1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
#include "Minimizer.h"
#include "PsimagLite.h"
#include "Vector.h"
#include <cassert>
#include <cstdlib>
#include <fstream>
template <typename RealType_>
class OracleData
{
public:
typedef RealType_ RealType;
typedef typename PsimagLite::Vector<RealType>::Type VectorRealType;
OracleData(PsimagLite::String file, RealType kf)
: file_(file)
{
// kx omega real imag
std::ifstream fin(file_.c_str());
while (!fin.eof()) {
RealType tmp = 0.0;
fin >> tmp;
RealType kx = tmp;
fin >> tmp;
RealType omega = tmp;
fin >> tmp;
fin >> tmp;
RealType value = tmp;
if (fabs(kx - kf) >= 1e-6)
continue;
omegas_.push_back(omega);
values_.push_back(value);
}
std::cerr << "#Found " << omegas_.size() << " omega values for kf=" << kf
<< "\n";
if (omegas_.size() == 0)
err("No data found in " + file + "\n");
}
const RealType& operator()(SizeType i) const
{
assert(i < values_.size());
return values_[i];
}
const VectorRealType& omegas() const { return omegas_; }
private:
PsimagLite::String file_;
VectorRealType omegas_;
VectorRealType values_;
};
template <typename RealType>
class FitData
{
typedef typename PsimagLite::Vector<RealType>::Type VectorRealType;
public:
FitData(const VectorRealType& omegas, RealType mu, RealType kf, int ky)
: omegas_(omegas)
, mu_(mu)
, ekf_(dispersion(kf, ky * M_PI) - mu)
, initDelta_(1)
, initGamma_(0.1)
, anorm_(1.0)
{
// anorm_ = 1.0/sum();
std::cerr << "#FitData ctor(): ekf_= " << ekf_;
std::cerr << " initDelta_= " << initDelta_ << " initGamma_= " << initGamma_;
std::cerr << " mu= " << mu << "\n";
std::cout << "anorm=" << anorm_ << "\n";
}
RealType operator()(SizeType i, const VectorRealType& v) const
{
assert(v.size() == 2);
const RealType& omega = omegas_[i];
const RealType& delta = v[0];
const RealType& gamma = v[1];
return finternal(omega, delta, gamma);
}
RealType df(SizeType i, const VectorRealType& v, SizeType j) const
{
assert(v.size() == 2);
const RealType& omega = omegas_[i];
const RealType& delta = v[0];
const RealType& gamma = v[1];
return (j == 0) ? dfDelta(omega, delta, gamma)
: dfGamma(omega, delta, gamma);
}
SizeType size() const { return 2; }
static void init(VectorRealType& x)
{
assert(x.size() == 2);
x[0] = 1;
x[1] = 0.1;
}
private:
RealType finternal(RealType omega, RealType delta, RealType gamma) const
{
RealType gaom = gamma * omega;
RealType num = (omega + ekf_) * gaom * 2.0 * anorm_ / M_PI;
RealType omega2 = omega * omega;
RealType phi2 = ekf_ * ekf_ + gamma * gamma + delta * delta;
RealType den = square(omega2 - phi2) + 4 * gaom * gaom;
return num / den;
}
RealType dfDelta(RealType omega, RealType delta, RealType gamma) const
{
RealType gaom = gamma * omega;
RealType num = (omega + ekf_) * gaom * 2.0 * anorm_ / M_PI;
RealType omega2 = omega * omega;
RealType phi2 = ekf_ * ekf_ + gamma * gamma + delta * delta;
RealType den = square(omega2 - phi2) + 4 * gaom * gaom;
RealType numd = 4.0 * delta * (phi2 - omega2);
return -num * numd / square(den);
}
RealType dfGamma(RealType omega, RealType delta, RealType gamma) const
{
RealType gaom = gamma * omega;
RealType num0 = (omega + ekf_) * omega * 2.0 * anorm_ / M_PI;
RealType omega2 = omega * omega;
RealType phi2 = ekf_ * ekf_ + gamma * gamma + delta * delta;
