1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
/* Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tree.h"
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
// logging
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include <pybind11/pybind11.h>
#ifdef LOG
#define LOG_WARNING(w) LOG(WARNING) << w;
#else
#include <iostream>
#define LOG_WARNING(w) std::cerr << w << "\n";
#endif
#ifndef DCHECK
#define DCHECK(stmt)
#endif
namespace py = pybind11;
namespace tree {
namespace {
// PyObjectPtr wraps an underlying Python object and decrements the
// reference count in the destructor.
//
// This class does not acquire the GIL in the destructor, so the GIL must be
// held when the destructor is called.
using PyObjectPtr = std::unique_ptr<PyObject, DecrementsPyRefcount>;
const int kMaxItemsInCache = 1024;
bool WarnedThatSetIsNotSequence = false;
bool IsString(PyObject* o) {
return PyBytes_Check(o) || PyByteArray_Check(o) || PyUnicode_Check(o);
}
// Equivalent to Python's 'o.__class__.__name__'
// Note that '__class__' attribute is set only in new-style classes.
// A lot of tensorflow code uses __class__ without checks, so it seems like
// we only support new-style classes.
absl::string_view GetClassName(PyObject* o) {
// __class__ is equivalent to type() for new style classes.
// type() is equivalent to PyObject_Type()
// (https://docs.python.org/3.5/c-api/object.html#c.PyObject_Type)
// PyObject_Type() is equivalent to o->ob_type except for Py_INCREF, which
// we don't need here.
PyTypeObject* type = o->ob_type;
// __name__ is the value of `tp_name` after the last '.'
// (https://docs.python.org/2/c-api/typeobj.html#c.PyTypeObject.tp_name)
absl::string_view name(type->tp_name);
size_t pos = name.rfind('.');
if (pos != absl::string_view::npos) {
name.remove_prefix(pos + 1);
}
return name;
}
std::string PyObjectToString(PyObject* o) {
if (o == nullptr) {
return "<null object>";
}
PyObject* str = PyObject_Str(o);
if (str) {
std::string s(PyUnicode_AsUTF8(str));
Py_DECREF(str);
return absl::StrCat("type=", GetClassName(o), " str=", s);
} else {
return "<failed to execute str() on object>";
}
}
class CachedTypeCheck {
public:
explicit CachedTypeCheck(std::function<int(PyObject*)> ternary_predicate)
: ternary_predicate_(std::move(ternary_predicate)) {}
~CachedTypeCheck() {
for (const auto& pair : type_to_sequence_map_) {
Py_DECREF(pair.first);
}
}
// Caches successful executions of the one-argument (PyObject*) callable
// "ternary_predicate" based on the type of "o". -1 from the callable
// indicates an unsuccessful check (not cached), 0 indicates that "o"'s type
// does not match the predicate, and 1 indicates that it does. Used to avoid
// calling back into Python for expensive isinstance checks.
int CachedLookup(PyObject* o) {
// Try not to return to Python - see if the type has already been seen
// before.
auto* type = Py_TYPE(o);
{
auto it = type_to_sequence_map_.find(type);
if (it != type_to_sequence_map_.end()) {
return it->second;
}
}
int check_result = ternary_predicate_(o);
if (check_result == -1) {
return -1; // Type check error, not cached.
}
// NOTE: This is never decref'd as long as the object lives, which is likely
// forever, but we don't want the type to get deleted as long as it is in
// the map. This should not be too much of a leak, as there should only be a
// relatively small number of types in the map, and an even smaller number
// that are eligible for decref. As a precaution, we limit the size of the
// map to 1024.
