File: ReflectionOperator.h

package info (click to toggle)
dmrgpp 6.06-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 113,900 kB
  • sloc: cpp: 80,986; perl: 14,772; ansic: 2,923; makefile: 83; sh: 17
file content (662 lines) | stat: -rw-r--r-- 21,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/*
Copyright (c) 2009, UT-Battelle, LLC
All rights reserved

[DMRG++, Version 2.0.0]
[by G.A., Oak Ridge National Laboratory]

UT Battelle Open Source Software License 11242008

OPEN SOURCE LICENSE

Subject to the conditions of this License, each
contributor to this software hereby grants, free of
charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), a
perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to use, copy,
modify, merge, publish, distribute, and/or sublicense
copies of the Software.

1. Redistributions of Software must retain the above
copyright and license notices, this list of conditions,
and the following disclaimer.  Changes or modifications
to, or derivative works of, the Software should be noted
with comments and the contributor and organization's
name.

2. Neither the names of UT-Battelle, LLC or the
Department of Energy nor the names of the Software
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission of UT-Battelle.

3. The software and the end-user documentation included
with the redistribution, with or without modification,
must include the following acknowledgment:

"This product includes software produced by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725  with the
Department of Energy."

*********************************************************
DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

*********************************************************


*/

/** \ingroup DMRG */
/*@{*/

/*! \file ReflectionOperator
 *
 *  Critical problems:
 *
 *  - support for fermionic reflections
 *
 *  Low priority work that needs to be done:
 *
 *  - support for bases that change from site to site
 *
 */
#ifndef REFLECTION_OPERATOR_H
#define REFLECTION_OPERATOR_H

#include "LAPACK.h"
#include "Matrix.h"
#include "PackIndices.h" // in PsimagLite
#include "ProgressIndicator.h"
#include "ReflectionTransform.h"
#include "Sort.h"

namespace Dmrg
{

template <typename LeftRightSuperType, typename ConcurrencyType>
class ReflectionOperator
{

	typedef PsimagLite::PackIndices PackIndicesType;
	typedef typename LeftRightSuperType::SparseMatrixType
	    SparseMatrixType;
	typedef typename LeftRightSuperType::RealType RealType;
	typedef typename SparseMatrixType::value_type ComplexOrRealType;
	typedef typename PsimagLite::Vector<ComplexOrRealType>::Type VectorType;
	typedef SparseVector<typename VectorType::value_type> SparseVectorType;
	typedef ReflectionTransform<RealType, SparseMatrixType> ReflectionTransformType;

	enum { AVAILABLE,
		NOT_AVAILABLE,
		COLOR };

public:

	ReflectionOperator(LeftRightSuperType& lrs,
	    ConcurrencyType& concurrency,
	    SizeType n0,
	    bool isEnabled,
	    SizeType expandSys)
	    : lrs_(lrs)
	    , concurrency_(concurrency)
	    , n0_(n0)
	    , progress_("ReflectionOperator", 0)
	    , isEnabled_(isEnabled)
	    , expandSys_(expandSys)
	    , reflectedLeft_(n0_, n0_)
	    , reflectedRight_(n0_, n0_)
	    , reflectionTransform_(false)
	{
		SizeType counter = 0;
		for (SizeType i = 0; i < reflectedLeft_.rank(); i++) {
			reflectedLeft_.setRow(i, counter);
			reflectedLeft_.pushCol(i);
			reflectedLeft_.pushValue(1);
			counter++;
		}

		reflectedLeft_.setRow(reflectedLeft_.rank(), counter);
		reflectedRight_ = reflectedLeft_;
	}

	void update(const typename PsimagLite::Vector<SizeType>::Type& sectors)
	{
		if (!isEnabled_)
			return;
		//		SparseMatrixType sSuper;
		//		setS(sSuper);
		SparseMatrixType sSector;
		setSsector(sSector, sectors);
		updateReflected();
		//		extractCurrentSector(sSector,sSuper,sectors);
		reflectionTransform_.update(sSector);
	}

