File: rfc1398.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (955 lines) | stat: -rw-r--r-- 36,685 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955






Network Working Group                                      F. Kastenholz
Request for Comments: 1398                            FTP Software, Inc.
Obsoletes: 1284                                             January 1993


                   Definitions of Managed Objects for
                   the Ethernet-like Interface Types

Status of this Memo

   This RFC specifies an IAB standards track protocol for the Internet
   community, and requests discussion and suggestions for improvements.
   Please refer to the current edition of the "IAB Official Protocol
   Standards" for the standardization state and status of this protocol.
   Distribution of this memo is unlimited.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in TCP/IP-based internets.
   In particular, it defines objects for managing ethernet-like objects.

Table of Contents

   1. The Network Management Framework ......................    1
   2. Objects ...............................................    2
   2.1 Format of Definitions ................................    2
   3. Overview ..............................................    3
   4. Definitions ...........................................    4
   4.1 The Ethernet-like Statistics Group ...................    4
   4.2 The Ethernet-like Collision Statistics Group .........   11
   4.3 802.3 Tests ..........................................   12
   4.4 802.3 Hardware Chipsets ..............................   14
   5. Change Log ............................................   14
   6. Acknowledgements ......................................   16
   7. References ............................................   16
   8. Security Considerations ...............................   17
   9. Author's Address ......................................   17

1.  The Network Management Framework

   The Internet-standard Network Management Framework consists of three
   components.  They are:

      STD 16/RFC 1155 [3] which defines the SMI, the mechanisms used for
      describing and naming objects for the purpose of management.  STD
      16/RFC 1212 [13] defines a more concise description mechanism,
      which is wholly consistent with the SMI.



Kastenholz                                                      [Page 1]

RFC 1398                   Ethernet-Like MIB                January 1993


      RFC 1156 [4] which defines MIB-I, the core set of managed objects
      for the Internet suite of protocols.  STD 17/RFC 1213 [6] defines
      MIB-II, an evolution of MIB-I based on implementation experience
      and new operational requirements.

      STD 15/RFC 1157 [5] which defines the SNMP, the protocol used for
      network access to managed objects.

   The Framework permits new objects to be defined for the purpose of
   experimentation and evaluation.

2.  Objects

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
   defined in the SMI.  In particular, each object has a name, a syntax,
   and an encoding.  The name is an object identifier, an
   administratively assigned name, which specifies an object type.  The
   object type together with an object instance serves to uniquely
   identify a specific instantiation of the object.  For human
   convenience, we often use a textual string, termed the OBJECT
   DESCRIPTOR, to also refer to the object type.

   The syntax of an object type defines the abstract data structure
   corresponding to that object type.  The ASN.1 language is used for
   this purpose.  However, the SMI [3] purposely restricts the ASN.1
   constructs which may be used.  These restrictions are explicitly made
   for simplicity.

   The encoding of an object type is simply how that object type is
   represented using the object type's syntax.  Implicitly tied to the
   notion of an object type's syntax and encoding is how the object type
   is represented when being transmitted on the network.

   The SMI specifies the use of the basic encoding rules of ASN.1 [8],
   subject to the additional requirements imposed by the SNMP.

2.1.  Format of Definitions

   Section 4 contains contains the specification of all object types
   contained in this MIB module.  The object types are defined using the
   conventions defined in the SMI, as amended by the extensions
   specified in [13].







Kastenholz                                                      [Page 2]

RFC 1398                   Ethernet-Like MIB                January 1993


3.  Overview

   Instances of these object types represent attributes of an interface
   to an ethernet-like communications medium.  At present, ethernet-like
   media are identified by three values of the ifType object in the
   Internet-standard MIB:

          ethernet-csmacd(6)
          iso88023-csmacd(7)
          starLan(11)

   For these interfaces, the value of the ifSpecific variable in the
   MIB-II [6] has the OBJECT IDENTIFIER value:

          dot3    OBJECT IDENTIFER ::= { transmission 7 }

   The definitions presented here are based on the IEEE 802.3 Layer
   Management Specification [9], as originally interpreted by Frank
   Kastenholz of Interlan in [10].  Implementors of these MIB objects
   should note that the IEEE document explicitly describes (in the form
   of Pascal pseudocode) when, where, and how various MAC attributes are
   measured.  The IEEE document also describes the effects of MAC
   actions that may be invoked by manipulating instances of the MIB
   objects defined here.

