File: rfc2233.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (3699 lines) | stat: -rw-r--r-- 148,035 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699






Network Working Group                                      K. McCloghrie
Request for Comments: 2233                                 Cisco Systems
Obsoletes: 1573                                            F. Kastenholz
Category: Standards Track                                   FTP Software
                                                           November 1997


                  The Interfaces Group MIB using SMIv2


Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1997).  All Rights Reserved.

Table of Contents

   1 Introduction ..............................................    2
   2 The SNMP Network Management Framework .....................    2
   2.1 Object Definitions ......................................    3
   3 Experience with the Interfaces Group ......................    3
   3.1 Clarifications/Revisions ................................    3
   3.1.1 Interface Sub-Layers ..................................    4
   3.1.2 Guidance on Defining Sub-layers .......................    6
   3.1.3 Virtual Circuits ......................................    8
   3.1.4 Bit, Character, and Fixed-Length Interfaces ...........    8
   3.1.5 Interface Numbering ...................................   10
   3.1.6 Counter Size ..........................................   14
   3.1.7 Interface Speed .......................................   16
   3.1.8 Multicast/Broadcast Counters ..........................   17
   3.1.9 Trap Enable ...........................................   18
   3.1.10 Addition of New ifType values ........................   18
   3.1.11 InterfaceIndex Textual Convention ....................   18
   3.1.12 New states for IfOperStatus ..........................   19
   3.1.13 IfAdminStatus and IfOperStatus .......................   20
   3.1.14 IfOperStatus in an Interface Stack ...................   21
   3.1.15 Traps ................................................   21
   3.1.16 ifSpecific ...........................................   23
   3.1.17 Creation/Deletion of Interfaces ......................   24
   3.1.18 All Values Must be Known .............................   24
   4 Media-Specific MIB Applicability ..........................   25



McCloghrie & Kastenholz     Standards Track                     [Page 1]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   5 Overview ..................................................   26
   6 Interfaces Group Definitions ..............................   26
   7 Acknowledgements ..........................................   64
   8 References ................................................   64
   9 Security Considerations ...................................   65
   10 Authors' Addresses .......................................   65
   11 Full Copyright Statement .................................   66

1.  Introduction

   This memo defines a portion of the Management Information Base
   (MIB) for use with network management protocols in the Internet
   community.  In particular, it describes managed objects used for
   managing Network Interfaces.

   This memo discusses the 'interfaces' group of MIB-II, especially the
   experience gained from the definition of numerous media- specific MIB
   modules for use in conjunction with the 'interfaces' group for
   managing various sub-layers beneath the internetwork- layer.  It
   specifies clarifications to, and extensions of, the architectural
   issues within the previous model used for the 'interfaces' group.

   This memo also includes a MIB module.  As well as including new
   MIB definitions to support the architectural extensions, this MIB
   module also re-specifies the 'interfaces' group of MIB-II in a
   manner that is both compliant to the SNMPv2 SMI and semantically-
   identical to the existing SNMPv1-based definitions.

   The key words "MUST" and "MUST NOT" in this document are to be
   interpreted as described in RFC 2119 [10].

2.  The SNMP Network Management Framework

   The SNMP Network Management Framework presently consists of three
   major components.  They are:

   o    RFC 1902 which defines the SMI, the mechanisms used for
        describing and naming objects for the purpose of management.

   o    STD 17, RFC 1213 defines MIB-II, the core set of managed
        objects for the Internet suite of protocols.

   o    STD 15, RFC 1157 and RFC 1905 which define two versions of
        the protocol used for network access to managed objects.







McCloghrie & Kastenholz     Standards Track                     [Page 2]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   The Framework permits new objects to be defined for the purpose of
   experimentation and evaluation.

2.1.  Object Definitions

   Managed objects are accessed via a virtual information store,
   termed the Management Information Base or MIB.  Objects in the MIB
   are defined using the subset of Abstract Syntax Notation One
   (ASN.1) defined in the SMI.  In particular, each object object
   type is named by an OBJECT IDENTIFIER, an administratively
   assigned name.  The object type together with an object instance
   serves to uniquely identify a specific instantiation of the
   object.  For human convenience, we often use a textual string,
   termed the descriptor, to refer to the object type.

