  }

  // o must have attribute '_fields' and every element in
  // '_fields' must be a string.
  int has_fields = PyObject_HasAttrString(o, "_fields");
  if (!has_fields) {
    Py_RETURN_FALSE;
  }

  PyObjectPtr fields(PyObject_GetAttrString(o, "_fields"));
  int is_instance =
      PyObject_IsInstance(fields.get(), GetCollectionsSequenceType().ptr());
  if (is_instance == 0) {
    Py_RETURN_FALSE;
  } else if (is_instance == -1) {
    return nullptr;
  }

  PyObjectPtr seq(PySequence_Fast(fields.get(), ""));
  const Py_ssize_t s = PySequence_Fast_GET_SIZE(seq.get());
  for (Py_ssize_t i = 0; i < s; ++i) {
    // PySequence_Fast_GET_ITEM returns borrowed ref
    PyObject* elem = PySequence_Fast_GET_ITEM(seq.get(), i);
    if (!IsString(elem)) {
      Py_RETURN_FALSE;
    }
  }

  Py_RETURN_TRUE;
}

PyObject* SameNamedtuples(PyObject* o1, PyObject* o2) {
  PyObject* f1 = PyObject_GetAttrString(o1, "_fields");
  PyObject* f2 = PyObject_GetAttrString(o2, "_fields");
  if (f1 == nullptr || f2 == nullptr) {
    Py_XDECREF(f1);
    Py_XDECREF(f2);
    PyErr_SetString(
        PyExc_RuntimeError,
        "Expected namedtuple-like objects (that have _fields attr)");
    return nullptr;
  }

  if (PyObject_RichCompareBool(f1, f2, Py_NE)) {
    Py_RETURN_FALSE;
  }

  if (GetClassName(o1).compare(GetClassName(o2)) == 0) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

void AssertSameStructure(PyObject* o1, PyObject* o2, bool check_types) {
  std::string error_msg;
  bool is_type_error = false;
  AssertSameStructureHelper(o1, o2, check_types, &error_msg, &is_type_error);
  if (PyErr_Occurred()) {
    // Don't hide Python exceptions while checking (e.g. errors fetching keys
    // from custom mappings).
    return;
  }
  if (!error_msg.empty()) {
    PyErr_SetString(
        is_type_error ? PyExc_TypeError : PyExc_ValueError,
        absl::StrCat(
            "The two structures don't have the same nested structure.\n\n",
            "First structure: ", PyObjectToString(o1), "\n\nSecond structure: ",
            PyObjectToString(o2), "\n\nMore specifically: ", error_msg)
            .c_str());
  }
}

ValueIteratorPtr GetValueIterator(PyObject* nested) {
  if (PyDict_Check(nested)) {
    return absl::make_unique<DictValueIterator>(nested);
  } else if (IsMappingHelper(nested)) {
    return absl::make_unique<MappingValueIterator>(nested);
  } else if (IsAttrsHelper(nested)) {
    return absl::make_unique<AttrsValueIterator>(nested);
  } else {
    return absl::make_unique<SequenceValueIterator>(nested);
  }
}

namespace {

inline py::object pyo_or_throw(PyObject* ptr) {
  if (PyErr_Occurred() || ptr == nullptr) {
    throw py::error_already_set();
  }
  return py::reinterpret_steal<py::object>(ptr);
}

PYBIND11_MODULE(_tree, m) {
  // Resolve `wrapt.ObjectProxy` at import time to avoid doing
  // imports during function calls.
  tree::GetWraptObjectProxyType();

  m.def("assert_same_structure",
        [](py::handle& o1, py::handle& o2, bool check_types) {
          tree::AssertSameStructure(o1.ptr(), o2.ptr(), check_types);
          if (PyErr_Occurred()) {
            throw py::error_already_set();
          }
        });
  m.def("is_sequence", [](py::handle& o) {
    bool result = tree::IsSequence(o.ptr());
    if (PyErr_Occurred()) {
      throw py::error_already_set();
    }
    return result;
  });
  m.def("is_namedtuple", [](py::handle& o, bool strict) {
    return pyo_or_throw(tree::IsNamedtuple(o.ptr(), strict));
  });
  m.def("is_attrs", [](py::handle& o) {
    bool result = tree::IsAttrs(o.ptr());
    if (PyErr_Occurred()) {
      throw py::error_already_set();
    }
    return result;
  });
  m.def("same_namedtuples", [](py::handle& o1, py::handle& o2) {
    return pyo_or_throw(tree::SameNamedtuples(o1.ptr(), o2.ptr()));
  });
  m.def("flatten", [](py::handle& nested) {
    return pyo_or_throw(tree::Flatten(nested.ptr()));
  });
}

}  // namespace
}  // namespace tree