   To the extent that some of the attributes defined in [9] are
   represented by previously defined objects in the Internet- standard
   MIB or in the Generic Interface Extensions MIB [11], such attributes
   are not redundantly represented by objects defined in this memo.
   Among the attributes represented by objects defined in other memos
   are the number of octets transmitted or received on a particular
   interface, the number of frames transmitted or received on a
   particular interface, the promiscuous status of an interface, the MAC
   address of an interface, and multicast information associated with an
   interface.

   The relationship between an ethernet-like interface and an interface
   in the context of the Internet-standard MIB is one-to-one.  As such,
   the value of an ifIndex object instance can be directly used to
   identify corresponding instances of the objects defined herein.











Kastenholz                                                      [Page 3]

RFC 1398                   Ethernet-Like MIB                January 1993


4.  Definitions

          RFC1398-MIB DEFINITIONS ::= BEGIN


               IMPORTS
                    Counter, Gauge
                         FROM RFC1155-SMI
                    transmission
                         FROM RFC1213-MIB
                    OBJECT-TYPE
                         FROM RFC-1212;

          --  This MIB module uses the extended OBJECT-TYPE macro as
          --  defined in RFC-1212.

          --  this is the MIB module for ethernet-like objects

          dot3    OBJECT IDENTIFIER ::= { transmission 7 }

          -- { dot3 1 } is obsolete and has been deleted.

4.1.  The Ethernet-like Statistics Group


          -- the Ethernet-like Statistics group

          -- Implementation of this group is mandatory

          dot3StatsTable   OBJECT-TYPE
               SYNTAX    SEQUENCE OF Dot3StatsEntry
               ACCESS    not-accessible
               STATUS    mandatory
               DESCRIPTION
                         "Statistics for a collection of ethernet-like
                         interfaces attached to a particular system."
               ::= { dot3 2 }


          dot3StatsEntry   OBJECT-TYPE
               SYNTAX    Dot3StatsEntry
               ACCESS    not-accessible
               STATUS    mandatory
               DESCRIPTION
                         "Statistics for a particular interface to an
                         ethernet-like medium."
               INDEX     { dot3StatsIndex }
               ::= { dot3StatsTable 1 }



Kastenholz                                                      [Page 4]

RFC 1398                   Ethernet-Like MIB                January 1993


          Dot3StatsEntry ::= SEQUENCE {
               dot3StatsIndex
                    INTEGER,
               dot3StatsAlignmentErrors
                    Counter,
               dot3StatsFCSErrors
                    Counter,
               dot3StatsSingleCollisionFrames
                    Counter,
               dot3StatsMultipleCollisionFrames
                    Counter,
               dot3StatsSQETestErrors
                    Counter,
               dot3StatsDeferredTransmissions
                    Counter,
               dot3StatsLateCollisions
                    Counter,
               dot3StatsExcessiveCollisions
                    Counter,
               dot3StatsInternalMacTransmitErrors
                    Counter,
               dot3StatsCarrierSenseErrors
                    Counter,
               dot3StatsFrameTooLongs
                    Counter,
               dot3StatsInternalMacReceiveErrors
                    Counter
          }

          dot3StatsIndex   OBJECT-TYPE
               SYNTAX    INTEGER
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "An index value that uniquely identifies an
                         interface to an ethernet-like medium.  The
                         interface identified by a particular value of
                         this index is the same interface as identified
                         by the same value of ifIndex."
               ::= { dot3StatsEntry 1 }


          dot3StatsAlignmentErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames received on a particular



Kastenholz                                                      [Page 5]

RFC 1398                   Ethernet-Like MIB                January 1993


                         interface that are not an integral number of
                         octets in length and do not pass the FCS check.

                         The count represented by an instance of this
                         object is incremented when the alignmentError
                         status is returned by the MAC service to the
                         LLC (or other MAC user). Received frames for
                         which multiple error conditions obtain are,
                         according to the conventions of IEEE 802.3
                         Layer Management, counted exclusively according
                         to the error status presented to the LLC."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 2 }


          dot3StatsFCSErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames received on a particular
                         interface that are an integral number of octets
                         in length but do not pass the FCS check.

                         The count represented by an instance of this
                         object is incremented when the frameCheckError
                         status is returned by the MAC service to the
                         LLC (or other MAC user). Received frames for
                         which multiple error conditions obtain are,
                         according to the conventions of IEEE 802.3
                         Layer Management, counted exclusively according
                         to the error status presented to the LLC."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 3 }


          dot3StatsSingleCollisionFrames   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of successfully transmitted frames on
                         a particular interface for which transmission
                         is inhibited by exactly one collision.