	template <typename SomeStructType>
	void updateKeptStates(SizeType& keptStates,
	    const SomeStructType& cacheLeft,
	    const SomeStructType& cacheRight)
	{
		const PsimagLite::Matrix<ComplexOrRealType>& transform1 = cacheLeft.transform;
		const PsimagLite::Matrix<ComplexOrRealType>& transform2 = cacheRight.transform;

		if (!isEnabled_)
			return;
		if (keptStates >= transform1.n_col())
			return;
		PsimagLite::OstringStream msg;
		msg << "updateKeptStates";
		progress_.printline(msg, std::cout);

		check(cacheLeft.removedIndices, reflectedLeft_, transform1, transform2);
		check(cacheRight.removedIndices, reflectedRight_, transform2, transform1);
	}

	void transform(SparseMatrixType& matrixA,
	    SparseMatrixType& matrixB,
	    const SparseMatrixType& matrix) const
	{
		assert(isEnabled_);
		reflectionTransform_.transform(matrixA, matrixB, matrix);
	}

	template <typename SomeVectorType>
	void setInitState(const SomeVectorType& initVector,
	    SomeVectorType& initVector1,
	    SomeVectorType& initVector2) const
	{
		assert(isEnabled_);
		return reflectionTransform_.setInitState(initVector, initVector1, initVector2);
	}

	RealType setGroundState(VectorType& gs,
	    const RealType& gsEnergy1,
	    const VectorType& gsVector1,
	    const RealType& gsEnergy2,
	    const VectorType& gsVector2) const
	{
		assert(isEnabled_);
		if (gsEnergy1 <= gsEnergy2) {
			reflectionTransform_.setGs(gs, gsVector1, 1.0);
			return gsEnergy1;
		}
		reflectionTransform_.setGs(gs, gsVector2, -1.0);
		return gsEnergy2;
	}

	const LeftRightSuperType& leftRightSuper() const { return lrs_; }

	bool isEnabled() const { return isEnabled_; }

	void changeBasis(const PsimagLite::Matrix<ComplexOrRealType>& transform1,
	    const PsimagLite::Matrix<ComplexOrRealType>& transform2)
	{
		if (!isEnabled_)
			return;

		SparseMatrixType newreflected;

		changeBasis(newreflected, reflectedLeft_, transform1, transform2);
		//		if (newreflected.rank()!=reflectedLeft_.rank()) {
		//			printFullMatrix(newreflected,"newreflectedLeft",0,1e-6);
		//			transform1.print(std::cerr,1e-6);
		//			transform2.print(std::cerr,1e-6);
		//		}
		reflectedLeft_ = newreflected;
		// normalize(reflectedLeft_);

		changeBasis(newreflected, reflectedRight_, transform2, transform1);
		reflectedRight_ = newreflected;
		// normalize(reflectedRight_);

		//		diagBasis();
	}

	void diagBasis()
	{
		//		SparseMatrixType sSector;
		//		setSsector(sSector);
		//		reflectionTransform_.update(sSector);

		//		const SparseMatrixType& Q1 = reflectionTransform_.getTransform(0);
		//		const SparseMatrixType& Qm = reflectionTransform_.getTransform(1);

		//		SparseMatrixType transf;
		//		transformPartialLeft(transf,Q1,Qm);
		//		PsimagLite::Matrix<ComplexOrRealType> fullm;
		//		crsMatrixToFullMatrix(fullm,transf);
		//		lrs_.leftNonConst().changeBasisDirect(fullm,concurrency_);

		//		transformPartialRight(transf,Q1,Qm);
		//		crsMatrixToFullMatrix(fullm,transf);
		//		lrs_.rightNonConst().changeBasisDirect(fullm,concurrency_);
	}

private:

	//	void transformPartialLeft(SparseMatrixType& tr,const SparseMatrixType& Q1,const SparseMatrix& Qm) const
	//	{

	//		SizeType ns = lrs_.left().size();
	//		PackIndicesType pack2(ns/n0_);
	//		PackIndicesType pack3(n0_);
	//		PackIndicesType pack1(ns);
	//		assert(reflectedLeft_.rank()==ns/n0_);
	//		assert(reflectedRight_.rank()==ns/n0_);
	//		typename PsimagLite::Vector<int>::Type ptr(total,-1);
	//		typename PsimagLite::Vector<SizeType>::Type index(total,0);
	//		typename PsimagLite::Vector<ComplexOrRealType>::Type temp(total,0);

