File: rfc2067.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (1683 lines) | stat: -rw-r--r-- 66,702 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683






Network Working Group                                         J. Renwick
Request for Comments: 2067                                 NetStar, Inc.
Category: Standards Track                                   January 1997
Obsoletes: 1374


                             IP over HIPPI

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   ANSI Standard X3.218-1993 (HIPPI-LE[3]) defines the encapsulation of
   IEEE 802.2 LLC PDUs and, by implication, IP on HIPPI.  ANSI X3.222-
   1993 (HIPPI-SC[4]) describes the operation of HIPPI physical
   switches.  The ANSI committee responsible for these standards chose
   to leave HIPPI networking issues largely outside the scope of their
   standards; this document describes the use of HIPPI switches as IP
   local area networks.

   This memo is a revision of RFC 1374, "IP and ARP on HIPPI", and is
   intended to replace it in the Standards Track.  RFC 1374 has been a
   Proposed Standard since November, 1992, with at least 10
   implementations of IP encapsulation and HIPPI switch discipline.  No
   major changes to it are required.  However, the ARP part of RFC 1374
   has not had sufficient implementation experience to be advanced to
   Draft Standard.  The present document contains all of RFC 1374 except
   for the description ARP, which has been moved into a separate
   document.

TABLE OF CONTENTS

   1  Introduction.............................................  2
   2  Scope....................................................  3
      2.1   Changes from RFC 1374..............................  3
      2.2   Terminology........................................  4
   3  Definitions..............................................  4
   4  Equipment................................................  5
   5  Protocol ................................................  7
      5.1   Packet Format......................................  7
      5.2   48 bit Universal LAN MAC addresses................. 11
      5.3   I-Field Format..................................... 12



Renwick                     Standards Track                     [Page 1]

RFC 2067                     IP over HIPPI                  January 1997


      5.4   Rules For Connections.............................. 13
      5.5   MTU................................................ 15
   6  Camp-on ................................................. 16
   7  Path MTU Discovery....................................... 17
   8  Channel Data Rate Discovery.............................. 17
   9  Performance.............................................. 18
   10 Sharing the Switch....................................... 20
   11 References............................................... 21
   12 Security Considerations.................................. 21
   13 Author's Address......................................... 21
   14 Appendix A -- HIPPI Basics............................... 22
   15 Appendix B -- How to Build a Practical HIPPI LAN......... 27

1  Introduction

   The ANSI High-Performance Parallel Interface (HIPPI) is a simplex
   data channel.  Configured in pairs, HIPPI can send and receive data
   simultaneously at nearly 800 megabits per second.  (HIPPI has an
   equally applicable 1600 megabit/second option.) Between 1987 and
   1991, the ANSI X3T9.3 HIPPI working group drafted four documents that
   bear on the use of HIPPI as a network interface.  They cover the
   physical and electrical specification (HIPPI-PH [1]), the framing of
   a stream of bytes (HIPPI-FP [2]), encapsulation of IEEE 802.2 LLC
   (HIPPI-LE [3]), and the behavior of a standard physical layer switch
   (HIPPI-SC [4]).  HIPPI-LE also implies the encapsulation of Internet
   Protocol[5].  The reader should be familiar with the ANSI HIPPI
   documents, copies of which are archived at the site "ftp.network.com"
   in the directory "hippi", and may be obtained via anonymous FTP.

   HIPPI switches can be used to connect a variety of computers and
   peripheral equipment for many purposes, but the working group stopped
   short of describing their use as Local Area Networks.  This memo
   takes up where the working group left off, using the guiding
   principle that except for length and hardware header, Internet
   datagrams sent on HIPPI should be identical to the same datagrams
   sent on a conventional network, and that any datagram sent on a
   conventional 802 network[6] should be valid on HIPPI.














Renwick                     Standards Track                     [Page 2]

RFC 2067                     IP over HIPPI                  January 1997


2  Scope

   This memo describes the HIPPI interface between a host and a
   crosspoint switch that complies with the HIPPI-SC draft standard.
   Issues that have no impact on host implementations are outside the
   scope of this memo.  Host implementations that comply with this memo
   are believed to be interoperable on a network composed of a single
   HIPPI-SC switch.  They are also interoperable on a simple point-to-
   point, two-way HIPPI connection with no switch between them.  They
   may be interoperable on more complex networks as well, depending on
   the internals of the switches and how they are interconnected;
   however, these details are implementation dependent and outside the
   scope of this memo.

   Within the scope of this memo are:

      1.  Packet format and header contents, including HIPPI-FP, HIPPI-
      LE, IEEE 802.2 LLC[7] and SNAP.

      2.  I-Field contents

      3.  Rules for the use of connections.

   Outside of the scope are

      1.  Address Resolution (ARP)

      2.  Network configuration and management

      3.  Host internal optimizations

      4.  The interface between a host and an outboard protocol
      processor.

2.1  Changes from RFC 1374

   RFC 1374 described the use of ARP on HIPPI, but because of
   insufficient implementation experience, the description of ARP has
   been separated from IP encapsulation and moved to an Informational
   memo.  It may be returned to the standards track in the future if
   interest and implementations warrant it.










Renwick                     Standards Track                     [Page 3]

RFC 2067                     IP over HIPPI                  January 1997


   RFC 1374's specification of IP over HIPPI has been changed in this
   document.  Certain packet format options, permitted in RFC 1374, are
   no longer allowed:

           1.  Optional short burst first;

           2.  D1 fill bytes;

           3.  Nonzero D2 offset.

   That is, the header format is no longer variable and is required to
   be that which is recommended by RFC 1374.

   With these changes, it is possible to send packets which conform to
   the ANSI standards but not to this memo.  Because there are no RFC
   1374 implementations in use that used these options, we believe that
   all existing RFC 1374 implementations are compliant with the
   requirements of this memo, and there should be no interoperability
   problems associated with these changes.

2.2  Terminology

   In this document the use of the word SHALL in capital letters
   indicates mandatory points of compliance.

3  Definitions

   Conventional

      Used with respect to networks, this refers to Ethernet, FDDI and
      802 LAN types, as distinct from HIPPI-SC LANs.

   Destination

      The HIPPI implementation that receives data from a HIPPI Source.

   Node

      An entity consisting of one HIPPI Source/Destination pair that is
      connected by parallel or serial HIPPI to a HIPPI-SC switch and
      that transmits and receives IP datagrams.  A node may be an
      Internet host, bridge, router or gateway.  This memo uses the term
      node in place of the usual "host" to indicate that a host might be
      connected to the HIPPI LAN not directly, but through an external
      adaptor that does some of the protocol processing for the host.






Renwick                     Standards Track                     [Page 4]

RFC 2067                     IP over HIPPI                  January 1997


   Serial HIPPI

      An implementation of HIPPI in serial fashion on coaxial cable or
      optical fiber, informally standardized by implementor's agreement
      in the Spring of 1991.