{
if (type_to_sequence_map_.size() < kMaxItemsInCache) {
Py_INCREF(type);
type_to_sequence_map_.insert({type, check_result});
}
}
return check_result;
}
private:
std::function<int(PyObject*)> ternary_predicate_;
std::unordered_map<PyTypeObject*, bool> type_to_sequence_map_;
};
py::object GetCollectionsSequenceType() {
static py::object type =
py::module::import("collections.abc").attr("Sequence");
return type;
}
py::object GetCollectionsMappingType() {
static py::object type =
py::module::import("collections.abc").attr("Mapping");
return type;
}
py::object GetCollectionsMappingViewType() {
static py::object type =
py::module::import("collections.abc").attr("MappingView");
return type;
}
py::object GetWraptObjectProxyTypeUncached() {
try {
return py::module::import("wrapt").attr("ObjectProxy");
} catch (const py::error_already_set& e) {
if (e.matches(PyExc_ImportError)) return py::none();
throw e;
}
}
py::object GetWraptObjectProxyType() {
// TODO(gregthornton): Restore caching when deadlock issue is fixed.
return GetWraptObjectProxyTypeUncached();
}
// Returns 1 if `o` is considered a mapping for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsMappingHelper(PyObject* o) {
static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
return PyObject_IsInstance(to_check, GetCollectionsMappingType().ptr());
});
if (PyDict_Check(o)) return true;
return check_cache->CachedLookup(o);
}
// Returns 1 if `o` is considered a mapping view for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsMappingViewHelper(PyObject* o) {
static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
return PyObject_IsInstance(to_check, GetCollectionsMappingViewType().ptr());
});
return check_cache->CachedLookup(o);
}
// Returns 1 if `o` is considered an object proxy
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsObjectProxy(PyObject* o) {
static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
auto type = GetWraptObjectProxyType();
return !type.is_none() && PyObject_IsInstance(to_check, type.ptr()) == 1;
});
return check_cache->CachedLookup(o);
}
// Returns 1 if `o` is an instance of attrs-decorated class.
// Returns 0 otherwise.
int IsAttrsHelper(PyObject* o) {
static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
PyObjectPtr cls(PyObject_GetAttrString(to_check, "__class__"));
if (cls) {
return PyObject_HasAttrString(cls.get(), "__attrs_attrs__");
}
// PyObject_GetAttrString returns null on error
PyErr_Clear();
return 0;
});
return check_cache->CachedLookup(o);
}
// Returns 1 if `o` is considered a sequence for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsSequenceHelper(PyObject* o) {
static auto* const check_cache = new CachedTypeCheck([](PyObject* to_check) {
int is_instance =
PyObject_IsInstance(to_check, GetCollectionsSequenceType().ptr());
// Don't cache a failed is_instance check.
if (is_instance == -1) return -1;
return static_cast<int>(is_instance != 0 && !IsString(to_check));
}); // We treat dicts and other mappings as special cases of sequences.
if (IsMappingHelper(o)) return true;
if (IsMappingViewHelper(o)) return true;
if (IsAttrsHelper(o)) return true;
if (PySet_Check(o) && !WarnedThatSetIsNotSequence) {
LOG_WARNING(
"Sets are not currently considered sequences, "
"but this may change in the future, "
"so consider avoiding using them.");
WarnedThatSetIsNotSequence = true;
}
return check_cache->CachedLookup(o);
}
using ValueIteratorPtr = std::unique_ptr<ValueIterator>;
// Iterate through dictionaries in a deterministic order by sorting the
// keys. Notice this means that we ignore the original order of
// `OrderedDict` instances. This is intentional, to avoid potential
// bugs caused by mixing ordered and plain dicts (e.g., flattening
// a dict but using a corresponding `OrderedDict` to pack it back).
class DictValueIterator : public ValueIterator {
public:
explicit DictValueIterator(PyObject* dict)
: dict_(dict), keys_(PyDict_Keys(dict)) {
if (PyList_Sort(keys_.get()) == -1) {
invalidate();
} else {
iter_.reset(PyObject_GetIter(keys_.get()));
}
}
PyObjectPtr next() override {
PyObjectPtr result;
PyObjectPtr key(PyIter_Next(iter_.get()));
if (key) {
// PyDict_GetItem returns a borrowed reference.