	//		SizeType counter = 0;
	//		for (SizeType i=0;i<total;i++) {
	//			SizeType x = 0, y = 0;
	//			pack1.unpack(x,y,lrs_.super().permutation(i));
	//			tr.setRow(x,counter);
	//			for (int k=Q1.getRowPtr(i);k<Q1.getRowPtr(i+1);k++) {
	//				SizeType col = Q1.getCol(k);
	//				pack1.unpack(xprime,yprime,lrs_.super().permutation(i));

	//	}

	//	void transformPartial(SparseMatrixType& s1,const PsimagLite::Matrix<ComplexOrRealType>& fullm)
	//	{
	//		SparseMatrixType m1(fullm);
	//		SparseMatrixType m1Conj;
	//		transposeConjugate(m1Conj,m1);
	//		SparseMatrixType tmp = s1*m1Conj;
	//		s1 = m1*tmp;
	//		s1.checkValidity();
	//	}

	//	void transformPartial(SparseMatrixType& s1,const typename PsimagLite::Vector<RealType>::Type& eigs)
	//	{
	//		SizeType n = s1.rank();
	//		s1.resize(n);
	//		SizeType counter = 0;
	//		for (SizeType i=0;i<n;i++) {
	//			s1.setRow(i,counter);
	//			s1.pushCol(i);
	//			s1.pushValue(eigs[i]);
	//			counter++;
	//		}
	//		s1.setRow(n,counter);
	//		s1.checkValidity();
	//	}

	void check(const typename PsimagLite::Vector<SizeType>::Type& removedIndices,
	    const SparseMatrixType& reflected,
	    const PsimagLite::Matrix<ComplexOrRealType>& transform1,
	    const PsimagLite::Matrix<ComplexOrRealType>& transform2)
	{

		SparseMatrixType newreflected;

		changeBasis(newreflected, reflected, transform1, transform2);

		//		RealType eps = 1e-6;
		//		printFullMatrix(newreflected,"newreflected",0,eps);

		typename PsimagLite::Vector<SizeType>::Type x;
		for (SizeType ii = 0; ii < removedIndices.size(); ii++) {
			SizeType i = removedIndices[ii];
			for (int k = newreflected.getRowPtr(i); k < newreflected.getRowPtr(i + 1); k++) {
				ComplexOrRealType val = newreflected.getValue(k);
				if (isAlmostZero(val, 1e-8))
					continue;
				SizeType col = newreflected.getCol(k);
				x.push_back(col);
			}
		}
		Sort<typename PsimagLite::Vector<SizeType>::Type> sort;
		typename PsimagLite::Vector<SizeType>::Type iperm(x.size());
		sort.sort(x, iperm);

		typename PsimagLite::Vector<SizeType>::Type diffs;
		getDifferences(diffs, x, removedIndices);
		for (SizeType i = 0; i < diffs.size(); i++)
			std::cerr << "diffs[" << i << "]=" << diffs[i] << "\n";

		for (SizeType i = 0; i < x.size(); i++)
			std::cerr << "x[" << i << "]=" << x[i] << "\n";

		for (SizeType i = 0; i < removedIndices.size(); i++)
			std::cerr << "removed[" << i << "]=" << removedIndices[i] << "\n";
	}

	void getDifferences(typename PsimagLite::Vector<SizeType>::Type& diffs,
	    const typename PsimagLite::Vector<SizeType>::Type& x1,
	    const typename PsimagLite::Vector<SizeType>::Type& x2) const
	{
		typename PsimagLite::Vector<SizeType>::const_iterator::Type it2 = x2.begin();
		for (SizeType i = 0; i < x1.size(); i++) {
			typename PsimagLite::Vector<SizeType>::const_iterator::Type it = find(it2, x2.end(), x1[i]);
			if (it == x2.end()) {
				diffs.push_back(x1[i]);
				continue;
			}
			it2 = it + 1;
		}
	}