   Switch Address

      A value used as the address of a node on a HIPPI-SC network.  It
      is transmitted in the I-field.  HIPPI-SC switches may map Switch
      Addresses to physical port numbers.

   Source

      The HIPPI implementation that generates data to send to a HIPPI
      Destination.

   Universal LAN Address (ULA)

      A 48 bit globally unique address, administered by the IEEE,
      assigned to each node on an Ethernet, FDDI, 802 network or HIPPI-
      SC LAN.

4  Equipment

   A HIPPI network can be composed of nodes with HIPPI interfaces, HIPPI
   cables or serial links, HIPPI-SC switches, gateways to other
   networks.

   Each HIPPI interconnection between a node and a switch SHALL consist
   of a pair of HIPPI links, one in each direction.

   If a link between a node and the switch is capable of the 1600
   Megabit/second data rate option (i.e. Cable B installed for 64 bit
   wide operation) in either direction, the node's HIPPI-PH
   implementation SHALL also be capable of 32 bit operation (Cable B
   data suppressed) and SHALL be able to select or deselect the 1600Mb/s
   data rate option at the establishment of each new connection.













Renwick                     Standards Track                     [Page 5]

RFC 2067                     IP over HIPPI                  January 1997


   The following figure shows a sample HIPPI switch configuration.

                                                      +-----+
                                                      | H 4 |
      |                                               +--+--+
      |                   +----+    +----+    +----+     |
      |                   | H1 |    | H2 |    | H3 |   +-++
      |   +--+            +-++-+    +-++-+    +-++-+   |PP|
      +---+H5|              ||        ||        ||     ++++
      |   +--+              ||        ||        ||      ||
      |                 +---++--------++--------++------++----+
      |                 |                                     |
      |   +----+        |              HIPPI-SC               |
      +---+ G1 +--------+                                     |
      |   |    +--------+               Switch                |
      |   +----+        |                                     |
      |                 +---++--------++--------++------++----+
      |   +--+              ||        ||        ||      ||
      +---+H6|              ||                         ++++
      |   +--+            +-++-+                       |PP|
      |                   |    |                       +-++
      |                   | G2 |                         |
      |                   |    |                      +--+--+
      |                   +--+-+                      | H 7 |
      |                      |                        +-----+
                             |
           -----+------------+-------+-----------+-------------+------
                |                    |           |             |
                |                    |           |             |
             +--+--+              +--+--+     +--+--+       +--+--+
             | H 8 |              | H 9 |     | H10 |       | H11 |
             +-----+              +-----+     +-----+       +-----+

      Legend:  ---+---+---+--  =  802 network, Ethernet or FDDI
                           ||  =  Paired HIPPI link
                            H  =  Host computer
                           PP  =  Outboard Protocol Processor
                            G  =  Gateway

                       A possible HIPPI configuration











Renwick                     Standards Track                     [Page 6]

RFC 2067                     IP over HIPPI                  January 1997


   A single HIPPI-SC switch has a "non-blocking" characteristic, which
   means there is always a path available from any Source to any
   Destination.  If the network consists of more than one switch, the
   path from a Source to a Destination may include a HIPPI link between
   switches.  If this link is used by more than one Source/Destination
   pair, a "blocking" network is created: one Source may be blocked from
   access to a Destination because another Source is using the link it
   shares.  Strategies for establishing connections may be more
   complicated on blocking networks than on non-blocking ones.

   This memo does not take blocking issues into account, assuming that
   the HIPPI LAN consists of one HIPPI-SC switch or, if the network is
   more complex than that, it presents no additional problems that a
   node must be aware of.

5  Protocol

5.1  Packet Format

   The HIPPI packet format for Internet datagrams SHALL conform to the
   HIPPI-FP and HIPPI-LE draft standards, with further restrictions as
   imposed by this memo.  Because this memo is more restrictive than the
   ANSI standards, it is possible to send encapsulated IP datagrams that
   conform to the ANSI standards, but are illegal according to this
   memo.  Destinations may either accept or ignore such datagrams.

   To summarize the additional restrictions on ANSI standards found
   here:

           Any short burst must be the last burst of the packet.
           Leading short bursts are not permitted.

           Nonzero values for the HIPPI-FP D2_Offset field are not
           permitted.

           The D1_AreaSize SHALL be 3 (64-bit words).  No D1 Fill is
           permitted.

   Note: Although this document is for IP over HIPPI, the encapsulation
   described below accommodates ARP as well.

   The HIPPI-FP D1_Area SHALL contain the HIPPI-LE header.  The HIPPI-FP
   D2_Area, when present, SHALL contain one IEEE 802.2 Type 1 LLC
   Unnumbered Information (UI) PDU.  Support of IEEE 802.2 XID, TEST and
   Type 2 PDUs is not required on HIPPI, and Destinations that receive
   these PDUs may either ignore them or respond correctly according to
   IEEE 802.2 requirements.




Renwick                     Standards Track                     [Page 7]

RFC 2067                     IP over HIPPI                  January 1997


   The length of a HIPPI packet, including trailing fill, SHALL be a
   multiple of eight bytes as required by HIPPI-LE.

   +----------+-----------+---------------------+-----------   ------+
   |          |           |                     |              0 - 7 |
   | HIPPI-FP | HIPPI-LE  | IEEE 802.2 LLC/SNAP | IP . . .     bytes |
   |(8 bytes) |(24 bytes) |      (8 bytes)      |               fill |
   +----------+-----------+---------------------+-----------   ------+

                          HIPPI Packet Structure

        ULP-id (8 bits) SHALL contain 4.

        D1_Data_Set_Present (1 bit) SHALL be set.

        Start_D2_on_Burst_Boundary (1 bit) SHALL be zero.

        Reserved (11 bits) SHALL contain zero.

        D1_Area_Size (8 bits) SHALL be sent as 3.

        D2_Offset (3 bits) SHALL be zero.

        D2_Size (32 bits) Shall contain the number of bytes in the
        IEEE 802.2 LLC Type 1 PDU, or zero if no PDU is present.  It
        SHALL NOT exceed 65,288.  This value includes the IEEE 802.2
        LLC/SNAP header and the IP datagram.  It does not include
        trailing fill bytes.  (See "MTU", below.)

HIPPI-LE Header

   FC (3 bits) SHALL contain zero unless otherwise defined by local
   administration.

   Double_Wide (1 bit) SHALL contain one if the Destination associated
   with the sending Source supports 64 bit HIPPI operation.  Otherwise
   it SHALL contain zero.

   Message_Type (4 bits) contains a code identifying the type of HIPPI-
   LE PDU.  Defined values are:

              0  Data PDU
              1  Address Resolution Request PDU (AR_Request)
              2  Address Resolution Response PDU (AR_Response)
              3  Self Address Resolution Request PDU (AR_S_Request)
              4  Self Address Resolution Response PDU (AR_S_Response)





Renwick                     Standards Track                     [Page 8]

RFC 2067                     IP over HIPPI                  January 1997


   Destination_Switch_Address is a 24-bit field containing the
   Switch Address of the Destination if known, otherwise zero.
   If the address comprises less than 24 bits, it SHALL be right
   justified (occupying the least significant bits) in the
   field.