                         A frame that is counted by an instance of this



Kastenholz                                                      [Page 6]

RFC 1398                   Ethernet-Like MIB                January 1993


                         object is also counted by the corresponding
                         instance of either the ifOutUcastPkts or
                         ifOutNUcastPkts object and is not counted by
                         the corresponding instance of the
                         dot3StatsMultipleCollisionFrames object."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 4 }


          dot3StatsMultipleCollisionFrames   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of successfully transmitted frames on
                         a particular interface for which transmission
                         is inhibited by more than one collision.

                         A frame that is counted by an instance of this
                         object is also counted by the corresponding
                         instance of either the ifOutUcastPkts or
                         ifOutNUcastPkts object and is not counted by
                         the corresponding instance of the
                         dot3StatsSingleCollisionFrames object."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 5 }


          dot3StatsSQETestErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of times that the SQE TEST ERROR
                         message is generated by the PLS sublayer for a
                         particular interface. The SQE TEST ERROR
                         message is defined in section 7.2.2.2.4 of
                         ANSI/IEEE 802.3-1985 and its generation is
                         described in section 7.2.4.6 of the same
                         document."
               REFERENCE
                         "ANSI/IEEE Std 802.3-1985 Carrier Sense
                         Multiple Access with Collision Detection Access
                         Method and Physical Layer Specifications"
               ::= { dot3StatsEntry 6 }




Kastenholz                                                      [Page 7]

RFC 1398                   Ethernet-Like MIB                January 1993


          dot3StatsDeferredTransmissions   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames for which the first
                         transmission attempt on a particular interface
                         is delayed because the medium is busy.

                         The count represented by an instance of this
                         object does not include frames involved in
                         collisions."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 7 }


          dot3StatsLateCollisions   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "The number of times that a collision is
                         detected on a particular interface later than
                         512 bit-times into the transmission of a
                         packet.

                         Five hundred and twelve bit-times corresponds
                         to 51.2 microseconds on a 10 Mbit/s system. A
                         (late) collision included in a count
                         represented by an instance of this object is
                         also considered as a (generic) collision for
                         purposes of other collision-related
                         statistics."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 8 }


          dot3StatsExcessiveCollisions   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames for which transmission on a
                         particular interface fails due to excessive
                         collisions."




Kastenholz                                                      [Page 8]

RFC 1398                   Ethernet-Like MIB                January 1993


               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 9 }


          dot3StatsInternalMacTransmitErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames for which transmission on a
                         particular interface fails due to an internal
                         MAC sublayer transmit error. A frame is only
                         counted by an instance of this object if it is
                         not counted by the corresponding instance of
                         either the dot3StatsLateCollisions object, the
                         dot3StatsExcessiveCollisions object, or the
                         dot3StatsCarrierSenseErrors object.

                         The precise meaning of the count represented by
                         an instance of this object is implementation-
                         specific.  In particular, an instance of this
                         object may represent a count of transmission
                         errors on a particular interface that are not
                         otherwise counted."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 10 }


          dot3StatsCarrierSenseErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "The number of times that the carrier sense
                         condition was lost or never asserted when
                         attempting to transmit a frame on a particular
                         interface.

                         The count represented by an instance of this
                         object is incremented at most once per
                         transmission attempt, even if the carrier sense
                         condition fluctuates during a transmission
                         attempt."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 11 }



Kastenholz                                                      [Page 9]

RFC 1398                   Ethernet-Like MIB                January 1993


          -- { dot3StatsEntry 12 } is not assigned

          dot3StatsFrameTooLongs   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames received on a particular
                         interface that exceed the maximum permitted
                         frame size.

                         The count represented by an instance of this
                         object is incremented when the frameTooLong
                         status is returned by the MAC service to the
                         LLC (or other MAC user). Received frames for
                         which multiple error conditions obtain are,
                         according to the conventions of IEEE 802.3
                         Layer Management, counted exclusively according
                         to the error status presented to the LLC."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 13 }



          -- { dot3StatsEntry 14 } is not assigned


          -- { dot3StatsEntry 15 } is not assigned

          dot3StatsInternalMacReceiveErrors   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of frames for which reception on a
                         particular interface fails due to an internal
                         MAC sublayer receive error. A frame is only
                         counted by an instance of this object if it is
                         not counted by the corresponding instance of
                         either the dot3StatsFrameTooLongs object, the
                         dot3StatsAlignmentErrors object, or the
                         dot3StatsFCSErrors object.