	void normalize(SparseMatrixType& A) const
	{
		SizeType n = A.rank();
		typename PsimagLite::Vector<ComplexOrRealType>::Type sum(n, 0.0);
		for (SizeType i = 0; i < n; i++) {
			for (int k = A.getRowPtr(i); k < A.getRowPtr(i + 1); k++) {
				ComplexOrRealType val = A.getValue(k);
				sum[i] += PsimagLite::conj(val) * val;
			}
		}

		for (SizeType i = 0; i < n; i++) {
			// assert(isAlmostZero(sum[i]-1.0,1e-6));
			assert(!isAlmostZero(sum[i], 1e-6));
			ComplexOrRealType x = 1.0 / sqrt(sum[i]);
			for (int k = A.getRowPtr(i); k < A.getRowPtr(i + 1); k++)
				A.setValues(k, A.getValue(k) * x);
		}
	}

	void changeBasis(SparseMatrixType& newreflected,
	    const SparseMatrixType& reflected,
	    const PsimagLite::Matrix<ComplexOrRealType>& transform1,
	    const PsimagLite::Matrix<ComplexOrRealType>& transform2)
	{
		assert(reflected.rank() == transform1.n_row());
		assert(reflected.rank() == transform2.n_row());

		SizeType total = transform1.n_col();
		newreflected.resize(total);
		typename PsimagLite::Vector<int>::Type ptr(total, -1);
		typename PsimagLite::Vector<SizeType>::Type index(total, 0);
		typename PsimagLite::Vector<ComplexOrRealType>::Type temp(total, 0);
		std::cerr << "transform1=" << transform1.n_row() << "x" << transform1.n_col() << "\n";
		std::cerr << "transform2=" << transform2.n_row() << "x" << transform2.n_col() << "\n";

		SizeType counter = 0;
		for (SizeType x = 0; x < total; x++) {
			newreflected.setRow(x, counter);

			SizeType itemp = 0;
			for (SizeType xprime = 0; xprime < transform1.n_row(); xprime++) {
				ComplexOrRealType wl1 = transform1(xprime, x);
				//				ComplexOrRealType wl1 =  transform(x,xprime);
				for (int k = reflected.getRowPtr(xprime); k < reflected.getRowPtr(xprime + 1); k++) {
					SizeType xsecond = reflected.getCol(k);
					ComplexOrRealType r = reflected.getValue(k);
					for (SizeType xthird = 0; xthird < transform2.n_col(); xthird++) {
						//						ComplexOrRealType val = wl1 * r * transform(xthird,xsecond);
						ComplexOrRealType val = wl1 * r * transform2(xsecond, xthird);
						// if (isAlmostZero(val)) continue;
						if (ptr[xthird] < 0) {
							ptr[xthird] = itemp;
							temp[ptr[xthird]] = val;
							index[ptr[xthird]] = xthird;
							itemp++;
						} else {
							temp[ptr[xthird]] += val;
						}
					}
				}
			}
			for (SizeType s = 0; s < itemp; s++) {
				newreflected.pushCol(index[s]);
				newreflected.pushValue(temp[s]);
				ptr[index[s]] = -1;
			}
			counter += itemp;
		}
		newreflected.setRow(newreflected.rank(), counter);
		newreflected.checkValidity();
	}

	void setSsector(SparseMatrixType& sSector, const typename PsimagLite::Vector<SizeType>::Type& sectors) const
	{
		assert(sectors.size() == 1);
		SizeType m = sectors[0];
		SizeType offset = lrs_.super().partition(m);
		SizeType total = lrs_.super().partition(m + 1) - offset;
		setSsector(sSector, total, offset);
	}

	void setSsector(SparseMatrixType& sSector, SizeType total = 0, SizeType offset = 0) const
	{
		if (total == 0)
			total = lrs_.super().size();
		sSector.resize(total);
		SizeType counter = 0;
		SizeType ns = lrs_.left().size();
		PackIndicesType pack2(ns / n0_);
		PackIndicesType pack3(n0_);
		PackIndicesType pack1(ns);
		assert(reflectedLeft_.rank() == ns / n0_);
		assert(reflectedRight_.rank() == ns / n0_);
		typename PsimagLite::Vector<int>::Type ptr(total, -1);
		typename PsimagLite::Vector<SizeType>::Type index(total, 0);
		typename PsimagLite::Vector<ComplexOrRealType>::Type temp(total, 0);

		for (SizeType i = 0; i < total; i++) {
			sSector.setRow(i, counter);
			SizeType x = 0, y = 0;
			pack1.unpack(x, y, lrs_.super().permutation(i + offset));

