1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/*
Copyright (c) 2009, UT-Battelle, LLC
All rights reserved
[DMRG++, Version 2.0.0]
[by G.A., Oak Ridge National Laboratory]
UT Battelle Open Source Software License 11242008
OPEN SOURCE LICENSE
Subject to the conditions of this License, each
contributor to this software hereby grants, free of
charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), a
perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to use, copy,
modify, merge, publish, distribute, and/or sublicense
copies of the Software.
1. Redistributions of Software must retain the above
copyright and license notices, this list of conditions,
and the following disclaimer. Changes or modifications
to, or derivative works of, the Software should be noted
with comments and the contributor and organization's
name.
2. Neither the names of UT-Battelle, LLC or the
Department of Energy nor the names of the Software
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission of UT-Battelle.
3. The software and the end-user documentation included
with the redistribution, with or without modification,
must include the following acknowledgment:
"This product includes software produced by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the
Department of Energy."
*********************************************************
DISCLAIMER
THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.
*********************************************************
*/
/** \ingroup DMRG */
/*@{*/
/*! \file ReflectionTransform
*
*
*/
#ifndef reflectionTRANSFORM_H
#define reflectionTRANSFORM_H
#include "LAPACK.h"
#include "Matrix.h"
#include "PackIndices.h" // in PsimagLite
#include "ProgressIndicator.h"
#include "ReflectionBasis.h"
#include "Sort.h"
namespace Dmrg
{
template <typename RealType, typename SparseMatrixType>
class ReflectionTransform
{
typedef typename SparseMatrixType::value_type ComplexOrRealType;
typedef typename PsimagLite::Vector<ComplexOrRealType>::Type VectorType;
typedef SparseVector<typename VectorType::value_type> SparseVectorType;
typedef ReflectionBasis<RealType, SparseMatrixType> ReflectionBasisType;
public:
ReflectionTransform(bool idebug)
: idebug_(idebug)
{
}
void update(const SparseMatrixType& sSector)
{
ReflectionBasisType reflectionBasis(sSector, idebug_);
plusSector_ = reflectionBasis.R(1.0).rank();
computeTransform(Q1_, reflectionBasis, 1.0);
computeTransform(Qm_, reflectionBasis, -1.0);
// SparseMatrixType Q;
// computeFullQ(Q,Q1_,Qm_);
// split(Q);
if (!idebug_)
return;
printFullMatrix(Q1_, "Q1");
printFullMatrix(Qm_, "Qm");
}
void transform(SparseMatrixType& dest1,
SparseMatrixType& destm,
const SparseMatrixType& H) const
{
SparseMatrixType HQ1, HQm;
multiply(HQ1, H, Q1_);
multiply(HQm, H, Qm_);
if (idebug_) {
printFullMatrix(H, "OriginalHamiltonian");
printFullMatrix(HQm, "HQm");
printFullMatrix(HQ1, "HQ1");
}
SparseMatrixType Q1t, Qmt;
transposeConjugate(Q1t, Q1_);
transposeConjugate(Qmt, Qm_);
RealType norm1 = getNorm(Q1t, Q1_);
RealType normm = getNorm(Qmt, Qm_);
multiply(dest1, Q1t, HQ1);
reshape(dest1, plusSector_);
dest1 *= (1.0 / norm1);
assert(isHermitian(dest1));
SizeType minusSector = H.rank() - plusSector_;
multiply(destm, Qmt, HQm);
reshape(destm, minusSector);
destm *= (1.0 / normm);
assert(isHermitian(destm));
if (idebug_) {
std::cerr << "norm1=" << norm1 << " normm=" << normm << "\n";
std::cerr << "plusSector=" << plusSector_ << " minusSector=" << minusSector << "\n";
printFullMatrix(dest1, "dest1");
printFullMatrix(destm, "destm");
}
#ifndef NDEBUG
// checkTransform(Qmt,HQ1);
// checkTransform(Q1t,HQm);
// SparseMatrixType A;
