File: RightLeftLocal.h

package info (click to toggle)
dmrgpp 6.06-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 113,900 kB
  • sloc: cpp: 80,986; perl: 14,772; ansic: 2,923; makefile: 83; sh: 17
file content (321 lines) | stat: -rw-r--r-- 10,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// BEGIN LICENSE BLOCK
/*
Copyright (c) 2009, UT-Battelle, LLC
All rights reserved

[DMRG++, Version 2.0.0]
[by G.A., Oak Ridge National Laboratory]

UT Battelle Open Source Software License 11242008

OPEN SOURCE LICENSE

Subject to the conditions of this License, each
contributor to this software hereby grants, free of
charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), a
perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to use, copy,
modify, merge, publish, distribute, and/or sublicense
copies of the Software.

1. Redistributions of Software must retain the above
copyright and license notices, this list of conditions,
and the following disclaimer.  Changes or modifications
to, or derivative works of, the Software should be noted
with comments and the contributor and organization's
name.

2. Neither the names of UT-Battelle, LLC or the
Department of Energy nor the names of the Software
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission of UT-Battelle.

3. The software and the end-user documentation included
with the redistribution, with or without modification,
must include the following acknowledgment:

"This product includes software produced by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725  with the
Department of Energy."

*********************************************************
DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

*********************************************************


*/
// END LICENSE BLOCK
#ifndef RIGHT_LEFT_LOCAL_H
#define RIGHT_LEFT_LOCAL_H

#include "BLAS.h"

/** \ingroup DMRG */
/*@{*/

/*! \file RightLeftLocal.h
 *
 *  A class to contain state information about the Hamiltonian to help with the calculation of x+=Hy
 *
 */

namespace Dmrg
{
template <typename BasisType, typename BasisWithOperatorsType, typename SparseMatrixType>
class RightLeftLocal
{
public:

	typedef typename SparseMatrixType::value_type MatrixElementType;
	typedef psimag::Matrix<MatrixElementType> MatrixType;

	RightLeftLocal(int m, const BasisType& basis1, const BasisWithOperatorsType& basis2, const BasisWithOperatorsType& basis3, SizeType orbitals, bool useReflection = false)
	    : m_(m)
	    , basis1_(basis1)
	    , basis2_(basis2)
	    , basis3_(basis3)
	    , alpha_(basis1_.size())
	    , beta_(basis1_.size())
	    , leftPermInv_(basis2.size())
	    , rightPermInv_(basis3.size())
	{
		init();
		createAlphaAndBeta();
	}

	~RightLeftLocal()
	{
		// for (SizeType i=0;i<bMatrix_.size();i++) delete bMatrix_[i];
		// for (SizeType i=0;i<aMatrix_.size();i++) delete aMatrix_[i];
	}

	//! Does x+= (AB)y, where A belongs to pSprime and B  belongs to pEprime or viceversa (inter)
	//! Has been changed to accomodate for reflection symmetry
	void fastOpProdInter(typename PsimagLite::Vector<MatrixElementType>::Type& x,
	    typename PsimagLite::Vector<MatrixElementType> const ::Type& y,
	    SparseMatrixType const& A,
	    SparseMatrixType const& B,
	    int type,
	    MatrixElementType& hop,
	    bool operatorsAreFermions = true,
	    SizeType angularMomentum = 1,
	    MatrixElementType angularSign = -1.0,
	    SizeType category = 0,
	    bool dummy2 = false) const
	{
		int const SystemEnviron = 1, EnvironSystem = 2;
		int fermionSign = (operatorsAreFermions) ? -1 : 1;

		if (type == EnvironSystem) {
			MatrixElementType hop2 = hop * fermionSign;
			fastOpProdInter(x, y, B, A, SystemEnviron, hop2, operatorsAreFermions);
			return;
		}
		SizeType leftSize = leftPerm_.size();
		SizeType rightSize = rightPerm_.size();
		// static const typename PsimagLite::Vector<MatrixElementType>*::Type yAddress = 0;

		// if (yAddress!=&y) {
		preparePhi(yMatrix_, y);
		prepareB(bMatrix_, B);
		prepareA(aMatrix_, A, operatorsAreFermions);
		//	yAddress = &y;
		//}

		MatrixType* bm = &bMatrix_;
		/*int ib = PsimagLite\:\:isInVector(addressesB_,&B);

		if (ib<0) {
			bm = new MatrixType(rightSize,rightSize);
			prepareB(*bm,B);
			bMatrix_.push_back(bm);
			addressesB_.push_back(&B);
		} else {
			bm =  bMatrix_[ib];
		}

		int ia = PsimagLite\:\:isInVector(addressesA_,&A);*/
		MatrixType* am = &aMatrix_;
		/*if (ia<0) {
			am = new MatrixType(leftSize,leftSize);
			prepareA(*am,A,operatorsAreFermions);
			aMatrix_.push_back(am);
			addressesA_.push_back(&A);
		} else {
			am =  aMatrix_[ia];
		}*/

		//! multiply all here:

		psimag::BLAS::GEMM('N', 'C', rightSize, leftSize, rightSize, hop, &(bm->operator()(0, 0)), rightSize, &(yMatrix_(0, 0)), leftSize, 0.0, &(cMatrix_(0, 0)), rightSize);
		psimag::BLAS::GEMM('N', 'C', leftSize, rightSize, leftSize, 1.0, &(am->operator()(0, 0)), leftSize, &(cMatrix_(0, 0)), rightSize, 0.0, &(tmpMatrix_(0, 0)), leftSize);