3.  Experience with the Interfaces Group

   One of the strengths of internetwork-layer protocols such as IP
   [6] is that they are designed to run over any network interface.
   In achieving this, IP considers any and all protocols it runs over
   as a single "network interface" layer.  A similar view is taken by
   other internetwork-layer protocols.  This concept is represented
   in MIB-II by the 'interfaces' group which defines a generic set of
   managed objects such that any network interface can be managed in
   an interface-independent manner through these managed objects.
   The 'interfaces' group provides the means for additional managed
   objects specific to particular types of network interface (e.g., a
   specific medium such as Ethernet) to be defined as extensions to
   the 'interfaces' group for media-specific management.  Since the
   standardization of MIB-II, many such media-specific MIB modules
   have been defined.

   Experience in defining these media-specific MIB modules has shown
   that the model defined by MIB-II is too simplistic and/or static
   for some types of media-specific management.  As a result, some of
   these media-specific MIB modules assume an evolution or loosening
   of the model.  This memo documents and standardizes that evolution
   of the model and fills in the gaps caused by that evolution.  This
   memo also incorporates the interfaces group extensions documented
   in RFC 1229 [7].

3.1.  Clarifications/Revisions

   There are several areas for which experience has indicated that
   clarification, revision, or extension of the model would be
   helpful.  The following sections discuss the changes in the
   interfaces group adopted by this memo in each of these areas.




McCloghrie & Kastenholz     Standards Track                     [Page 3]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   In some sections, one or more paragraphs contain discussion of
   rejected alternatives to the model adopted in this memo.  Readers
   not familiar with the MIB-II model and not interested in the
   rationale behind the new model may want to skip these paragraphs.

3.1.1.  Interface Sub-Layers

   Experience in defining media-specific management information has
   shown the need to distinguish between the multiple sub-layers
   beneath the internetwork-layer.  In addition, there is a need to
   manage these sub-layers in devices (e.g., MAC-layer bridges) which
   are unaware of which, if any, internetwork protocols run over
   these sub-layers.  As such, a model of having a single conceptual
   row in the interfaces table (MIB-II's ifTable) represent a whole
   interface underneath the internetwork-layer, and having a single
   associated media-specific MIB module (referenced via the ifType
   object) is too simplistic.  A further problem arises with the
   value of the ifType object which has enumerated values for each
   type of interface.

   Consider, for example, an interface with PPP running over an HDLC
   link which uses a RS232-like connector.  Each of these sub-layers
   has its own media-specific MIB module.  If all of this is
   represented by a single conceptual row in the ifTable, then an
   enumerated value for ifType is needed for that specific
   combination which maps to the specific combination of media-
   specific MIBs.  Furthermore, such a model still lacks a method to
   describe the relationship of all the sub-layers of the MIB stack.

   An associated problem is that of upward and downward multiplexing
   of the sub-layers.  An example of upward multiplexing is MLP
   (Multi-Link-Procedure) which provides load-sharing over several
   serial lines by appearing as a single point-to-point link to the
   sub-layer(s) above.  An example of downward multiplexing would be
   several instances of PPP, each framed within a separate X.25
   virtual circuit, all of which run over one fractional T1 channel,
   concurrently with other uses of the T1 link.  The MIB structure
   must allow these sorts of relationships to be described.