   Destination_Address_Type (4 bits) and Source_Address_Type (4
   bits) contain codes identifying the type of addresses in the
   Destination_Switch_Address and Source_Switch_Address fields
   respectively.  Defined values (binary) are:

                 0  Unspecified
                 1  HIPPI-SC Source Route (24 bits)
                 2  HIPPI-SC Address (12 bits)

   Source_Switch_Address is a 24-bit field containing the Switch
   Address of the Source.  If the address comprises less than 24
   bits, it SHALL be right justified (occupying the least
   significant bits) in the field.

   Reserved (16 bits) SHALL contain zero.

   Destination_IEEE_Address (48 bits) SHALL contain the 48 bit
   Universal LAN MAC Address of the Destination if known,
   otherwise zero.

   LE_Locally_Administered (16 bits) SHALL contain zero UNLESS
   otherwise defined by local administration.

   Source_IEEE_Address (48 bits) SHALL contain the 48 bit
   Universal LAN MAC Address of the Source if known, otherwise
   zero.

IEEE 802.2 LLC

   The IEEE 802.2 LLC Header SHALL begin in the first byte of the
   HIPPI-FP D2_Area.

   SSAP (8 bits) SHALL contain 170 ('AA'h).

   DSAP (8 bits) SHALL contain 170 ('AA'h).

   CTL (8 bits) SHALL contain 3 (Unnumbered Information).

SNAP

   Organization Code (24 bits) SHALL be zero.




Renwick                     Standards Track                     [Page 9]

RFC 2067                     IP over HIPPI                  January 1997


   EtherType (16 bits) SHALL be set as defined in Assigned Numbers [8]:
   IP = 2048 ('0800'h), ARP = 2054 ('0806'h), RARP = 32,821 ('8035'h).

      31    28        23  21          15        10     7         2   0
      +-----+---------+-+-+-----------+---------+-----+---------+-----+
    0 |      04       |1|0|       Reserved      |      03       |  0  |
      +---------------+-+-+---------------------+---------------+-----+
    1 |                             (n+8)                             |
      +-----+-+-------+-----------------------------------------------+
    2 |[LA] |W|M_Type |          Destination_Switch_Address           |
      +-----+-+-------+-----------------------------------------------+
    3 | D_A_T | S_A_T |             Source_Switch_Address             |
      +-------+-------+---------------+-------------------------------+
    4 |            Reserved           |  [Destination_IEEE_Address]   |
      +-------------------------------+                               |
    5 |                                                               |
      +-------------------------------+-------------------------------+
    6 |             [LA]              |     [Source_IEEE_Address]     |
      +-------------------------------+                               |
    7 |                                                               |
      +---------------+---------------+---------------+---------------+
    8 |       AA      |      AA       |       03      |       00      |
      +---------------+---------------+---------------+---------------+
    9 |       00      |      00       |         [EtherType]           |
      +---------------+---------------+---------------+---------------+
   10 |Message byte 0 |Message byte 1 |Message byte 2 | . . .         |
      +---------------+---------------+---------------+---            |
      |                            .  .  .
                                                                      |
      |        -------+---------------+---------------+---------------+
      |         . . . |  byte (n-2)   |  byte (n-1)   |     FILL      |
      +---------------+---------------+---------------+---------------+
   N-1|      FILL     |     FILL      |     FILL      |     FILL      |
      +---------------+---------------+---------------+---------------+

















Renwick                     Standards Track                    [Page 10]

RFC 2067                     IP over HIPPI                  January 1997


                            HIPPI Packet Format

              Words 0-1:  HIPPI-FP Header
              Words 2-7:  D1 Area (HIPPI-LE Header)
              Words 8-9:  D2 Area (IEEE 802.2 LLC/SNAP)
              Words 10-(N-1):  D2 Area (IP message)
              (n) is the number of bytes in the IP message.
              [LA] fields are zero unless used otherwise locally.
              Abbreviations:  "W"      = Double_Wide field;
                              "M_Type" = Message_Type field;
                              "D_A_T"  = Destination_Address_Type;
                              "S_A_T"  = Source_Address_Type;
              [FILL] bytes complete the HIPPI packet to an even
              number of 32 bit words.  The number of fill bytes
              is not counted in the data length.

IEEE 802.2 Data

   The IEEE 802.2 Data SHALL begin in the byte following the EtherType
   field.  Fill bytes SHALL be used following the Data as necessary to
   make the number of bytes in the packet a multiple of 8.  In
   accordance with HIPPI-FP, the amount of this fill is not included in
   the D2_Size value in the HIPPI- FP Header.

   The order of the bytes in the data stream is from higher numbered to
   lower numbered data signal (left to right) within the HIPPI word, as
   specified in HIPPI-FP Clause 7, "Word and byte formats."  With the
   1600 megabit/second data rate option (64 bit) bits 32 through 63 are
   on Cable B, so that the four bytes on Cable B come logically before
   those on Cable A.  Within each byte, the most significant bit is the
   highest numbered signal.

5.2  48 bit Universal LAN MAC Addresses

   IEEE Standard 802.1A specifies the Universal LAN MAC Address.  The
   globally unique part of the 48 bit space is administered by the IEEE.
   Each node on a HIPPI-SC LAN should be assigned a ULA.  Multiple ULAs
   may be used if a node contains more than one IEEE 802.2 LLC protocol
   entity.












Renwick                     Standards Track                    [Page 11]

RFC 2067                     IP over HIPPI                  January 1997


   The format of the address within its 48 bit HIPPI-LE fields follows
   IEEE 802.1A canonical bit order and HIPPI-FP bit and byte order:

     31              23              15               7              0
     +-------------------------------+---------------+---------------+
     |      (not used for ULA)       |ULA byte 0 |L|G|  ULA byte  1  |
     +---------------+---------------+---------------+---------------+
     |  ULA byte  2  |  ULA byte  3  |  ULA byte  4  |  ULA byte  5  |
     +---------------+---------------+---------------+---------------+

                     Universal LAN MAC Address Format

        L (U/L bit) = 1 for Locally administered addresses, 0 for
        Universal.
        G (I/G bit) = 1 for Group addresses, 0 for Individual.

   The use of ULAs is optional, but encouraged.  Although ULAs are not
   used by HIPPI-SC switches, they may be helpful for HIPPI Switch
   Address resolution, and for distinguishing between multiple logical
   entities that may exist within one node.  They may also be used by
   gateway devices that replace HIPPI hardware headers with the MAC
   headers of other LANs.  Carrying the ULAs in the HIPPI header may
   simplify these devices, and it may also help if HIPPI is used as an
   interface to some future HIPPI based LAN that uses ULAs for
   addressing.