PyObject* elem = PyDict_GetItem(dict_, key.get());
if (elem) {
Py_INCREF(elem);
result.reset(elem);
} else {
PyErr_SetString(PyExc_RuntimeError,
"Dictionary was modified during iteration over it");
}
}
return result;
}
private:
PyObject* dict_;
PyObjectPtr keys_;
PyObjectPtr iter_;
};
// Iterate over mapping objects by sorting the keys first
class MappingValueIterator : public ValueIterator {
public:
explicit MappingValueIterator(PyObject* mapping)
: mapping_(mapping), keys_(PyMapping_Keys(mapping)) {
if (!keys_ || PyList_Sort(keys_.get()) == -1) {
invalidate();
} else {
iter_.reset(PyObject_GetIter(keys_.get()));
}
}
PyObjectPtr next() override {
PyObjectPtr result;
PyObjectPtr key(PyIter_Next(iter_.get()));
if (key) {
// Unlike PyDict_GetItem, PyObject_GetItem returns a new reference.
PyObject* elem = PyObject_GetItem(mapping_, key.get());
if (elem) {
result.reset(elem);
} else {
PyErr_SetString(PyExc_RuntimeError,
"Mapping was modified during iteration over it");
}
}
return result;
}
private:
PyObject* mapping_;
PyObjectPtr keys_;
PyObjectPtr iter_;
};
// Iterate over a sequence, by index.
class SequenceValueIterator : public ValueIterator {
public:
explicit SequenceValueIterator(PyObject* iterable)
: seq_(PySequence_Fast(iterable, "")),
size_(seq_.get() ? PySequence_Fast_GET_SIZE(seq_.get()) : 0),
index_(0) {}
PyObjectPtr next() override {
PyObjectPtr result;
if (index_ < size_) {
// PySequence_Fast_GET_ITEM returns a borrowed reference.
PyObject* elem = PySequence_Fast_GET_ITEM(seq_.get(), index_);
++index_;
if (elem) {
Py_INCREF(elem);
result.reset(elem);
}
}
return result;
}
private:
PyObjectPtr seq_;
const Py_ssize_t size_;
Py_ssize_t index_;
};
class AttrsValueIterator : public ValueIterator {
public:
explicit AttrsValueIterator(PyObject* nested) : nested_(nested) {
Py_INCREF(nested);
cls_.reset(PyObject_GetAttrString(nested_.get(), "__class__"));
if (cls_) {
attrs_.reset(PyObject_GetAttrString(cls_.get(), "__attrs_attrs__"));
if (attrs_) {
iter_.reset(PyObject_GetIter(attrs_.get()));
}
}
if (!iter_ || PyErr_Occurred()) invalidate();
}
PyObjectPtr next() override {
PyObjectPtr result;
PyObjectPtr item(PyIter_Next(iter_.get()));
if (item) {
PyObjectPtr name(PyObject_GetAttrString(item.get(), "name"));
result.reset(PyObject_GetAttr(nested_.get(), name.get()));
}
return result;
}
private:
PyObjectPtr nested_;
PyObjectPtr cls_;
PyObjectPtr attrs_;
PyObjectPtr iter_;
};
bool FlattenHelper(
PyObject* nested, PyObject* list,
const std::function<int(PyObject*)>& is_sequence_helper,
const std::function<ValueIteratorPtr(PyObject*)>& value_iterator_getter) {
// if nested is not a sequence, append itself and exit
int is_seq = is_sequence_helper(nested);
if (is_seq == -1) return false;
if (!is_seq) {
return PyList_Append(list, nested) != -1;
}
ValueIteratorPtr iter = value_iterator_getter(nested);
if (!iter->valid()) return false;
for (PyObjectPtr item = iter->next(); item; item = iter->next()) {
if (Py_EnterRecursiveCall(" in flatten")) {
return false;
}
const bool success = FlattenHelper(item.get(), list, is_sequence_helper,
value_iterator_getter);
Py_LeaveRecursiveCall();
if (!success) {
return false;
}
}
return true;
}
// Sets error using keys of 'dict1' and 'dict2'.