   Several solutions for representing multiple sub-layers were
   rejected.  One was to retain the concept of one conceptual row for
   all the sub-layers of an interface and have each media-specific
   MIB module identify its "superior" and "subordinate" sub-layers
   through OBJECT IDENTIFIER "pointers".  This scheme would have
   several drawbacks: the superior/subordinate pointers would be
   contained in the media-specific MIB modules; thus, a manager could
   not learn the structure of an interface without inspecting
   multiple pointers in different MIB modules; this would be overly



McCloghrie & Kastenholz     Standards Track                     [Page 4]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   complex and only possible if the manager had knowledge of all the
   relevant media-specific MIB modules; MIB modules would all need to
   be retrofitted with these new "pointers"; this scheme would not
   adequately address the problem of upward and downward
   multiplexing; and finally, enumerated values of ifType would be
   needed for each combination of sub-layers.  Another rejected
   solution also retained the concept of one conceptual row for all
   the sub-layers of an interface but had a new separate MIB table to
   identify the "superior" and "subordinate" sub-layers and to
   contain OBJECT IDENTIFIER "pointers" to the media-specific MIB
   module for each sub-layer.  Effectively, one conceptual row in the
   ifTable would represent each combination of sub-layers between the
   internetwork-layer and the wire.  While this scheme has fewer
   drawbacks, it still would not support downward multiplexing, such
   as PPP over MLP: observe that MLP makes two (or more) serial
   lines appear to the layers above as a single physical interface,
   and thus PPP over MLP should appear to the internetwork-layer as a
   single interface; in contrast, this scheme would result in two (or
   more) conceptual rows in the ifTable, both of which the
   internetwork-layer would run over.  This scheme would also require
   enumerated values of ifType for each combination of sub-layers.

   The solution adopted by this memo is to have an individual
   conceptual row in the ifTable to represent each sub-layer, and
   have a new separate MIB table (the ifStackTable, see section 6
   below) to identify the "superior" and "subordinate" sub-layers
   through INTEGER "pointers" to the appropriate conceptual rows in
   the ifTable.  This solution supports both upward and downward
   multiplexing, allows the IANAifType to Media-Specific MIB mapping
   to identify the media-specific MIB module for that sub-layer, such
   that the new table need only be referenced to obtain information
   about layering, and it only requires enumerated values of ifType
   for each sub-layer, not for combinations of them.  However, it
   does require that the descriptions of some objects in the ifTable
   (specifically, ifType, ifPhysAddress, ifInUcastPkts, and
   ifOutUcastPkts) be generalized so as to apply to any sub-layer
   (rather than only to a sub-layer immediately beneath the network
   layer as previously), plus some (specifically, ifSpeed) which need
   to have appropriate values identified for use when a generalized
   definition does not apply to a particular sub-layer.

   In addition, this adopted solution makes no requirement that a
   device, in which a sub-layer is instrumented by a conceptual row
   of the ifTable, be aware of whether an internetwork protocol runs
   on top of (i.e., at some layer above) that sub-layer.  In fact,
   the counters of packets received on an interface are defined as
   counting the number "delivered to a higher-layer protocol".  This
   meaning of "higher-layer" includes:



McCloghrie & Kastenholz     Standards Track                     [Page 5]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   (1)  Delivery to a forwarding module which accepts
        packets/frames/octets and forwards them on at the same
        protocol layer.  For example, for the purposes of this
        definition, the forwarding module of a MAC-layer bridge is
        considered as a "higher-layer" to the MAC-layer of each port
        on the bridge.

   (2)  Delivery to a higher sub-layer within a interface stack.  For
        example, for the purposes of this definition, if a PPP module
        operated directly over a serial interface, the PPP module
        would be considered the higher sub-layer to the serial
        interface.

   (3)  Delivery to a higher protocol layer which does not do packet
        forwarding for sub-layers that are "at the top of" the
        interface stack.  For example, for the purposes of this
        definition, the local IP module would be considered the
        higher layer to a SLIP serial interface.

   Similarly, for output, the counters of packets transmitted out an
   interface are defined as counting the number "that higher-level
   protocols requested to be transmitted".  This meaning of "higher-
   layer" includes:

   (1)  A forwarding module, at the same protocol layer, which
        transmits packets/frames/octets that were received on an
        different interface.  For example, for the purposes of this
        definition, the forwarding module of a MAC-layer bridge is
        considered as a "higher-layer" to the MAC-layer of each port
        on the bridge.

   (2)  The next higher sub-layer within an interface stack.  For
        example, for the purposes of this definition, if a PPP module
        operated directly over a serial interface, the PPP module
        would be a "higher layer" to the serial interface.