5.3  I-Field format

   fi The I-field bits, as defined in HIPPI-SC, SHALL be set as follows:

         Locally Administered (bit 31) SHALL be zero.

         Reserved (bits 30, 29) should be zero.  Destinations SHALL
         accept any value for these bits.

         Double wide (bit 28) SHALL be set when Source Cable B is
         connected and the Source wants a 64 bit connection.  It SHALL
         be zero otherwise.

         Direction (bit 27) should be sent as zero, however
         Destinations SHALL accept either zero or one and interpret
         the Routing Control field accordingly, per HIPPI-SC.

         Path Selection (bits 26, 25) SHALL be 00, 01, or 11 (binary)
         at the Source's option.  00 (source route mode) indicates
         that the I-field bits 23-00 contain a 24 bit source route; 01
         or 11 (logical address mode) indicate that bits 23-00 contain
         12 bit Source and Destination Addresses.  The value 11 is



Renwick                     Standards Track                    [Page 12]

RFC 2067                     IP over HIPPI                  January 1997


         meaningful when more than one route exists from a Source to a
         Destination; it allows the switch to choose the route.  Use
         of 01 forces the switch always to use the same route for the
         same Source/Destination pair.

         Camp-on (bit 24) may be 1 or 0; however, a Source SHALL NOT
         make consecutive requests without Camp-on to the same
         Destination while the requests are being rejected.  The
         purpose of this restriction is to prevent a node from
         circumventing the fair share arbitration mechanism of the
         switch by repeating requests at a very high rate.

         If logical address mode is used:

            Source Address (bits 23-12) is not used.

            Destination Address (bits 11-0) SHALL contain the Switch
            Address of the Destination.

        If source route mode is used:

            Routing control (bits 23-00) SHALL contain the route to
            the Destination.

5.4  Rules For Connections

   The following rules for connection management by Source and
   Destination are intended to insure frequent, fair share access to
   Destinations for which multiple Sources are contending.  If possible,
   nodes should transfer data at full HIPPI speeds and hold connections
   no longer than necessary.

   A source may hold a connection for as long as it takes to send 68
   HIPPI bursts at what ever speed the two connected nodes can achieve
   together.  The number of packets sent in one connection is not
   limited, except that the number of bursts over all the packets should
   not exceed 68.  This is not a recommendation to send as many packets
   as possible per connection; one packet per connection is acceptable.
   The purpose of this limit is to give each Source an fair share of a
   common Destination's bandwidth.  Without a limit, if there is a
   Destination that is constantly in demand by multiple Sources, the
   Source that sends the most data per connection wins the greatest
   share of bandwidth.

   The limit of 68 bursts is not absolute.  An implementation may check
   the burst count after transmission of a packet and end the connection
   if it is greater than or equal to some threshold.  If this is done,
   the threshold should be less than 68 depending on the typical packet



Renwick                     Standards Track                    [Page 13]

RFC 2067                     IP over HIPPI                  January 1997


   size, to ensure that the 68 burst limit is not normally exceeded.
   For instance, a Source sending 64K packets would send two per
   connection (130 bursts) if it checked for 68 at the end of each
   packet.  In this situation the Source is required to check for a
   value small enough that it will not send a second packet in the same
   connection.

   Destinations SHALL accept all packets that arrive during a
   connection, and may discard those that exceed its buffering capacity.
   A Destination SHALL NOT abort a connection (deassert CONNECT) simply
   because too many bursts were received; however a Destination may
   abort a connection whose duration has exceeded a time period of the
   Destination's choosing, as long as the Source is allowed ample time
   to transmit its quota of bursts.

   The rules admonish the node to do certain things as fast as it can,
   however there is no absolute measure of compliance.  Nodes that
   cannot transfer data at full HIPPI speeds can still interoperate but
   the faster the implementation, the better the performance of the
   network will be.

   Assuming that bursts flow at the maximum rate, the most important
   factor in network throughput is the connection switching time,
   measured from the deassertion of REQUEST by the Source at the end of
   one connection to its first assertion of BURST after the
   establishment of the new connection.

   Implementations should keep this time as short as possible.  For a
   guideline, assuming parallel HIPPI and a single HIPPI-SC switch, ten
   microseconds permits nearly full HIPPI throughput with full-sized
   packets, and at 60 microseconds the available throughput is reduced
   by about 10%.  (See "Performance", below.)

   All HIPPI electrical signaling SHALL comply with HIPPI-PH.  In every
   case, the following rules go beyond what HIPPI-PH requires.

   Rules for the Source

   1.  Do not assert REQUEST until a packet is ready to send.

   2.  Transmit bursts as quickly as READYs permit.  Except for
       the required HIPPI Source Wait states, there should be no
       delay in the assertion of BURST whenever the Source's READY
       counter is nonzero.

   3.  Make a best effort to ensure that connection durations do
       not exceed 68 bursts.




Renwick                     Standards Track                    [Page 14]

RFC 2067                     IP over HIPPI                  January 1997


   4.  Deassert REQUEST immediately when no packet is available
       for immediate transmission or the last packet of the
       connection has been sent.

   Rules for the Destination

   1.   Reject all connections if unable to receive packets.
        This frees the requesting Source to connect to other
        Destinations with a minimum of delay.  Inability to receive
        packets is not a transient condition, but is the state of the
        Destination when its network interface is not initialized.

   2.  A HIPPI node should be prepared to efficiently accept
       connections and process incoming data packets.  While this
       may be best achieved by not asserting connect unless 68
       bursts worth of buffers is available, it may be possible to
       meet this requirement with fewer buffers.  This may be due to
       a priori agreement between nodes on packet sizes, the speed
       of the interface to move buffers, or other implementation
       dependent considerations.

   3.  Accept a connection immediately when buffers are
       available.  The Destination should never delay the acceptance
       of a connection unnecessarily.

   4.  Once initialized, a Destination may reject connection
       requests only for one of the following reasons:

     1.  The I-field was received with incorrect parity.

     2.  The I-field contents are invalid, e.g. the "W" bit set when the
         Destination does not support the 1600 megabit data rate option,
         the "Locally Administered" bit is set, the Source is not
         permitted to send to this Destination, etc.

     Transient conditions within the Destination, such as temporary
     buffer shortages, must never cause rejected connections.

   5.  Ignore aborted connection sequences.  Sources may time
       out and abandon attempts to connect; therefore aborted
       connection sequences are normal events.

5.5  MTU

   Maximum Transmission Unit (MTU) is defined as the length of the IP
   packet, including IP header, but not including any overhead below IP.
   Conventional LANs have MTU sizes determined by physical layer
   specification.  MTUs may be required simply because the chosen medium



Renwick                     Standards Track                    [Page 15]

RFC 2067                     IP over HIPPI                  January 1997


   won't work with larger packets, or they may serve to limit the amount
   of time a node must wait for an opportunity to send a packet.