		//! revert order
		unpreparePhi(x, tmpMatrix_);
	}

private:

	int m_;
	const BasisType& basis1_;
	const BasisWithOperatorsType& basis2_;
	const BasisWithOperatorsType& basis3_;
	typename PsimagLite::Vector<SizeType>::Type alpha_, beta_;
	typename PsimagLite::Vector<SizeType>::Type leftPermInv_, rightPermInv_;
	typename PsimagLite::Vector<SizeType>::Type leftPerm_, rightPerm_;
	mutable MatrixType bMatrix_;
	mutable MatrixType aMatrix_;
	mutable MatrixType cMatrix_, tmpMatrix_, yMatrix_;
	// mutable typename PsimagLite::Vector<const::Type SparseMatrixType*> addressesA_;
	// mutable typename PsimagLite::Vector<const::Type SparseMatrixType*> addressesB_;

	void init()
	{
		SizeType ns = basis2_.size();
		SizeType ne = basis3_.size();
		int offset = basis1_.partition(m_);
		int total = basis1_.partition(m_ + 1) - offset;

		for (SizeType alphaPrime = 0; alphaPrime < ns; alphaPrime++) {
			for (SizeType betaPrime = 0; betaPrime < ne; betaPrime++) {
				int tmp = basis1_.permutationInverse(alphaPrime + betaPrime * ns) - offset;
				if (tmp >= total || tmp < 0)
					continue;
				int x = PsimagLite\:\: isInVector(leftPerm_, alphaPrime);
				if (x < 0)
					leftPerm_.push_back(alphaPrime);
				int y = PsimagLite\:\: isInVector(rightPerm_, betaPrime);
				if (y < 0)
					rightPerm_.push_back(betaPrime);
			}
		}

		for (SizeType i = 0; i < rightPerm_.size(); i++)
			rightPermInv_[rightPerm_[i]] = i;

		for (SizeType i = 0; i < leftPerm_.size(); i++)
			leftPermInv_[leftPerm_[i]] = i;

		SizeType leftSize = leftPerm_.size();
		SizeType rightSize = rightPerm_.size();

		yMatrix_.resize(leftSize, rightSize);
		cMatrix_.resize(rightSize, leftSize);
		tmpMatrix_.resize(leftSize, rightSize);
		aMatrix_.resize(leftSize, leftSize);
		bMatrix_.resize(rightSize, rightSize);
	}

	void preparePhi(MatrixType& m, typename PsimagLite::Vector<MatrixElementType> const ::Type& v) const
	{
		int offset = basis1_.partition(m_);
		int total = basis1_.partition(m_ + 1) - offset;
		/*for (SizeType i=0;i<leftPerm_.size();i++) {
			SizeType x = leftPerm_[i];
			for (SizeType j=0;j<rightPerm_.size();j++) {
				SizeType y = rightPerm_[j];
				int ii = basis1_.permutationInverse(x+y*basis2_.size())-offset;
				if (ii<0 || ii>=total) continue;
				m(i,j) = v[ii];
			}
		}*/

		// SizeType ns = basis2_.size();
		for (int i = 0; i < total; i++) {
			// SizeType alpha,beta;
			// utils::getCoordinates(alpha,beta,basis1_.permutation(i+offset),ns);
			m(leftPermInv_[alpha_[i]], rightPermInv_[beta_[i]]) = v[i];
		}
	}

	void unpreparePhi(typename PsimagLite::Vector<MatrixElementType>::Type& v, MatrixType& m) const
	{
		int offset = basis1_.partition(m_);
		int total = basis1_.partition(m_ + 1) - offset;
		/*for (SizeType i=0;i<leftPerm_.size();i++) {
			SizeType x = leftPerm_[i];
			for (SizeType j=0;j<rightPerm_.size();j++) {
				SizeType y = rightPerm_[j];
				int ii = basis1_.permutationInverse(x+y*basis2_.size())-offset;
				if (ii<0 || ii>=total) continue;
				//MatrixElementType a =v[ii];
				//a+=2.0;
				 v[ii] += m(i,j);
			}
		}*/

		SizeType ns = basis2_.size();
		for (int i = 0; i < total; i++) {
			SizeType alpha, beta;
			utils::getCoordinates(alpha, beta, basis1_.permutation(i + offset), ns);
			v[i] = m(leftPermInv_[alpha_[i]], rightPermInv_[beta_[i]]);
		}
	}

	void prepareB(MatrixType& m, SparseMatrixType const& B) const
	{
		for (SizeType i = 0; i < rightPerm_.size(); i++) {
			SizeType x = rightPerm_[i];
			for (SizeType j = 0; j < rightPerm_.size(); j++) {
				SizeType y = rightPerm_[j];
				m(i, j) = B(x, y);
			}
		}
	}

	void prepareA(MatrixType& m, SparseMatrixType const& A, bool operatorsAreFermions) const
	{
		int fermionSign = (operatorsAreFermions) ? -1 : 1;
		for (SizeType i = 0; i < leftPerm_.size(); i++) {
			SizeType x = leftPerm_[i];
			MatrixElementType tmp = basis2_.fermionicSign(x, fermionSign);
			for (SizeType j = 0; j < leftPerm_.size(); j++) {
				SizeType y = leftPerm_[j];
				m(i, j) = A(x, y) * tmp;
			}
		}
	}

	void createAlphaAndBeta()
	{
		SizeType ns = basis2_.size();
		int offset = basis1_.partition(m_);
		int total = basis1_.partition(m_ + 1) - offset;

		for (int i = 0; i < total; i++) {
			// row i of the ordered product basis
			utils::getCoordinates(alpha_[i], beta_[i], basis1_.permutation(i + offset), ns);
		}
	}

}; // class RightLeftLocal
} // namespace Dmrg
/*@}*/

#endif