   (3)  For sub-layers that are "at the top of" the interface stack,
        a higher element in the network protocol stack.  For example,
        for the purposes of this definition, the local IP module
        would be considered the higher layer to an Ethernet
        interface.

3.1.2.  Guidance on Defining Sub-layers

   The designer of a media-specific MIB must decide whether to divide
   the interface into sub-layers or not, and if so, how to make the
   divisions.  The following guidance is offered to assist the
   media-specific MIB designer in these decisions.



McCloghrie & Kastenholz     Standards Track                     [Page 6]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   In general, the number of entries in the ifTable should be kept to
   the minimum required for network management.  In particular, a
   group of related interfaces should be treated as a single
   interface with one entry in the ifTable providing that:

   (1)  None of the group of interfaces performs multiplexing for any
        other interface in the agent,
   (2)  There is a meaningful and useful way for all of the ifTable's
        information (e.g., the counters, and the status variables),
        and all of the ifTable's capabilities (e.g., write access to
        ifAdminStatus), to apply to the group of interfaces as a
        whole.

   Under these circumstances, there should be one entry in the
   ifTable for such a group of interfaces, and any internal structure
   which needs to be represented to network management should be
   captured in a MIB module specific to the particular type of
   interface.

   Note that application of bullet 2 above to the ifTable's ifType
   object requires that there is a meaningful media-specific MIB and
   a meaningful ifType value which apply to the group of interfaces
   as a whole.  For example, it is not appropriate to treat an HDLC
   sub-layer and an RS-232 sub-layer as a single ifTable entry when
   the media-specific MIBs and the ifType values for HDLC and RS-232
   are separate (rather than combined).

   Subject to the above, it is appropriate to assign an ifIndex value
   to any interface that can occur in an interface stack (in the
   ifStackTable) where the bottom of the stack is a physical
   interface (ifConnectorPresent has the value 'true') and there is a
   layer-3 or other application that "points down" to the top of this
   stack.  An example of an application that points down to the top
   of the stack is the Character MIB [9].

   Note that the sub-layers of an interface on one device will
   sometimes be different from the sub-layers of the interconnected
   interface of another device; for example, for a frame-relay DTE
   interface connected a frameRelayService interface, the inter-
   connected DTE and DCE interfaces have different ifType values and
   media-specific MIBs.

   These guidelines are just that, guidelines.  The designer of a
   media-specific MIB is free to lay out the MIB in whatever SMI
   conformant manner is desired.  However, in doing so, the media-
   specific MIB MUST completely specify the sub-layering model used
   for the MIB, and provide the assumptions, reasoning, and rationale
   used to develop that model.



McCloghrie & Kastenholz     Standards Track                     [Page 7]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


3.1.3.  Virtual Circuits

   Several of the sub-layers for which media-specific MIB modules
   have been defined are connection oriented (e.g., Frame Relay,
   X.25).  Experience has shown that each effort to define such a MIB
   module revisits the question of whether separate conceptual rows
   in the ifTable are needed for each virtual circuit.  Most, if not
   all, of these efforts to date have decided to have all virtual
   circuits reference a single conceptual row in the ifTable.

   This memo strongly recommends that connection-oriented sub-layers
   do not have a conceptual row in the ifTable for each virtual
   circuit.  This avoids the proliferation of conceptual rows,
   especially those which have considerable redundant information.
   (Note, as a comparison, that connection-less sub-layers do not
   have conceptual rows for each remote address.)  There may,
   however, be circumstances under which it is appropriate for a
   virtual circuit of a connection-oriented sub-layer to have its own
   conceptual row in the ifTable; an example of this might be PPP
   over an X.25 virtual circuit.  The MIB in section 6 of this memo
   supports such circumstances.

   If a media-specific MIB wishes to assign an entry in the ifTable
   to each virtual circuit, the MIB designer must present the
   rationale for this decision in the media-specific MIB's
   specification.