   HIPPI has no inherent limit on packet size.  The HIPPI-FP header
   contains a 32 bit D2_Size field that, while it may limit packets to
   about 4 gigabytes, imposes no practical limit for networking
   purposes.  Even so, a HIPPI-SC switch used as a LAN needs an MTU so
   that Destination buffer sizes can be determined.

   The MTU for HIPPI-SC LANs is 65280 bytes.

   This value was selected because it allows the IP packet to fit in one
   64K byte buffer with up to 256 bytes of overhead.  The overhead is 40
   bytes at the present time; there are 216 bytes of room for expansion.

         HIPPI-FP Header                  8 bytes
         HIPPI-LE Header                 24 bytes
         IEEE 802.2 LLC/SNAP Headers      8 bytes
         Maximum IP packet size (MTU) 65280 bytes
                                      ------------
                           Total      65320 bytes (64K - 216)

6  Camp-on

   When several Sources contend for a single Destination, the Camp-on
   feature allows the HIPPI-SC switch to arbitrate and ensure that all
   Sources have fair access.  (HIPPI-SC does not specify the method of
   arbitration.)  Without Camp-on, the contending Sources would simply
   have to retry the connection repeatedly until it was accepted, and
   the fastest Source would usually win.  To guarantee fair share
   arbitration, Sources are prohibited from making repeated requests to
   the same Destination without Camp-on in such a way as to defeat the
   arbitration.

   There is another important reason to use Camp-on: when a connection
   without Camp-on is rejected, the Source cannot determine whether the
   rejection came from the requested Destination or from the switch.
   The Source also cannot tell the reason for the rejection, which could
   be either that the Destination was off line or not cabled, or the I-
   field was erroneous or had incorrect parity.  Sources should not
   treat a rejection of a request without Camp-on as an error.  Camp-on
   prevents rejection due to the temporary busy case; with one
   exception, rejection of a Camp-on request indicates an error
   condition, and an error event can be recorded.  The exception occurs
   when a 64 bit connection is attempted to a Destination that does not
   have Cable B connected, resulting in a reject.  This case is covered
   in "Channel Data Rate Discovery", below.




Renwick                     Standards Track                    [Page 16]

RFC 2067                     IP over HIPPI                  January 1997


7  Path MTU Discovery

   RFC 1191 [9] describes the method of determining MTU restrictions on
   an arbitrary network path between two hosts.  HIPPI nodes may use
   this method without modification to discover restrictions on paths
   between HIPPI-SC LANs and other networks.  Gateways between HIPPI-SC
   LANs and other types of networks should implement RFC 1191.

8  Channel Data Rate Discovery

   HIPPI exists in two data rate options (800 megabit/second and 1600
   megabit/second).  The higher data rate is achieved by making the
   HIPPI 64 bits parallel instead of 32, using an extra cable containing
   32 additional data bits and four parity bits.  HIPPI-SC switches can
   be designed to attach to both.  Source and Destination HIPPI
   implementations can be designed to operate at either rate, selectable
   at the time a connection is established.  The "W" bit (bit 28) of the
   I-field controls the width of the connection through the switch.
   Sources with both cables A and B attached to the switch may set the
   "W" bit to request a 1600 megabit/second connection.  If the
   requested destination also has both cables attached, the switch can
   connect Source to Destination on both cables.  If the requested
   Destination has only Cable A, the switch rejects the request.
   Sixty-four bit Sources can connect to 32 bit Destinations by
   requesting with the "W" bit clear and not using Cable B.  Sixty-four
   bit Destinations must examine the "W" bit in the received I-field and
   use or ignore Cable B accordingly.  Note that both INTERCONNECT
   signals stay active while a 64 bit HIPPI is used in 32 bit mode.

   The following table summarizes the possible combinations, the
   switch's action for each, and the width of the resulting connection.

                                     Destination
                      +-------------------+-------------------+
                      |        32         |        64         |
           +----+-----+-------------------+-------------------+
           |    | W=0 |     Accept 32     |     Accept 32     |
           | 32 +-----+-------------------+-------------------+
           |    | W=1 |        N/A        |        N/A        |
   Source  +----+-----+-------------------+-------------------+
           |    | W=0 |     Accept 32     |     Accept 32     |
           | 64 +-----+-------------------+-------------------+
           |    | W=1 |      Reject       |     Accept 64     |
           +----+-----+-------------------+-------------------+







Renwick                     Standards Track                    [Page 17]

RFC 2067                     IP over HIPPI                  January 1997


HIPPI Connection Combinations

   If the path between a 64 bit Source and a 64 bit Destination includes
   more than one switch, and the route between switches uses a link that
   is only 32 bits wide, the switch rejects 64 bit connection requests
   as if the Destination did not have 64 bit capability.

   In a mixed LAN of 32 bit and 64 bit HIPPIs, a 64 bit Source needs to
   know the data rates available at each Destination and on the path to
   it.  This can be known a priori by manual configuration, or it can be
   discovered dynamically.  The only reliable method of discovery is
   simply to attempt a 64 bit connection with Camp-on.  As long as 64
   bit connections succeed, the Source knows the Destination and path
   are double width.  If a 64 bit connection is rejected, the Source
   tries to connect for 32 bits.  If the 32 bit connection succeeds, the
   Source assumes that the Destination or path is not capable of double
   width operation, and uses only 32 bit requests after that.  If the 32
   bit request is rejected, the Source assumes that the Destination or
   path is down and makes no determination of its capability.

   The Double_Wide bit in the HIPPI-LE header, if nonzero, gives the
   node that receives it a hint that the 64 bit connection attempt may
   be worthwhile when sending on the return path.

   Note that Camp-on must be used at least in the 64 bit attempt,
   because it removes some ambiguity from the meaning of rejects.  If
   the request is made with the "W" bit and no Camp-on, a reject could
   mean either that the Destination has no Cable B or that it is simply
   busy, and no conclusion can be drawn as to its status for 64 bit
   connections.

9  Performance

   The HIPPI connection rules are designed to permit best utilization of
   the available HIPPI throughput under the constraint that each
   Destination must be made available frequently to receive packets from
   different Sources.  This discipline asks both Sources and
   Destinations to minimize connection setup overhead to deliver high
   performance.  Low connection setup times are easily achieved by
   hardware implementations, but overhead may be too high if software is
   required to execute between the initial request of a connection and
   the beginning of data transfer.  Hardware implementations in which
   connection setup and data transfer proceed from a single software
   action are very desirable.

   HIPPI connections are controlled by HIPPI Sources; a Destination,
   being unable to initiate a disconnect without the possibility of data
   loss, is a slave to the Source once it has accepted a connection.



Renwick                     Standards Track                    [Page 18]

RFC 2067                     IP over HIPPI                  January 1997


   Optimizations of connection strategy are therefore the province of
   the HIPPI Source, and several optimizations are permitted.