// multiply(A,Q1t,Q1_);
// bool b = isThePartialIdentity(A,plusSector_,1e-5);
// if (!b) {
// printFullMatrix(A,"A");
// assert(b);
// }
// multiply(A,Qmt,Qm_);
// b = isThePartialIdentity(A,A.rank()-plusSector_,1e-5);
// if (!b) {
// printFullMatrix(A,"A");
// assert(b);
// }
#endif
}
bool isThePartialIdentity(const SparseMatrixType& A, SizeType partialSize, const RealType& eps = 1e-6) const
{
for (SizeType i = 0; i < partialSize; i++) {
for (int k = A.getRowPtr(i); k < A.getRowPtr(i + 1); k++) {
SizeType col = A.getCol(k);
if (col >= partialSize)
continue;
ComplexOrRealType val = A.getValue(k);
if (i == col && !isAlmostZero(val - 1.0, eps))
return false;
if (i != col && !isAlmostZero(val, eps))
return false;
}
}
return true;
}
void setGs(VectorType& gs, const VectorType& v, const RealType& sector) const
{
const SparseMatrixType& Q = (sector > 0) ? Q1_ : Qm_;
multiply(gs, Q, v);
RealType norma = PsimagLite::norm(gs);
gs /= norma;
}
template <typename SomeVectorType>
void setInitState(const SomeVectorType& initVector,
SomeVectorType& initVector1,
SomeVectorType& initVector2) const
{
SizeType minusSector = initVector.size() - plusSector_;
initVector1.resize(plusSector_);
initVector2.resize(minusSector);
for (SizeType i = 0; i < initVector.size(); i++) {
if (i < plusSector_)
initVector1[i] = initVector[i];
else
initVector2[i - plusSector_] = initVector[i];
}
}
private:
RealType getNorm(const SparseMatrixType& A, const SparseMatrixType& B) const
{
SparseMatrixType C;
multiply(C, A, B);
for (SizeType i = 0; i < C.rank(); i++) {
for (int k = C.getRowPtr(i); k < C.getRowPtr(i + 1); k++) {
SizeType col = C.getCol(k);
if (col == i) {
return PsimagLite::real(C.getValue(k));
}
}
}
assert(false);
return 0;
}
void reshape(SparseMatrixType& A, SizeType n2) const
{
SparseMatrixType B(n2, n2);
SizeType counter = 0;
for (SizeType i = 0; i < n2; i++) {
B.setRow(i, counter);
for (int k = A.getRowPtr(i); k < A.getRowPtr(i + 1); k++) {
SizeType col = A.getCol(k);
ComplexOrRealType val = A.getValue(k);
if (col >= n2) {
assert(isAlmostZero(val, 1e-5));
continue;
}
B.pushCol(col);
B.pushValue(val);
counter++;
}
}
#ifndef NDEBUG
for (SizeType i = n2; i < A.rank(); i++) {
for (int k = A.getRowPtr(i); k < A.getRowPtr(i + 1); k++) {
ComplexOrRealType val = A.getValue(k);
assert(isAlmostZero(val, 1e-5));
}
}
#endif
B.setRow(n2, counter);
B.checkValidity();
A = B;
}
void checkTransform(const SparseMatrixType& A, const SparseMatrixType& B) const
{
SparseMatrixType C;
multiply(C, A, B);
bool b = isZero(C, 1e-5);
if (b)
return;
printFullMatrix(A, "MatrixA");
printFullMatrix(B, "MatrixB");
printFullMatrix(C, "MatrixC");
assert(b);
}
void computeTransform(SparseMatrixType& Q1,
const ReflectionBasisType& reflectionBasis,
const RealType& sector)
{
const SparseMatrixType& R1 = reflectionBasis.R(sector);
SparseMatrixType R1Inverse;
reflectionBasis.inverseTriangular(R1Inverse, R1, sector);
SparseMatrixType T1;
buildT1(T1, reflectionBasis, sector);
bool strict = false; // matrices below have different ranks!!
multiply(Q1, T1, R1Inverse, strict);
if (!idebug_)
return;
printFullMatrix(R1Inverse, "R1Inverse");
printFullMatrix(T1, "T1");
}
void computeFullQ(SparseMatrixType& Q,
const SparseMatrixType& Q1,
const SparseMatrixType& Qm) const
{
SizeType n = Q1.rank();
typename PsimagLite::Vector<ComplexOrRealType>::Type sum(n, 0.0);
SizeType counter = 0;
Q.resize(n);
SizeType minusSector = n - plusSector_;
for (SizeType i = 0; i < n; i++) {
Q.setRow(i, counter);
// add Q1
for (int k = Q1.getRowPtr(i); k < Q1.getRowPtr(i + 1); k++) {
SizeType col = Q1.getCol(k);
if (col >= plusSector_)
continue;
ComplexOrRealType val = Q1.getValue(k);