3.1.4.  Bit, Character, and Fixed-Length Interfaces

   RS-232 is an example of a character-oriented sub-layer over which
   (e.g., through use of PPP) IP datagrams can be sent.  Due to the
   packet-based nature of many of the objects in the ifTable,
   experience has shown that it is not appropriate to have a
   character-oriented sub-layer represented by a whole conceptual row
   in the ifTable.

   Experience has also shown that it is sometimes desirable to have
   some management information for bit-oriented interfaces, which are
   similarly difficult to represent by a whole conceptual row in the
   ifTable.  For example, to manage the channels of a DS1 circuit,
   where only some of the channels are carrying packet-based data.

   A further complication is that some subnetwork technologies
   transmit data in fixed length transmission units.  One example of
   such a technology is cell relay, and in particular Asynchronous
   Transfer Mode (ATM), which transmits data in fixed-length cells.
   Representing such a interface as a packet-based interface produces




McCloghrie & Kastenholz     Standards Track                     [Page 8]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   redundant objects if the relationship between the number of
   packets and the number of octets in either direction is fixed by
   the size of the transmission unit (e.g., the size of a cell).

   About half the objects in the ifTable are applicable to every type
   of interface: packet-oriented, character-oriented, and bit-
   oriented.  Of the other half, two are applicable to both
   character-oriented and packet-oriented interfaces, and the rest
   are applicable only to packet-oriented interfaces.  Thus, while it
   is desirable for consistency to be able to represent any/all types
   of interfaces in the ifTable, it is not possible to implement the
   full ifTable for bit- and character-oriented sub-layers.

   A rejected solution to this problem would be to split the ifTable
   into two (or more) new MIB tables, one of which would contain
   objects that are relevant only to packet-oriented interfaces
   (e.g., PPP), and another that may be used by all interfaces.  This
   is highly undesirable since it would require changes in every
   agent implementing the ifTable (i.e., just about every existing
   SNMP agent).

   The solution adopted in this memo builds upon the fact that
   compliance statements in SNMPv2 (in contrast to SNMPv1) refer to
   object groups, where object groups are explicitly defined by
   listing the objects they contain.  Thus, in SNMPv2, multiple
   compliance statements can be specified, one for all interfaces and
   additional ones for specific types of interfaces.  The separate
   compliance statements can be based on separate object groups,
   where the object group for all interfaces can contain only those
   objects from the ifTable which are appropriate for every type of
   interfaces.  Using this solution, every sub-layer can have its own
   conceptual row in the ifTable.

   Thus, section 6 of this memo contains definitions of the objects
   of the existing 'interfaces' group of MIB-II, in a manner which is
   both SNMPv2-compliant and semantically-equivalent to the existing
   MIB-II definitions.  With equivalent semantics, and with the BER
   ("on the wire") encodings unchanged, these definitions retain the
   same OBJECT IDENTIFIER values as assigned by MIB-II.  Thus, in
   general, no rewrite of existing agents which conform to MIB-II and
   the ifExtensions MIB is required.

   In addition, this memo defines several object groups for the
   purposes of defining which objects apply to which types of
   interface:






McCloghrie & Kastenholz     Standards Track                     [Page 9]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   (1)  the ifGeneralInformationGroup.  This group contains those
        objects applicable to all types of network interfaces,
        including bit-oriented interfaces.

   (2)  the ifPacketGroup.  This group contains those objects
        applicable to packet-oriented network interfaces.

   (3)  the ifFixedLengthGroup.  This group contains the objects
        applicable not only to character-oriented interfaces, such as
        RS-232, but also to those subnetwork technologies, such as
        cell-relay/ATM, which transmit data in fixed length
        transmission units.  As well as the octet counters, there are
        also a few other counters (e.g., the error counters) which
        are useful for this type of interface, but are currently
        defined as being packet-oriented.  To accommodate this, the
        definitions of these counters are generalized to apply to
        character-oriented interfaces and fixed-length-transmission
        interfaces.