   If the rate of available message traffic is less than the available
   HIPPI throughput and Destinations are seldom busy when a connection
   is requested, connection optimizations do not pay off and the
   simplest strategy of waiting indefinitely for each connection to be
   made and sending messages strictly in the order queued cannot be
   improved upon.  However if some nodes are slow, or network
   applications can send or receive messages at a higher aggregate rate
   than the available HIPPI bandwidth, Sources may frequently encounter
   a busy Destination.  In these cases, certain host output queuing
   strategies may enhance channel utilization.  Sources may maintain
   separate output queues for different HIPPI Destinations, and abandon
   one Destination in favor of another if a connection attempt without
   Camp-on is rejected or a connection request with Camp-on is not
   accepted within a predetermined interval.  Such a strategy results in
   aborted connection sequences (defined in HIPPI-PH:  REQUEST is
   deasserted before any data is sent).  Destinations must treat these
   as normal events, perhaps counting them but otherwise ignoring them.

   Two components of connection setup time are out of the control of
   both Source and Destination.  One is the time required for the switch
   to connect Source to Destination, currently less than four
   microseconds in the largest commercially available (32 port) switch.
   The second component is the round trip propagation time of the
   REQUEST and CONNECT signals, negligible on a standard 25 meter copper
   HIPPI cable, but contributing a total of about 10 microseconds per
   kilometer on fiber optic links.  HIPPI-SC LANs spanning more than a
   few kilometers will have reduced throughput.  Limited span networks
   with buffered gateways or bridges between them may perform better
   than long serial HIPPI links.

   A Source is required to drop its connection after the transmission of
   68 HIPPI bursts.  This number was chosen to allow the transmission of
   one maximum sized packet or a reasonable number of smaller sized
   packets.  The following table lists some possibilities, with
   calculated maximum burst and throughput rates in millions (10**6) of
   bytes per second:












Renwick                     Standards Track                    [Page 19]

RFC 2067                     IP over HIPPI                  January 1997


                     Maximum HIPPI Throughput Rates

        Number  Number  Hold  Burst  ------Max throughput MB/sec-------
   User   of      of    Time  Rate    Connection Setup Overhead (usec)
   Data Packets Bursts (usec) MB/sec  10    30    60    90   120   150
   ---- ------- ------ ------ ------ ----  ----  ----  ----  ----  ----
   63K     1      64    654    98.7  97.2  94.4  90.4  86.8  83.4  80.3
   32K     2      66    665    98.6  97.1  94.3  90.4  86.8  83.5  80.4
   16K     4      68    667    98.3  96.8  94.1  90.2  86.6  83.3  80.2
    8K     7      63    587    97.8  96.1  93.0  88.7  84.8  81.2  77.8
    4K    13      65    551    96.7  95.0  91.7  87.2  83.1  79.4  76.0
    2K    22      66    476    94.6  92.7  89.0  84.0  79.6  75.6  72.0
    1K    34      68    384    90.8  88.5  84.2  78.5  73.5  75.8  65.3

   These calculations are based 259 40 ns clock periods to transmit a
   full burst and 23 clock periods for a short burst.  (HIPPI-PH
   specifies three clock periods of overhead per burst.) A packet of "n"
   kilobytes of user data consists of "n" full bursts and one short
   burst equal in length to the number of bytes in the HIPPI, LLC, IP
   and TCP headers.  "Hold Time" is the minimum connection duration
   needed to send the packets.  "Burst Rate" is the effective transfer
   rate for the duration of the connection, not counting connection
   switching time.  Throughput rates are in megabytes/second, accounting
   for connection switching times of 10, 30, 60, 90, 120 and 150
   microseconds.  These calculations ignore any limit on the rate at
   which a Source or Destination can process small packets; such limits
   may further reduce the available throughput if small packets are
   used.

10 Sharing the Switch

   Network interconnection is only one potential application of HIPPI
   and HIPPI-SC switches.  While network applications need very frequent
   transient connections, other applications may favor longer term or
   even permanent connections between Source and Destination.  Since the
   switch can serve each Source or Destination with hardware paths
   totally separate from every other, it is quite feasible to use the
   same switch to support LAN interconnects and computer/peripheral
   applications simultaneously.

   Switch sharing is no problem when unlike applications do not share a
   HIPPI cable on any path.  However if a host must use a single input
   or output cable for network as well as other kinds of traffic, or if
   a link between switches must be shared, care must be taken to ensure
   that all applications are compatible with the connection discipline
   described in this memo.  Applications that hold connections too long
   on links shared with network traffic may cause loss of network
   packets or serious degradation of network service.



Renwick                     Standards Track                    [Page 20]

RFC 2067                     IP over HIPPI                  January 1997


11 References

   [1]  ANSI X3.183-1991, High-Performance Parallel Interface -
        Mechanical, Electrical and Signalling Protocol Specification
        (HIPPI-PH).

   [2]  ANSI X3.210-1992, High-Performance Parallel Interface - Framing
        Protocol (HIPPI-FP).

   [3]  ANSI X3.218-1993, High-Performance Parallel Interface -
        Encapsulation of IEEE 802.2 (IEEE Std 802.2) Logical Link
        Control Protocol Data Units (802.2 Link Encapsulation) (HIPPI-
        LE).

   [4]  ANSI X3.222-1993, High-Performance Parallel Interface - Physical
        Switch Control (HIPPI-SC).

   [5]  Postel, J., "Internet Protocol", STD 5, RFC 791, USC/Information
        Sciences Institute, September 1981.

   [6]  IEEE, "IEEE Standards for Local Area Networks: Logical Link
        Control", IEEE, New York, New York, 1985.

   [7]  IEEE, "IEEE Standards for Local Area Networks: Logical Link
        Control", IEEE, New York, New York, 1985.

   [8]  Reynolds, J.K., and Postel, J., "Assigned Numbers", STD 2, RFC
        1340, USC/Information Sciences Institute, July 1992.

   [9]  Mogul, J.C., and Deering, S.E., "Path MTU discovery", RFC 1191,
        Stanford University, November, 1990.

12 Security Considerations

   Security issues are not discussed in this memo.

13 Author's Address

   John K. Renwick
   NetStar, Inc.
   10250 Valley View Road
   Minneapolis, MN USA 55344

   Phone: (612) 996-6847
   EMail: jkr@NetStar.com

   Mailing List: hippi-ext@think.com




Renwick                     Standards Track                    [Page 21]

RFC 2067                     IP over HIPPI                  January 1997


14 Appendix A -- HIPPI Basics

   This section is included as an aid to readers who are not completely
   familiar with the HIPPI standards.

   HIPPI-PH describes a parallel copper data channel between a Source
   and a Destination.  HIPPI transmits data in one direction only, so
   that two sets are required for bidirectional flow.  The following
   figure shows a simple point-to-point link between two computer
   systems:

   +----------+                                        +----------+
   |          |                                        |          |
   |          +--------+                      +--------+          |
   |          | HIPPI  |        Cable         | HIPPI  |          |
   |          |        +--------------------->|        |          |
   |          | Source |                      | Dest.  |          |
   |  System  +--------+                      +--------+  System  |
   |    X     +--------+                      +--------+    Y     |
   |          | HIPPI  |        Cable         | HIPPI  |          |
   |          |        |<---------------------+        |          |
   |          | Dest.  |                      | Source |          |
   |          +--------+                      +--------+          |
   |          |                                        |          |
   +----------+                                        +----------+

A Simple HIPPI Duplex Link

   Parallel copper cables may be up to 25 meters in length.