Q.pushValue(val);
Q.pushCol(col);
sum[i] += PsimagLite::conj(val) * val;
counter++;
}
// add Qm
for (int k = Qm.getRowPtr(i); k < Qm.getRowPtr(i + 1); k++) {
SizeType col = Qm.getCol(k);
if (col >= minusSector)
continue;
ComplexOrRealType val = Qm.getValue(k);
Q.pushValue(val);
Q.pushCol(Qm.getCol(k) + plusSector_);
sum[i] += PsimagLite::conj(val) * val;
counter++;
}
}
Q.setRow(Q.rank(), counter);
// normalize
// for (SizeType i=0;i<n;i++) {
// if (isAlmostZero(sum[i],1e-10)) continue;
// sum[i] = 1.0/sqrt(sum[i]);
// for (int k = Q.getRowPtr(i);k<Q.getRowPtr(i+1);k++) {
// Q.setValues(k,Q.getValue(k)*sum[i]);
// }
// }
Q.checkValidity();
#ifndef NDEBUG
SparseMatrixType Qt;
transposeConjugate(Qt, Q);
SparseMatrixType A;
multiply(A, Qt, Q);
if (!isTheIdentity(A, 1e-5)) {
printFullMatrix(Q, "Q");
printFullMatrix(A, "A");
assert(false);
}
#endif
if (!idebug_)
return;
printFullMatrix(Q, "Q");
}
void split(const SparseMatrixType& Q)
{
SizeType n = Q.rank();
Q1_.resize(n);
SizeType counter = 0;
for (SizeType i = 0; i < n; i++) {
Q1_.setRow(i, counter);
for (int k = Q.getRowPtr(i); k < Q.getRowPtr(i + 1); k++) {
SizeType col = Q.getCol(k);
if (col >= plusSector_)
continue;
Q1_.pushCol(col);
Q1_.pushValue(Q.getValue(k));
counter++;
}
}
Q1_.setRow(Q1_.rank(), counter);
counter = 0;
Qm_.resize(n);
for (SizeType i = 0; i < n; i++) {
Qm_.setRow(i, counter);
for (int k = Q.getRowPtr(i); k < Q.getRowPtr(i + 1); k++) {
SizeType col = Q.getCol(k);
if (col < plusSector_)
continue;
Qm_.pushCol(col - plusSector_);
Qm_.pushValue(Q.getValue(k));
counter++;
}
}
Qm_.setRow(Qm_.rank(), counter);
}
void buildT1(SparseMatrixType& T1final,
const ReflectionBasisType& reflectionBasis,
const RealType& sector) const
{
const typename PsimagLite::Vector<SizeType>::Type& ipPosOrNeg = reflectionBasis.ipPosOrNeg(sector);
const SparseMatrixType& reflection = reflectionBasis.reflection();
SizeType n = reflection.rank();
SparseMatrixType T1(n, n);
SizeType counter = 0;
for (SizeType i = 0; i < n; i++) {
T1.setRow(i, counter);
bool hasDiagonal = false;
for (int k = reflection.getRowPtr(i); k < reflection.getRowPtr(i + 1); k++) {
SizeType col = reflection.getCol(k);
ComplexOrRealType val = reflection.getValue(k);
if (col == i) {
val += sector;
hasDiagonal = true;
}
val *= sector;
if (isAlmostZero(val, 1e-10))
continue;
T1.pushCol(col);
T1.pushValue(val);
counter++;
}
if (!hasDiagonal) {
T1.pushCol(i);
T1.pushValue(1.0);
counter++;
}
}
T1.setRow(n, counter);
T1.checkValidity();
// permute columns now:
typename PsimagLite::Vector<int>::Type inversePermutation(n, -1);
for (SizeType i = 0; i < ipPosOrNeg.size(); i++)
inversePermutation[ipPosOrNeg[i]] = i;
T1final.resize(n);
counter = 0;
typename PsimagLite::Vector<ComplexOrRealType>::Type sum(n, 0.0);
for (SizeType i = 0; i < n; i++) {
T1final.setRow(i, counter);
for (int k = T1.getRowPtr(i); k < T1.getRowPtr(i + 1); k++) {
int col = inversePermutation[T1.getCol(k)];
if (col < 0)
continue;
ComplexOrRealType val = T1.getValue(k);
if (isAlmostZero(val, 1e-10))
continue;
assert(SizeType(col) < ipPosOrNeg.size());
T1final.pushCol(col);
T1final.pushValue(val);
sum[i] += PsimagLite::conj(val) * val;
counter++;
}
}
T1final.setRow(n, counter);
T1final.checkValidity();
// normalize T1
// for (SizeType i=0;i<n;i++) {
// if (isAlmostZero(sum[i],1e-12)) continue;
// sum[i] = 1.0/sqrt(sum[i]);
// for (int k = T1final.getRowPtr(i);k<T1final.getRowPtr(i+1);k++)
// T1final.setValues(k,T1final.getValue(k) * sum[i]);
// }
}
bool idebug_;
SizeType plusSector_;
SparseMatrixType Q1_, Qm_;
}; // class ReflectionTransform
} // namespace Dmrg
/*@}*/
#endif // reflectionTRANSFORM_H
|