   It should be noted that the octet counters in the ifTable
   aggregate octet counts for unicast and non-unicast packets into a
   single octet counter per direction (received/transmitted).  Thus,
   with the above definition of fixed-length-transmission interfaces,
   where such interfaces which support non-unicast packets, separate
   counts of unicast and multicast/broadcast transmissions can only
   be maintained in a media-specific MIB module.

3.1.5.  Interface Numbering

   MIB-II defines an object, ifNumber, whose value represents:

        "The number of network interfaces (regardless of their
        current state) present on this system."

   Each interface is identified by a unique value of the ifIndex
   object, and the description of ifIndex constrains its value as
   follows:

        "Its value ranges between 1 and the value of ifNumber.  The
        value for each interface must remain constant at least from
        one re-initialization of the entity's network management
        system to the next re-initialization."

   This constancy requirement on the value of ifIndex for a
   particular interface is vital for efficient management.  However,
   an increasing number of devices allow for the dynamic
   addition/removal of network interfaces.  One example of this is a
   dynamic ability to configure the use of SLIP/PPP over a



McCloghrie & Kastenholz     Standards Track                    [Page 10]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   character-oriented port.  For such dynamic additions/removals, the
   combination of the constancy requirement and the restriction that
   the value of ifIndex is less than ifNumber is problematic.

   Redefining ifNumber to be the largest value of ifIndex was
   rejected since it would not help.  Such a re-definition would
   require ifNumber to be deprecated and the utility of the redefined
   object would be questionable.  Alternatively, ifNumber could be
   deprecated and not replaced.  However, the deprecation of ifNumber
   would require a change to that portion of ifIndex's definition
   which refers to ifNumber.  So, since the definition of ifIndex
   must be changed anyway in order to solve the problem, changes to
   ifNumber do not benefit the solution.

   The solution adopted in this memo is just to delete the
   requirement that the value of ifIndex must be less than the value
   of ifNumber, and to retain ifNumber with its current definition.
   This is a minor change in the semantics of ifIndex; however, all
   existing agent implementations conform to this new definition, and
   in the interests of not requiring changes to existing agent
   implementations and to the many existing media-specific MIBs, this
   memo assumes that this change does not require ifIndex to be
   deprecated.  Experience indicates that this assumption does
   "break" a few management applications, but this is considered
   preferable to breaking all agent implementations.

   This solution also results in the possibility of "holes" in the
   ifTable, i.e., the ifIndex values of conceptual rows in the
   ifTable are not necessarily contiguous, but SNMP's GetNext (and
   SNMPv2's GetBulk) operation easily deals with such holes.  The
   value of ifNumber still represents the number of conceptual rows,
   which increases/decreases as new interfaces are dynamically
   added/removed.

   The requirement for constancy (between re-initializations) of an
   interface's ifIndex value is met by requiring that after an
   interface is dynamically removed, its ifIndex value is not re-used
   by a *different* dynamically added interface until after the
   following re-initialization of the network management system.
   This avoids the need for assignment (in advance) of ifIndex values
   for all possible interfaces that might be added dynamically.  The
   exact meaning of a "different" interface is hard to define, and
   there will be gray areas.  Any firm definition in this document
   would likely to turn out to be inadequate.  Instead, implementors
   must choose what it means in their particular situation, subject
   to the following rules:





McCloghrie & Kastenholz     Standards Track                    [Page 11]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   (1)  a previously-unused value of ifIndex must be assigned to a
        dynamically added interface if an agent has no knowledge of
        whether the interface is the "same" or "different" to a
        previously incarnated interface.

   (2)  a management station, not noticing that an interface has gone
        away and another has come into existence, must not be
        confused when calculating the difference between the counter
        values retrieved on successive polls for a particular ifIndex
        value.

   When the new interface is the same as an old interface, but a
   discontinuity in the value of the interface's counters cannot be
   avoided, the ifTable has (until now) required that a new ifIndex
   value be assigned to the returning interface.  That is, either all
   counter values have had to be retained during the absence of an
   interface in order to use the same ifIndex value on that
   interface's return, or else a new ifIndex value has had to be
   assigned to the returning interface.  Both alternatives have
   proved to be burdensome to some implementations:

   (1)  maintaining the counter values may not be possible (e.g., if
        they are maintained on removable hardware),

   (2)  using a new ifIndex value presents extra work for management
        applications.  While the potential need for such extra work
        is unavoidable on agent re-initializations, it is desirable
        to avoid it between re-initializations.