RealType den = square(omega2 - phi2) + 4.0 * gaom * gaom;
RealType num = -num0 * gamma * (4 * (phi2 - omega2) * gamma + 8 * gamma * omega2);
return num0 / den - num / square(den);
}
RealType dispersion(RealType kx, RealType ky) const
{
return -2 * cos(kx) - cos(ky);
}
RealType sum() const
{
SizeType n = omegas_.size();
RealType sum = 0;
for (SizeType i = 0; i < n; ++i)
sum += finternal(omegas_[i], initDelta_, initGamma_);
return sum;
}
static RealType square(RealType x) { return x * x; }
VectorRealType omegas_;
RealType mu_;
RealType ekf_;
const RealType initDelta_;
const RealType initGamma_;
RealType anorm_;
};
template <typename OracleType, typename FitDataType>
class Fitter
{
typedef typename OracleType::RealType RealType;
typedef typename OracleType::VectorRealType VectorRealType;
class MyFunctionTest
{
public:
typedef RealType FieldType;
MyFunctionTest(const OracleType& od, const FitDataType& fd)
: od_(od)
, fd_(fd)
{
}
RealType operator()(const VectorRealType& v) const
{
RealType sum = 0.0;
SizeType n = od_.omegas().size();
for (SizeType i = 0; i < n; ++i) {
RealType x = fabs(od_(i) - fd_(i, v));
sum += x * x;
}
return sum;
}
void df(VectorRealType& result, const VectorRealType& v) const
{
assert(result.size() == size());
for (SizeType j = 0; j < size(); ++j) {
RealType sum = 0.0;
SizeType n = od_.omegas().size();
for (SizeType i = 0; i < n; ++i) {
// FIXME CHECK SIGN OF DERIVATIVE HERE
RealType x = (fd_(i, v) - od_(i)) * fd_.df(i, v, j);
sum += x;
}
result[j] = sum * 2.0;
}
}
SizeType size() const { return 2; }
private:
const OracleType& od_;
const FitDataType& fd_;
};
public:
Fitter(const OracleType& od, const FitDataType& fd)
: od_(od)
, fd_(fd)
, results_(fd.size(), 0)
{
}
void fit(SizeType maxIter)
{
FitDataType::init(results_);
MyFunctionTest f(od_, fd_);
PsimagLite::Minimizer<RealType, MyFunctionTest> min(f, maxIter);
int iter = min.simplex(results_, 1e-5, 1e-7);
if (iter < 0)
std::cerr << "No minimum found\n";
std::cerr << "#Converged after " << iter << " iterations.\n";
std::cerr << "#Minimum is " << f(results_) << "\n";
std::ofstream of("test.out");
printComparison(of);
}
void fit2(SizeType maxIter)
{
FitDataType::init(results_);
MyFunctionTest f(od_, fd_);
PsimagLite::Minimizer<RealType, MyFunctionTest> min(f, maxIter);
int iter = min.conjugateGradient(results_, 1e-3, 1e-3, 1e-3);
if (iter < 0)
std::cerr << "No minimum found\n";
}
void print(std::ostream& os) const
{
if (results_.size() != 2)
err("print results not size 2\n");
os << "delta=" << results_[0] << "\n";
os << "gamma=" << results_[1] << "\n";
}
private:
void printComparison(std::ostream& os) const
{
SizeType n = od_.omegas().size();
for (SizeType i = 0; i < n; ++i)
os << od_.omegas()[i] << " " << od_(i) << " " << fd_(i, results_) << "\n";
}
const OracleType& od_;
const FitDataType& fd_;
VectorRealType results_;
};
int main(int argc, char** argv)
{
if (argc != 5) {
std::cerr << "USAGE: " << argv[0] << " filename.gnuplot mu kf ky\n";
return 1;
}
double mu = atof(argv[2]);
double kf = atof(argv[3]);
int ky = atoi(argv[4]);
OracleData<double> od(argv[1], kf);
FitData<double> fit(od.omegas(), mu, kf, ky);
Fitter<OracleData<double>, FitData<double>> fitter(od, fit);
SizeType maxIter = 1000;
fitter.fit(maxIter);
fitter.print(std::cout);
}
|