                         The precise meaning of the count represented by
                         an instance of this object is implementation-
                         specific.  In particular, an instance of this
                         object may represent a count of receive errors



Kastenholz                                                     [Page 10]

RFC 1398                   Ethernet-Like MIB                January 1993


                         on a particular interface that are not
                         otherwise counted."
               REFERENCE
                         "IEEE 802.3 Layer Management"
               ::= { dot3StatsEntry 16 }

4.2.  The Ethernet-like Collision Statistics Group


          -- the Ethernet-like Collision Statistics group

          -- Implementation of this group is optional; it is appropriate
          -- for all systems which have the necessary metering

          dot3CollTable   OBJECT-TYPE
               SYNTAX    SEQUENCE OF Dot3CollEntry
               ACCESS    not-accessible
               STATUS    mandatory
               DESCRIPTION
                         "A collection of collision histograms for a
                         particular set of interfaces."
               ::= { dot3 5 }


          dot3CollEntry   OBJECT-TYPE
               SYNTAX    Dot3CollEntry
               ACCESS    not-accessible
               STATUS    mandatory
               DESCRIPTION
                         "A cell in the histogram of per-frame
                         collisions for a particular interface.  An
                         instance of this object represents the
                         frequency of individual MAC frames for which
                         the transmission (successful or otherwise) on a
                         particular interface is accompanied by a
                         particular number of media collisions."
               INDEX     { dot3CollIndex, dot3CollCount }
               ::= { dot3CollTable 1 }



          Dot3CollEntry ::= SEQUENCE {
               dot3CollIndex
                    INTEGER,
               dot3CollCount
                    INTEGER,
               dot3CollFrequencies
                    Counter



Kastenholz                                                     [Page 11]

RFC 1398                   Ethernet-Like MIB                January 1993


          }


          dot3CollIndex   OBJECT-TYPE
               SYNTAX    INTEGER
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "The index value that uniquely identifies the
                         interface to which a particular collision
                         histogram cell pertains.  The interface
                         identified by a particular value of this index
                         is the same interface as identified by the same
                         value of ifIndex."
               ::= { dot3CollEntry 1 }


          dot3CollCount   OBJECT-TYPE
               SYNTAX    INTEGER (1..16)
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "The number of per-frame media collisions for
                         which a particular collision histogram cell
                         represents the frequency on a particular
                         interface."
               ::= { dot3CollEntry 2 }


          dot3CollFrequencies   OBJECT-TYPE
               SYNTAX    Counter
               ACCESS    read-only
               STATUS    mandatory
               DESCRIPTION
                         "A count of individual MAC frames for which the
                         transmission (successful or otherwise) on a
                         particular interface is accompanied by a
                         particular number of media collisions."
               ::= { dot3CollEntry 3 }


4.3.  802.3 Tests


      --  802.3 Tests

      -- The ifExtnsTestTable defined in RFC 1229 provides a common
      -- means for a manager to test any interface corresponding to



Kastenholz                                                     [Page 12]

RFC 1398                   Ethernet-Like MIB                January 1993


      -- a value of ifIndex.

      -- At this time, one well known test (testFullDuplexLoopBack) is
      -- defined in RFC 1229.  For ethernet-like interfaces, this test
      -- configures the MAC chip and executes an internal loopback
      -- test of memory and the MAC chip logic.  This loopback test can
      -- only be executed if the interface is offline.  Once the test
      -- has completed, the MAC chip should be reinitialized for network
      -- operation, but it should remain offline.

      -- If an error occurs during a test, the object ifExtnsTestResult
      -- (defined in RFC 1229) will be set to failed(7).  The following
      -- two OBJECT IDENTIFIERs may be used to provided more
      -- information as values for the object ifExtnsTestCode in
      -- RFC 1229:

          dot3Errors             OBJECT IDENTIFIER ::= { dot3 7 }

                               -- couldn't initialize MAC chip for test
          dot3ErrorInitError     OBJECT IDENTIFIER ::= { dot3Errors 1 }

                                -- expected data not received (or not
                                -- received correctly) in loopback test
          dot3ErrorLoopbackError OBJECT IDENTIFIER ::= { dot3Errors 2 }