   To address this, a new object, ifCounterDiscontinuityTime, has
   been defined to record the time of the last discontinuity in an
   interface's counters.  By monitoring the value of this new object,
   a management application can now detect counter discontinuities
   without the ifIndex value of the interface being changed.  Thus,
   an agent which implements this new object should, when a new
   interface is the same as an old interface, retain that interface's
   ifIndex value and update if necessary the interface's value of
   ifCounterDiscontinuityTime.  With this new object, a management
   application must, when calculating differences between counter
   values retrieved on successive polls, discard any calculated
   difference for which the value of ifCounterDiscontinuityTime is
   different for the two polls.  (Note that this test must be
   performed in addition to the normal checking of sysUpTime to
   detect an agent re-initialization.)  Since such discards are a
   waste of network management processing and bandwidth, an agent
   should not update the value of ifCounterDiscontinuityTime unless
   absolutely necessary.




McCloghrie & Kastenholz     Standards Track                    [Page 12]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   While defining this new object is a change in the semantics of the
   ifTable counter objects, it is impractical to deprecate and
   redefine all these counters because of their wide deployment and
   importance.  Also, a survey of implementations indicates that many
   agents and management applications do not correctly implement this
   aspect of the current semantics (because of the burdensome issues
   mentioned above), such that the practical implications of such a
   change is small.  Thus, this breach of the SMI's rules is
   considered to be acceptable.

   Note, however, that the addition of ifCounterDiscontinuityTime
   does not change the fact that:

        It is necessary at certain times for the assignment of ifIndex
        values to change on a reinitialization of the agent (such as a
        reboot).

   The possibility of ifIndex value re-assignment must be
   accommodated by a management application whenever the value of
   sysUpTime is reset to zero.

   Note also that some agents support multiple "naming scopes", e.g.,
   for an SNMPv1 agent, multiple values of the SNMPv1 community
   string.  For such an agent (e.g., a CNM agent which supports a
   different subset of interfaces for different customers), there is
   no required relationship between the ifIndex values which identify
   interfaces in one naming scope and those which identify interfaces
   in another naming scope.  It is the agent's choice as to whether
   the same or different ifIndex values identify the same or
   different interfaces in different naming scopes.

   Because of the restriction of the value of ifIndex to be less than
   ifNumber, interfaces have been numbered with small integer values.
   This has led to the ability by humans to use the ifIndex values as
   (somewhat) user-friendly names for network interfaces (e.g.,
   "interface number 3").  With the relaxation of the restriction on
   the value of ifIndex, there is now the possibility that ifIndex
   values could be assigned as very large numbers (e.g., memory
   addresses).  Such numbers would be much less user-friendly.
   Therefore, this memo recommends that ifIndex values still be
   assigned as (relatively) small integer values starting at 1, even
   though the values in use at any one time are not necessarily
   contiguous.  (Note that this makes remembering which values have
   been assigned easy for agents which dynamically add new
   interfaces).






McCloghrie & Kastenholz     Standards Track                    [Page 13]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   A new problem is introduced by representing each sub-layer as an
   ifTable entry.  Previously, there usually was a simple, direct,
   mapping of interfaces to the physical ports on systems.  This
   mapping would be based on the ifIndex value.  However, by having
   an ifTable entry for each interface sub-layer, mapping from
   interfaces to physical ports becomes increasingly problematic.