			SizeType x0 = 0, x1 = 0;
			pack2.unpack(x0, x1, lrs_.left().permutation(x));

			SizeType y0 = 0, y1 = 0;
			pack3.unpack(y0, y1, lrs_.right().permutation(y));

			SizeType itemp = 0;

			for (int k = reflectedLeft_.getRowPtr(x0); k < reflectedLeft_.getRowPtr(x0 + 1); k++) {
				ComplexOrRealType val1 = reflectedLeft_.getValue(k);
				for (int k2 = reflectedRight_.getRowPtr(y1); k2 < reflectedRight_.getRowPtr(y1 + 1); k2++) {
					ComplexOrRealType val2 = val1 * reflectedRight_.getValue(k2);
					if (isAlmostZero(val2))
						continue;
					SizeType x0prime = reflectedLeft_.getCol(k);
					SizeType xprime = pack3.pack(x1, x0prime, lrs_.right().permutationInverse());

					SizeType y1prime = reflectedRight_.getCol(k2);
					SizeType yprime = pack2.pack(y1prime, y0, lrs_.left().permutationInverse());

					SizeType iprime = pack1.pack(yprime, xprime, lrs_.super().permutationInverse());
					assert(iprime >= offset && iprime < offset + total);
					SizeType col = iprime - offset;
					if (ptr[col] < 0) {
						ptr[col] = itemp;
						temp[ptr[col]] = val2;
						index[ptr[col]] = col;
						itemp++;
					} else {
						temp[ptr[col]] += val2;
					}
				}
			}
			ComplexOrRealType val = 0.0;
			for (SizeType s = 0; s < itemp; s++) {
				sSector.pushCol(index[s]);
				sSector.pushValue(temp[s]);
				val += PsimagLite::conj(temp[s]) * temp[s];
				ptr[index[s]] = -1;
				counter++;
			}
			if (isAlmostZero(val, 1e-8)) {
				std::cerr << "i=" << i << " x0=" << x0 << " x1=" << x1 << " y0=" << y0 << " y1=" << y1 << "\n";
			}
		}
		sSector.setRow(total, counter);
		sSector.checkValidity();

//		printSparseMatrix(sSector,"sSector",1e-3);
#ifndef NDEBUG
		SparseMatrixType tmp;
		multiply(tmp, sSector, sSector);
		bool b = isTheIdentity(tmp, 1e-5);
		if (b)
			return;
		hasZeroRows(sSector, true);
		printFullMatrix(sSector, "sSector");
		printFullMatrix(tmp, "sSector*sSector");
		assert(false);
#endif
	}

	bool hasZeroRows(const SparseMatrixType& sSector, bool verbose) const
	{
		bool flag = false;
		SizeType n = sSector.rank();
		for (SizeType i = 0; i < n; i++) {
			ComplexOrRealType sum = 0.0;
			for (int k = sSector.getRowPtr(i); k < sSector.getRowPtr(i + 1); k++) {
				ComplexOrRealType val = sSector.getValue(k);
				sum += PsimagLite::conj(val) * val;
			}
			if (isAlmostZero(sum, 1e-4)) {
				flag = true;
				if (verbose)
					std::cerr << "zero row=" << i << "\n";
			}
		}
		return flag;
	}

	void printSparseMatrix(SparseMatrixType& s1, const PsimagLite::String& label, const RealType& eps) const
	{
		std::cout << label << "\n";
		for (SizeType i = 0; i < s1.rank(); i++) {
			for (int k = s1.getRowPtr(i); k < s1.getRowPtr(i + 1); k++) {
				ComplexOrRealType val = s1.getValue(k);
				if (isAlmostZero(val, eps))
					continue;
				std::cout << (i + 1) << " " << (1 + s1.getCol(k)) << " " << val << "\n";
			}
		}
	}

	void truncate(SparseMatrixType& reflectedFinal,
	    const SparseMatrixType& reflected,
	    SizeType keptstates)
	{
		//		SizeType n = reflected.rank();
		//		if (keptstates >= n) {
		reflectedFinal = reflected;
		return;
		//		}