// 'dict1' and 'dict2' are assumed to be Python dictionaries.
void SetDifferentKeysError(PyObject* dict1, PyObject* dict2,
std::string* error_msg, bool* is_type_error) {
PyObjectPtr k1(PyMapping_Keys(dict1));
if (PyErr_Occurred() || k1.get() == nullptr) {
*error_msg =
("The two dictionaries don't have the same set of keys. Failed to "
"fetch keys.");
return;
}
PyObjectPtr k2(PyMapping_Keys(dict2));
if (PyErr_Occurred() || k2.get() == nullptr) {
*error_msg =
("The two dictionaries don't have the same set of keys. Failed to "
"fetch keys.");
return;
}
*is_type_error = false;
*error_msg = absl::StrCat(
"The two dictionaries don't have the same set of keys. "
"First structure has keys ",
PyObjectToString(k1.get()), ", while second structure has keys ",
PyObjectToString(k2.get()));
}
// Returns true iff there were no "internal" errors. In other words,
// errors that has nothing to do with structure checking.
// If an "internal" error occurred, the appropriate Python error will be
// set and the caller can propage it directly to the user.
//
// Both `error_msg` and `is_type_error` must be non-null. `error_msg` must
// be empty.
// Leaves `error_msg` empty if structures matched. Else, fills `error_msg`
// with appropriate error and sets `is_type_error` to true iff
// the error to be raised should be TypeError.
bool AssertSameStructureHelper(PyObject* o1, PyObject* o2, bool check_types,
std::string* error_msg, bool* is_type_error) {
DCHECK(error_msg);
DCHECK(is_type_error);
const bool is_seq1 = IsSequence(o1);
const bool is_seq2 = IsSequence(o2);
if (PyErr_Occurred()) return false;
if (is_seq1 != is_seq2) {
std::string seq_str = is_seq1 ? PyObjectToString(o1) : PyObjectToString(o2);
std::string non_seq_str =
is_seq1 ? PyObjectToString(o2) : PyObjectToString(o1);
*is_type_error = false;
*error_msg = absl::StrCat("Substructure \"", seq_str,
"\" is a sequence, while substructure \"",
non_seq_str, "\" is not");
return true;
}
// Got to scalars, so finished checking. Structures are the same.
if (!is_seq1) return true;
if (check_types) {
// Unwrap wrapt.ObjectProxy if needed.
PyObjectPtr o1_wrapped;
if (IsObjectProxy(o1)) {
o1_wrapped.reset(PyObject_GetAttrString(o1, "__wrapped__"));
o1 = o1_wrapped.get();
}
PyObjectPtr o2_wrapped;
if (IsObjectProxy(o2)) {
o2_wrapped.reset(PyObject_GetAttrString(o2, "__wrapped__"));
o2 = o2_wrapped.get();
}
const PyTypeObject* type1 = o1->ob_type;
const PyTypeObject* type2 = o2->ob_type;
// We treat two different namedtuples with identical name and fields
// as having the same type.
const PyObject* o1_tuple = IsNamedtuple(o1, true);
if (o1_tuple == nullptr) return false;
const PyObject* o2_tuple = IsNamedtuple(o2, true);
if (o2_tuple == nullptr) {
Py_DECREF(o1_tuple);
return false;
}
bool both_tuples = o1_tuple == Py_True && o2_tuple == Py_True;
Py_DECREF(o1_tuple);
Py_DECREF(o2_tuple);
if (both_tuples) {
const PyObject* same_tuples = SameNamedtuples(o1, o2);
if (same_tuples == nullptr) return false;
bool not_same_tuples = same_tuples != Py_True;
Py_DECREF(same_tuples);
if (not_same_tuples) {
*is_type_error = true;
*error_msg = absl::StrCat(
"The two namedtuples don't have the same sequence type. "
"First structure ",
PyObjectToString(o1), " has type ", type1->tp_name,
", while second structure ", PyObjectToString(o2), " has type ",
type2->tp_name);
return true;
}
} else if (type1 != type2
/* If both sequences are list types, don't complain. This allows
one to be a list subclass (e.g. _ListWrapper used for
automatic dependency tracking.) */
&& !(PyList_Check(o1) && PyList_Check(o2))
/* Two mapping types will also compare equal, making _DictWrapper
and dict compare equal. */
&& !(IsMappingHelper(o1) && IsMappingHelper(o2))) {
*is_type_error = true;
*error_msg = absl::StrCat(
"The two namedtuples don't have the same sequence type. "
"First structure ",
PyObjectToString(o1), " has type ", type1->tp_name,
", while second structure ", PyObjectToString(o2), " has type ",
type2->tp_name);
return true;
}
if (PyDict_Check(o1) && PyDict_Check(o2)) {
if (PyDict_Size(o1) != PyDict_Size(o2)) {
SetDifferentKeysError(o1, o2, error_msg, is_type_error);
return true;
}
PyObject* key;
Py_ssize_t pos = 0;
while (PyDict_Next(o1, &pos, &key, nullptr)) {
if (PyDict_GetItem(o2, key) == nullptr) {
SetDifferentKeysError(o1, o2, error_msg, is_type_error);
return true;
}
}
} else if (IsMappingHelper(o1)) {
// Fallback for custom mapping types. Instead of using PyDict methods
// which stay in C, we call iter(o1).