       -- Tests
        --  TDR Test

       -- Another test, specific to ethernet-like interfaces with the
       -- exception of 10BaseT and 10BaseF, is Time-domain Reflectometry
           (TDR).
       -- The TDR value may be useful in determining the approximate
           distance
       -- to a cable fault.  It is advisable to repeat this test to
           check for
       -- a consistent resulting TDR value, to verify that there is a
          fault.

          dot3Tests   OBJECT IDENTIFIER ::= { dot3 6 }
          dot3TestTdr OBJECT IDENTIFIER ::= { dot3Tests 1 }

       -- A TDR test returns as its result the time interval, measured
       -- in 10 MHz ticks or 100 nsec units, between the start of
       -- TDR test transmission and the subsequent detection of a
       -- collision or deassertion of carrier.  On successful completion
       -- of a TDR test, the appropriate instance of ifExtnsTestResult
       -- contains the OBJECT IDENTIFIER of the MIB object which
       -- contains the value of this time interval.



Kastenholz                                                     [Page 13]

RFC 1398                   Ethernet-Like MIB                January 1993


4.4.  802.3 Hardware Chipsets


       --  802.3 Hardware Chipsets

       -- The object ifExtnsChipSet is provided in RFC 1229 to identify
       -- the MAC hardware used to communcate on an interface.  The
       -- following hardware chipsets are provided for 802.3:

  dot3ChipSets          OBJECT IDENTIFIER ::= { dot3 8 }
  dot3ChipSetAMD        OBJECT IDENTIFIER ::= { dot3ChipSets 1 }
  dot3ChipSetAMD7990    OBJECT IDENTIFIER ::= { dot3ChipSetAMD 1 }
  dot3ChipSetAMD79900   OBJECT IDENTIFIER ::= { dot3ChipSetAMD 2 }

  dot3ChipSetIntel      OBJECT IDENTIFIER ::= { dot3ChipSets 2 }
  dot3ChipSetIntel82586 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 1 }
  dot3ChipSetIntel82596 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 2 }
  dot3ChipSetSeeq       OBJECT IDENTIFIER ::= { dot3ChipSets 3 }
  dot3ChipSetSeeq8003   OBJECT IDENTIFIER ::= { dot3ChipSetSeeq 1 }

  dot3ChipSetNational      OBJECT IDENTIFIER ::= { dot3ChipSets 4 }
  dot3ChipSetNational8390  OBJECT IDENTIFIER ::=
                                           { dot3ChipSetNational 1 }
  dot3ChipSetNationalSonic OBJECT IDENTIFIER ::=
                                           { dot3ChipSetNational 2 }

  dot3ChipSetFujitsu       OBJECT IDENTIFIER ::= { dot3ChipSets 5 }
  dot3ChipSetFujitsu86950  OBJECT IDENTIFIER ::=
                                           { dot3ChipSetFujitsu 1 }
  dot3ChipSetFujitsu86960  OBJECT IDENTIFIER ::=
                                           { dot3ChipSetFujitsu 2 }

       -- For those chipsets not represented above, OBJECT IDENTIFIER
       -- assignment is required in other documentation, e.g., assignment
       -- within that part of the registration tree delegated to
       -- individual enterprises (see RFC 1155).

          END

5.  Change Log

  (1)  Replace old "Historical Perspective" boilerplate with the
       new "The Network Management Framework" boilerplate.

  (2)  Remove the "slime text".

  (3)  Updated the reference to the Interface Extensions mib to
       reflect its new RFC status.



Kastenholz                                                     [Page 14]

RFC 1398                   Ethernet-Like MIB                January 1993


  (4)  Change the status of the memo section to hold the new
       suggested text.

  (5)  References in ASN.1 comments were changed from the [#]
       form to name the actual document being referred to. These
       references are now meaningful when the ASN.1 is read
       outside of the RFC.

  (6)  The IMPORTS section of the ASN.1 has been updated to
       reflect that the OBJECT-TYPE macro is imported from RFC-
       1212.

  (7)  The the Generic Ethernet-like group, containing
       dot3Index, dot3InitializeMac, dot3MacSubLayerStatus,
       dot3MulticastReceiveStatus, dot3TxEnabled, and
       dot3TestTdrValue has been deprecated as a result of the
       implementation experience presented at the San Diego IETF
       meeting.

  (8)  dot3StatsInRangeLengthErrors and
       dot3StatsOutOfRangeLengthFields have been deprecated as a
       result of the implementation experience presented at the
       San Diego IETF meeting.

  (9)  Update the acknowledgements section to reflect this
       document's history, etc.