		//		reflectedFinal.resize(keptstates);
		//		SizeType counterl = 0;

		//		typename PsimagLite::Vector<ComplexOrRealType>::Type sum(keptstates,0.0);
		//		for (SizeType i=0;i<keptstates;i++) {
		//			reflectedFinal.setRow(i,counterl);
		//			for (int k = reflected.getRowPtr(i); k < reflected.getRowPtr(i+1);k++) {
		//				SizeType col = reflected.getCol(k);
		//				if (col>=keptstates) continue;
		//				ComplexOrRealType val = reflected.getValue(k);
		//				reflectedFinal.pushCol(col);
		//				reflectedFinal.pushValue(val);
		//				counterl++;
		//				sum[i] += PsimagLite::conj(val) * val;
		//			}

		//		}
		//		reflectedFinal.setRow(reflectedFinal.rank(),counterl);
		//		reflectedFinal.checkValidity();

		//		// normalize
		//		for (SizeType i=0;i<reflectedFinal.rank();i++) {
		//			assert(!isAlmostZero(sum[i],1e-8));
		//			ComplexOrRealType x = 1.0/sqrt(sum[i]);
		//			for (int k = reflectedFinal.getRowPtr(i); k < reflectedFinal.getRowPtr(i+1);k++)
		//				reflectedFinal.setValues(k,reflectedFinal.getValue(k)*x);
		//		}
		//		reflectedFinal.checkValidity();
	}

	void updateReflected()
	{
		SizeType ns = lrs_.left().size();
		PackIndicesType pack2(ns / n0_);
		PackIndicesType pack3(n0_);
		SparseMatrixType reflectedLeft(ns, ns);

		SizeType counter = 0;
		for (SizeType x = 0; x < ns; x++) {
			reflectedLeft.setRow(x, counter);
			SizeType x0 = 0, x1 = 0;
			pack2.unpack(x0, x1, lrs_.left().permutation(x));
			for (int k = reflectedLeft_.getRowPtr(x0); k < reflectedLeft_.getRowPtr(x0 + 1); k++) {
				SizeType x0r = reflectedLeft_.getCol(k);
				SizeType col = pack3.pack(x1, x0r, lrs_.right().permutationInverse());
				ComplexOrRealType val = reflectedLeft_.getValue(k);
				// if (isAlmostZero(val)) continue;
				reflectedLeft.pushCol(col);
				reflectedLeft.pushValue(val);
				counter++;
			}
		}
		reflectedLeft.setRow(ns, counter);
		reflectedLeft.checkValidity();
		reflectedLeft_ = reflectedLeft;

		SparseMatrixType reflectedRight(ns, ns);
		counter = 0;
		for (SizeType x = 0; x < ns; x++) {
			SizeType x0 = 0, x1 = 0;
			reflectedRight.setRow(x, counter);
			pack3.unpack(x0, x1, lrs_.right().permutation(x));
			for (int k = reflectedRight_.getRowPtr(x1); k < reflectedRight_.getRowPtr(x1 + 1); k++) {
				SizeType x1r = reflectedRight_.getCol(k);
				ComplexOrRealType val = reflectedRight_.getValue(k);
				// if (isAlmostZero(val)) continue;
				SizeType col = pack2.pack(x1r, x0, lrs_.left().permutationInverse());
				reflectedRight.pushCol(col);
				reflectedRight.pushValue(val);
				counter++;
			}
		}
		reflectedRight.setRow(ns, counter);
		reflectedRight.checkValidity();
		reflectedRight_ = reflectedRight;
	}

	LeftRightSuperType& lrs_;
	ConcurrencyType& concurrency_;
	SizeType n0_; // hilbert size of one site
	PsimagLite::ProgressIndicator progress_;
	bool isEnabled_;
	SizeType expandSys_;
	SparseMatrixType reflectedLeft_, reflectedRight_;
	ReflectionTransformType reflectionTransform_;
}; // class ReflectionOperator

} // namespace Dmrg

/*@}*/
#endif // REFLECTION_OPERATOR_H