if (PyMapping_Size(o1) != PyMapping_Size(o2)) {
SetDifferentKeysError(o1, o2, error_msg, is_type_error);
return true;
}
PyObjectPtr iter(PyObject_GetIter(o1));
PyObject* key;
while ((key = PyIter_Next(iter.get())) != nullptr) {
if (!PyMapping_HasKey(o2, key)) {
SetDifferentKeysError(o1, o2, error_msg, is_type_error);
Py_DECREF(key);
return true;
}
Py_DECREF(key);
}
}
}
ValueIteratorPtr iter1 = GetValueIterator(o1);
ValueIteratorPtr iter2 = GetValueIterator(o2);
if (!iter1->valid() || !iter2->valid()) return false;
while (true) {
PyObjectPtr v1 = iter1->next();
PyObjectPtr v2 = iter2->next();
if (v1 && v2) {
if (Py_EnterRecursiveCall(" in assert_same_structure")) {
return false;
}
bool no_internal_errors = AssertSameStructureHelper(
v1.get(), v2.get(), check_types, error_msg, is_type_error);
Py_LeaveRecursiveCall();
if (!no_internal_errors) return false;
if (!error_msg->empty()) return true;
} else if (!v1 && !v2) {
// Done with all recursive calls. Structure matched.
return true;
} else {
*is_type_error = false;
*error_msg = absl::StrCat(
"The two structures don't have the same number of elements. ",
"First structure: ", PyObjectToString(o1),
". Second structure: ", PyObjectToString(o2));
return true;
}
}
}
} // namespace
bool IsSequence(PyObject* o) { return IsSequenceHelper(o) == 1; }
bool IsAttrs(PyObject* o) { return IsAttrsHelper(o) == 1; }
PyObject* Flatten(PyObject* nested) {
PyObject* list = PyList_New(0);
if (FlattenHelper(nested, list, IsSequenceHelper, GetValueIterator)) {
return list;
} else {
Py_DECREF(list);
return nullptr;
}
}
PyObject* IsNamedtuple(PyObject* o, bool strict) {
// Unwrap wrapt.ObjectProxy if needed.
PyObjectPtr o_wrapped;
if (IsObjectProxy(o)) {
o_wrapped.reset(PyObject_GetAttrString(o, "__wrapped__"));
o = o_wrapped.get();
}
// Must be subclass of tuple
if (!PyTuple_Check(o)) {
Py_RETURN_FALSE;
}
// If strict, o.__class__.__base__ must be tuple
if (strict) {
PyObject* klass = PyObject_GetAttrString(o, "__class__");
if (klass == nullptr) return nullptr;
PyObject* base = PyObject_GetAttrString(klass, "__base__");
Py_DECREF(klass);
if (base == nullptr) return nullptr;
const PyTypeObject* base_type = reinterpret_cast<PyTypeObject*>(base);
// built-in object types are singletons
bool tuple_base = base_type == &PyTuple_Type;
Py_DECREF(base);
if (!tuple_base) {
Py_RETURN_FALSE;
}
}
// o must have attribute '_fields' and every element in
// '_fields' must be a string.