   In this document, all HIPPI connections are assumed to be paired
   HIPPI channels.

   HIPPI-PH has a single optional feature: it can use a single cable in
   each direction for a 32 bit parallel channel with a maximum data rate
   of 800 megabit/second, or two cables for 64 bits and 1600
   megabit/second.  Cable A carries bits 0-31 and is used in both modes;
   Cable B carries bits 32-63 and is use only with the 1600
   megabit/second data rate option.












Renwick                     Standards Track                    [Page 22]

RFC 2067                     IP over HIPPI                  January 1997


HIPPI Signal Hierarchy

   HIPPI has the following hardware signals:

      Source to Destination

         INTERCONNECT A
         INTERCONNECT B (64 bit only)
         CLOCK (25 MHz)
         REQUEST
         PACKET
         BURST
         DATA (32 or 64 signals)
         PARITY (4 or 8 signals)

      Destination to Source

         INTERCONNECT A
         INTERCONNECT B (64 bit only)
         CONNECT
         READY

   The INTERCONNECT lines carry DC voltages that indicate that the cable
   is connected and that the remote interface has power.  INTERCONNECT
   is not used for signaling.

   The CLOCK signal is a continuous 25 MHz (40 ns period) square wave.
   All Source-to-Destination signals are synchronized to the clock.

   The REQUEST and CONNECT lines are used to establish logical
   connections.  A connection is always initiated by a Source as it
   asserts REQUEST.  At the same time it puts 32 bits of data on DATA
   lines 0-31, called the I-field.  The Destination samples the DATA
   lines and can complete a connection by asserting CONNECT.  Packets
   can be transmitted only while both REQUEST and CONNECT are asserted.

   A Destination can also reject a connection by asserting CONNECT for
   only a short interval between 4 and 16 HIPPI clock periods (160-640
   nanoseconds).  The Source knows a connection has been accepted when
   CONNECT is asserted for more than 16 clocks or it receives a READY
   pulse.

   Either Source or Destination can terminate a connection by
   deasserting REQUEST or CONNECT, respectively.  Normally connections
   are terminated by the Source after its last Packet has been sent.  A
   Destination cannot terminate a connection without potential loss of
   data.




Renwick                     Standards Track                    [Page 23]

RFC 2067                     IP over HIPPI                  January 1997


                  +------+-------------------------+------+
                  | Idle |        Connected        | Idle | . . .
                  +------+-------------------------+------+
                        /                           \
                       /                             \
                      /                               \
                     /                                 \
                    /                                   \
                   +-------+ +-------+ +-------+ +-------+
                   |I-field| |Packet | |Packet | |Packet |
                   +-------+ +-------+ +-------+ +-------+
                            /         \
                           /           \
                          /             \
                         /               \
                        /                 \
                       /                   \
                      /                     \
                     +-----+ +-----+   +-----+
                     |Burst| |Burst|...|Burst|
                     +-----+ +-----+   +-----+

                    HIPPI Logical Framing Hierarchy

   The Source asserts PACKET for the duration of a Packet transmission,
   deasserting it to indicate the end of a Packet.  A sequence of Bursts
   comprise a Packet.  To send a burst, a Source asserts the BURST
   signal for 256 clock periods, during which it places 256 words of
   data on the DATA lines.  The first or last Burst of a Packet may be
   less than 256 clock periods, allowing the transmission of any
   integral number of 32 or 64 bit words in a Packet.




















Renwick                     Standards Track                    [Page 24]

RFC 2067                     IP over HIPPI                  January 1997


   The READY signal is a pulse four or more clock periods long.  Each
   pulse signals the Source that the Destination can receive one Burst.
   The Destination need not wait for a burst before sending another
   READY if it has burst buffers available; up to 63 unanswered READYs
   may be sent, allowing HIPPI to operate at full speed over distances
   of many kilometers.  If a Source must wait for flow control, it
   inserts idle periods between Bursts.

                +------------------------------------------------+
      REQUEST---+                                                +----
                      +--------------------------------------------+
      CONNECT---------+                                            +--
                         +---------------------------------------+
      PACKET-------------+                                       +----

                       +-+   +-+   +-+   +-+   +-+   +-+   +-+   +-+
      READY------------+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +--

                         +-------+ +-------+ +-------+ +-----+
      BURST--------------+       +-+       +-+       +-+     +--------

      DATA------I-field----DATA------DATA------DATA-----DATA----------

                      HIPPI Signal Timing Diagram

Serial HIPPI

   There is no ANSI standard for HIPPI other than the parallel copper
   cable version.  However an implementors' agreement exists, specifying
   a serial protocol to extend HIPPI signals on optical fiber or coaxial
   copper cable.  Serial links may be used interchangeably with parallel
   links to overcome HIPPI distance limitations; they are transparent to
   the Source and Destination, except for the possibility of longer
   propagation delays.

















Renwick                     Standards Track                    [Page 25]

RFC 2067                     IP over HIPPI                  January 1997


I-Field and Switch Control

   The REQUEST, CONNECT and I-field features of HIPPI-PH were designed
   for the control of switches as described in HIPPI-SC.  A switch is a
   hub with a number of input and output HIPPI ports.  HIPPI Sources are
   cabled to switch input ports, and switch output ports are cabled to
   HIPPI Destinations.  When a HIPPI Source requests a connection, the
   switch interprets the I-field to select an output port and
   electrically connects the HIPPI Source to the HIPPI Destination on
   that port.  Once connected, the switch does not interact with the
   HIPPIs in any way until REQUEST or CONNECT is deasserted, at which
   time it breaks the physical connection and deasserts its output
   signals to both sides.  Some existing switch implementations can
   switch connections in less than one microsecond.  There is the
   potential for as many simultaneous connections, each transferring
   data at HIPPI speeds, as there are input or output ports on the
   switch.  A switch offers much greater total throughput capacity than
   broadcast or ring media.

      31    28  26    23                      11                     0
      +-+---+-+-+---+-+-----------------------+-----------------------+
      |L|   |W|D|PS |C|    Source Address     |  Destination Address  |
      +-+---+-+-+---+-+-----------------------+-----------------------+

                  HIPPI-SC I-field Format (Logical Address Mode)

           L  = Locally defined (1 => entire I-field is locally defined)
           W  = Width (1 => 64 bit connection)
           D  = Direction (1 => swap Source and Destination Address)
           PS = Path Selection (01 => Logical Address Mode)
           C  = Camp-on (1 => wait until Destination is free)

   HIPPI-SC defines I-field formats for two different addressing modes.
   The first, called Source Routing, encodes a string of port numbers in
   the lower 24 bits.  This string specifies a route over a number of
   switches.  A Destination's address may differ from one Source to
   another if multiple switches are used.