  (10) REFERENCE clauses have been added to all of the MIB
       objects which are being retained.

  12 August 1992

  (1)  Removed all deprecated objects.

  (2)  Rephrased the description of the TDR test OID to reflect
       the fact that dot3TestTdrValue is no more.
       ifExtnsTestResult still points to the object containing
       the result, the text simply does not refer to
       dot3TestTdrValue. I could have deleted the Test, but the
       OID should then remain reserved. I figured that it would
       be just as easy to rephrase the definition of the test.

  13 august 1992

  (1)  Add fuji. 86960






Kastenholz                                                     [Page 15]

RFC 1398                   Ethernet-Like MIB                January 1993


6.  Acknowledgements

   This document was produced by the Ethernet MIB Working Group.

   This document is based on the Proposed Standard Ethernet MIB, RFC
   1284 [14], of which John Cook of Chipcom was the editor.  The
   Ethernet MIB Working Group gathered implementation experience of the
   variables specified in RFC 1284 and used that information to develop
   this revised MIB.

   RFC 1284, in turn, is based on a document written by Frank Kastenholz
   of Interlan entitled IEEE 802.3 Layer Management Draft M compatible
   MIB for TCP/IP Networks [10].  This document has been modestly
   reworked, initially by the SNMP Working Group, and then by the
   Transmission Working Group, to reflect the current conventions for
   defining objects for MIB interfaces.  James Davin, of the MIT
   Laboratory for Computer Science, and Keith McCloghrie of Hughes LAN
   Systems, contributed to later drafts of this memo. Marshall Rose of
   Performance Systems International, Inc. converted the document into
   its current concise format. Anil Rijsinghani of DEC contributed text
   that more adequately describes the TDR test.  Thanks to Frank
   Kastenholz of Interlan and Louis Steinberg of IBM for their
   experimentation.

7.  References

   [1] Cerf, V., "IAB Recommendations for the Development of Internet
       Network Management Standards", RFC 1052, NRI, April 1988.

   [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
       Group", RFC 1109, NRI, August 1989.

   [3] Rose M., and K. McCloghrie, "Structure and Identification of
       Management Information for TCP/IP-based internets", STD 16, RFC
       1155, Performance Systems International, Hughes LAN Systems, May
       1990.

   [4] McCloghrie K., and M. Rose, "Management Information Base for
       Network Management of TCP/IP-based internets", RFC 1156, Hughes
       LAN Systems, Performance Systems International, May 1990.

   [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
       Network Management Protocol", STD 15, RFC 1157, SNMP Research,
       Performance Systems International, Performance Systems
       International, MIT Laboratory for Computer Science, May 1990.

   [6] Rose M., Editor, "Management Information Base for Network
       Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213,



Kastenholz                                                     [Page 16]

RFC 1398                   Ethernet-Like MIB                January 1993


       Performance Systems International, March 1991.

   [7] Information processing systems - Open Systems Interconnection -
       Specification of Abstract Syntax Notation One (ASN.1),
       International Organization for Standardization, International
       Standard 8824, December 1987.

   [8] Information processing systems - Open Systems Interconnection -
       Specification of Basic Encoding Rules for Abstract Notation One
       (ASN.1), International Organization for Standardization,
       International Standard 8825, December 1987.

   [9] IEEE, "IEEE 802.3 Layer Management", November 1988.

  [10] Kastenholz, F., "IEEE 802.3 Layer Management Draft compatible MIB
       for TCP/IP Networks", electronic mail message to mib-
       wg@nnsc.nsf.net, 9 June 1989.

  [11] McCloghrie, K., Editor, Extensions to the Generic-Interface MIB,
       RFC 1229, Hughes LAN Systems, Inc., May 1991.

  [12] IEEE, "Carrier Sense Multiple Access with Collision Detection
       (CSMA/CD) Access Method and Physical Layer Specifications",
       ANSI/IEEE Std 802.3-1985.

  [13] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
       STD 16, RFC 1212, Performance Systems International, Hughes LAN
       Systems, March 1991.

  [14] Cook, J., Editor, "Definitions of Managed Objects for Ethernet-
       Like Interface Types", RFC 1284, Chipcom Corporation, December
       1991.

8.  Security Considerations

   Security issues are not discussed in this memo.

9.  Author's Address

   Frank Kastenholz
   2 High Street
   North Andover, MA 01845-2620

   Phone: (508) 685-4000
   EMail: kasten@ftp.com






Kastenholz                                                     [Page 17]