int has_fields = PyObject_HasAttrString(o, "_fields");
if (!has_fields) {
Py_RETURN_FALSE;
}
PyObjectPtr fields(PyObject_GetAttrString(o, "_fields"));
int is_instance =
PyObject_IsInstance(fields.get(), GetCollectionsSequenceType().ptr());
if (is_instance == 0) {
Py_RETURN_FALSE;
} else if (is_instance == -1) {
return nullptr;
}
PyObjectPtr seq(PySequence_Fast(fields.get(), ""));
const Py_ssize_t s = PySequence_Fast_GET_SIZE(seq.get());
for (Py_ssize_t i = 0; i < s; ++i) {
// PySequence_Fast_GET_ITEM returns borrowed ref
PyObject* elem = PySequence_Fast_GET_ITEM(seq.get(), i);
if (!IsString(elem)) {
Py_RETURN_FALSE;
}
}
Py_RETURN_TRUE;
}
PyObject* SameNamedtuples(PyObject* o1, PyObject* o2) {
PyObject* f1 = PyObject_GetAttrString(o1, "_fields");
PyObject* f2 = PyObject_GetAttrString(o2, "_fields");
if (f1 == nullptr || f2 == nullptr) {
Py_XDECREF(f1);
Py_XDECREF(f2);
PyErr_SetString(
PyExc_RuntimeError,
"Expected namedtuple-like objects (that have _fields attr)");
return nullptr;
}
if (PyObject_RichCompareBool(f1, f2, Py_NE)) {
Py_RETURN_FALSE;
}
if (GetClassName(o1).compare(GetClassName(o2)) == 0) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
void AssertSameStructure(PyObject* o1, PyObject* o2, bool check_types) {
std::string error_msg;
bool is_type_error = false;
AssertSameStructureHelper(o1, o2, check_types, &error_msg, &is_type_error);
if (PyErr_Occurred()) {
// Don't hide Python exceptions while checking (e.g. errors fetching keys
// from custom mappings).
return;
}
if (!error_msg.empty()) {
PyErr_SetString(
is_type_error ? PyExc_TypeError : PyExc_ValueError,
absl::StrCat(
"The two structures don't have the same nested structure.\n\n",
"First structure: ", PyObjectToString(o1), "\n\nSecond structure: ",
PyObjectToString(o2), "\n\nMore specifically: ", error_msg)
.c_str());
}
}
ValueIteratorPtr GetValueIterator(PyObject* nested) {
if (PyDict_Check(nested)) {
return absl::make_unique<DictValueIterator>(nested);
} else if (IsMappingHelper(nested)) {
return absl::make_unique<MappingValueIterator>(nested);
} else if (IsAttrsHelper(nested)) {
return absl::make_unique<AttrsValueIterator>(nested);
} else {
return absl::make_unique<SequenceValueIterator>(nested);
}
}
namespace {
inline py::object pyo_or_throw(PyObject* ptr) {
if (PyErr_Occurred() || ptr == nullptr) {
throw py::error_already_set();
}
return py::reinterpret_steal<py::object>(ptr);
}
PYBIND11_MODULE(_tree, m) {
// Resolve `wrapt.ObjectProxy` at import time to avoid doing
// imports during function calls.
tree::GetWraptObjectProxyType();
m.def("assert_same_structure",
[](py::handle& o1, py::handle& o2, bool check_types) {
tree::AssertSameStructure(o1.ptr(), o2.ptr(), check_types);
if (PyErr_Occurred()) {
throw py::error_already_set();
}
});
m.def("is_sequence", [](py::handle& o) {
bool result = tree::IsSequence(o.ptr());
if (PyErr_Occurred()) {
throw py::error_already_set();
}
return result;
});
m.def("is_namedtuple", [](py::handle& o, bool strict) {
return pyo_or_throw(tree::IsNamedtuple(o.ptr(), strict));
});
m.def("is_attrs", [](py::handle& o) {
bool result = tree::IsAttrs(o.ptr());
if (PyErr_Occurred()) {
throw py::error_already_set();
}
return result;
});
m.def("same_namedtuples", [](py::handle& o1, py::handle& o2) {
return pyo_or_throw(tree::SameNamedtuples(o1.ptr(), o2.ptr()));
});
m.def("flatten", [](py::handle& nested) {
return pyo_or_throw(tree::Flatten(nested.ptr()));
});
}
} // namespace
} // namespace tree
|