   The second format, called Logical Address Mode, defines two 12 bit
   fields, Source Address and Destination Address.  A Destination's 12
   bit Switch Address is the same for all Sources.  Switches commonly
   have address lookup tables to map 12 bit logical addresses to
   physical ports.  This mode is used for networking.








Renwick                     Standards Track                    [Page 26]

RFC 2067                     IP over HIPPI                  January 1997


Control fields in the I-field are:

   L  The "Locally Defined" bit, when set, indicates that the I-field
      is not in the standard format.  The meaning of bits 30-0 are
      locally defined.

   W  The Width bit, when set, requests a 64 bit connection through
      the switch.  It is meaningless if Cable B is not installed at
      the Source.  If W is set and either the Source or the requested
      Destination has no Cable B to the switch, the switch rejects
      the connection.  Otherwise the switch connects both Cable A and
      Cable B if W is set, or Cable A only if W is clear.  This
      feature is useful if both Source and Destination
      implementations can selectively disable or enable Cable B on
      each new connection.

   D  The Direction bit, when set, reverses the sense of the Source
      Address and Destination Address fields.  In other words, D=1
      means that the Source Address is in bits 0-11 and the
      Destination Address is in bits 12-23.  This bit was defined to
      give devices a simple way to route return messages.  It is not
      useful for LAN operations.

   PS The Path Selection field determines whether the I-field
      contains Source Route or Address information, and in Logical
      Address mode, whether the switch may select from multiple
      possible routes to the destination.  The value "01" selects
      Logical Address mode and fixed routes.

   C  The Camp-on bit requests the switch not to reject the
      connection if the selected Destination is busy (connected to
      another Source) but wait and make the connection when the
      Destination is free.

15 Appendix B -- How to Build a Practical HIPPI LAN

   "IP on HIPPI" describes the network host's view of a HIPPI local area
   network without providing much information on the architecture of the
   network itself.  Here we describe a network constructed from
   available HIPPI components, having the following characteristics:

   1.  A tree structure with a central HIPPI-SC compliant hub and
   optional satellite switches

   2.  Each satellite is connected to the hub by just one bidirectional
   HIPPI link.





Renwick                     Standards Track                    [Page 27]

RFC 2067                     IP over HIPPI                  January 1997


   3.  Serial HIPPI or transparent fiber optic HIPPI extender devices
   may be used in any link.

   4.  Some satellites may be a particular switch product which is not
   HIPPI-SC compliant.

   5.  Host systems are attached either directly to the hub or to
   satellites, by single bidirectional links in which both HIPPI cables
   go to the same numbered switch port.

Switch Address Management

   Switch addresses use a flat address space.  The 12-bit address is
   subdivided into 6 bits of switch number and 6 bits of port number.

   11                       5                     0
      +-----------------------+-----------------------+
      |     Switch Number     |      Port Number      |
      +-----------------------+-----------------------+

Logical Address Construction

   Switches may be numbered arbitrarily.  A given host's address
   consists of the number of the switch it is directly attached to and
   the physical port number on that switch to which its input channel is
   attached.

   In the singly-connected tree structure, there is exactly one path
   between any pair of hosts.  Since each satellite must be connected
   directly to the hub, the maximum length of this path is three hops,
   and the minimum length is one.  Each HIPPI-SC compliant switch is
   programmed to map each of the host switch addresses to the
   appropriate output port: either the port to which the host is
   directly attached or a port that is linked to another switch in the
   path to it.

Special Treatment of Nonstandard Switches

   There is one commercially available switch that was designed
   before the drafting of HIPPI-SC and is not fully compliant.  It is
   in common use, so it is worth making some special provisions to
   allow its use in a HIPPI LAN.  This switch supports only the
   Source Route mode of addressing with a four bit right shift that
   can be disabled by a hardware switch on each input port.
   Addresses cannot be mapped.  The switch does not support the "W",
   "D", or "PS" fields of the I-field; it ignores their contents.
   Use of this switch as a satellite will require a slight deviation
   from normal I-field usage by the hosts that are directly attached



Renwick                     Standards Track                    [Page 28]

RFC 2067                     IP over HIPPI                  January 1997


   to it.  Hosts attached to standard switches are not affected.

   For a destination connected to a non compliant satellite, the
   satellite uses only the least significant four bits of the I-field
   as the address.  Since the address contains the destination's
   physical port number in the least significant bits, its port will
   be selected.  Nonstandard switches should be set to disable I-
   field shifting at the input from the hub, so that the destination
   host will see its correct switch address in the I-field when
   performing self-address discovery.  I-field shifting must be
   enabled on the satellite for each input port to which a host is
   attached.

   Hosts attached to nonstandard satellites must deviate from the
   normal I-field usage when connecting to hosts on another switch.
   It is suggested that all host implementations have this capability
   as long as the nonstandard switches remain in use.  The host must
   know, by some manual configuration method, that it is connected to
   a nonstandard switch, and it must have its "link port" number;
   that is, the number of the port on the satellite that is connected
   to the hub.

   The normal I-field format for a 32-bit connection, per the
   document, is this:

   31        26    23                      11                     0
   +---------+---+-+-----------------------+-----------------------+
   |0 0 0 0 0|x 1|C|        Unused         |  Destination Address  |
   +---------+---+-+-----------------------+-----------------------+

   The special I-field format is:

   31        26  24                15                     4 3     0
   +---------+---+-+---------------+-----------------------+-------+
   |0 0 0 0 0|x 1|C|    Unused     |  Destination Address  | Link  |
   +---------+---+-+---------------+-----------------------+-------+

   This I-field is altered by shifting the lower 24 bits left by four
   and adding the link port number.  Camp-on is optional, and the PS
   field is set to 01 or 11 (the host's option) as if the switch
   supported logical address mode.  All other I-field bits are set to
   zero.  When the host requests a connection with this I-field, the
   switch selects a connection through the link port to the hub, and
   shifts the lower 24 bits of the I-field right by four bits.  The link
   port number is discarded and the I-field passed through to the hub is
   a proper HIPPI-SC I-field selecting logical address mode.





Renwick                     Standards Track                    [Page 29]

RFC 2067                     IP over HIPPI                  January 1997


   A host on a nonstandard satellite may use the special I-field format
   for all connection requests.  If connecting to another host on the
   same satellite, this will cause the connection to take an
   unnecessarily long path through the hub and back.  If an optimization
   is desired, the host can be given additional information to allow it
   to use the standard I-field format when connecting to another host on
   the same switch.  This information could consist of a list of the
   other hosts on the same switch, or the details of address formation,
   along with the switch number of the local satellite, which would
   allow the host to analyze the switch address to determine whether or
   not the destination is on the local switch.  This optimization is
   fairly complicated and may not always be worthwhile.







































Renwick                     Standards Track                    [Page 30]