   To address this issue, a new object, ifName, is added to the MIB.
   This object contains the device's local name (e.g., the name used
   at the device's local console) for the interface of which the
   relevant entry in the ifTable is a component.  For example,
   consider a router having an interface composed of PPP running over
   an RS-232 port.  If the router uses the name "wan1" for the
   (combined) interface, then the ifName objects for the
   corresponding PPP and RS-232 entries in the ifTable would both
   have the value "wan1".  On the other hand, if the router uses the
   name "wan1.1" for the PPP interface and "wan1.2" for the RS-232
   port, then the ifName objects for the corresponding PPP and RS-232
   entries in the ifTable would have the values "wan1.1" and
   "wan1.2", respectively.  As an another example, consider an agent
   which responds to SNMP queries concerning an interface on some
   other (proxied) device: if such a proxied device associates a
   particular identifier with an interface, then it is appropriate to
   use this identifier as the value of the interface's ifName, since
   the local console in this case is that of the proxied device.

   In contrast, the existing ifDescr object is intended to contain a
   description of an interface, whereas another new object, ifAlias,
   provides a location in which a network management application can
   store a non-volatile interface-naming value of its own choice.
   The ifAlias object allows a network manager to give one or more
   interfaces their own unique names, irrespective of any interface-
   stack relationship.  Further, the ifAlias name is non-volatile,
   and thus an interface must retain its assigned ifAlias value
   across reboots, even if an agent chooses a new ifIndex value for
   the interface.

3.1.6.  Counter Size

   As the speed of network media increase, the minimum time in which
   a 32 bit counter will wrap decreases.  For example, a 10Mbs stream
   of back-to-back, full-size packets causes ifInOctets to wrap in
   just over 57 minutes; at 100Mbs, the minimum wrap time is 5.7
   minutes, and at 1Gbs, the minimum is 34 seconds.  Requiring that
   interfaces be polled frequently enough not to miss a counter wrap
   is increasingly problematic.





McCloghrie & Kastenholz     Standards Track                    [Page 14]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   A rejected solution to this problem was to scale the counters; for
   example, ifInOctets could be changed to count received octets in,
   say, 1024 byte blocks.  While it would provide acceptable
   functionality at high rates of the counted-events, at low rates it
   suffers.  If there is little traffic on an interface, there might
   be a significant interval before enough of the counted-events
   occur to cause the scaled counter to be incremented.  Traffic
   would then appear to be very bursty, leading to incorrect
   conclusions of the network's performance.

   Instead, this memo adopts expanded, 64 bit, counters.  These
   counters are provided in new "high capacity" groups.  The old,
   32-bit, counters have not been deprecated.  The 64-bit counters
   are to be used only when the 32-bit counters do not provide enough
   capacity; that is, when the 32 bit counters could wrap too fast.

   For interfaces that operate at 20,000,000 (20 million) bits per
   second or less, 32-bit byte and packet counters MUST be used.  For
   interfaces that operate faster than 20,000,000 bits/second, and
   slower than 650,000,000 bits/second, 32-bit packet counters MUST
   be used and 64-bit octet counters MUST be used.  For interfaces
   that operate at 650,000,000 bits/second or faster, 64-bit packet
   counters AND 64-bit octet counters MUST be used.

   These speed thresholds were chosen as reasonable compromises based
   on the following:

   (1)  The cost of maintaining 64-bit counters is relatively high,
        so minimizing the number of agents which must support them is
        desirable.  Common interfaces (such as 10Mbs Ethernet) should
        not require them.

   (2)  64-bit counters are a new feature, introduced in SNMPv2.  It
        is reasonable to expect that support for them will be spotty
        for the immediate future.  Thus, we wish to limit them to as
        few systems as possible.  This, in effect, means that 64-bit
        counters should be limited to higher speed interfaces.
        Ethernet (10,000,000 bps) and Token Ring (16,000,000 bps) are
        fairly wide-spread so it seems reasonable to not require 64-
        bit counters for these interfaces.

   (3)  The 32-bit octet counters will wrap in the following times,
        for the following interfaces (when transmitting maximum-sized
        packets back-to-back):

        -   10Mbs Ethernet: 57 minutes,

        -   16Mbs Token Ring: 36 minutes,



McCloghrie & Kastenholz     Standards Track                    [Page 15]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


        -   a US T3 line (45 megabits): 12 minutes,

        -   FDDI: 5.7 minutes

   (4)  The 32-bit packet counters wrap in about 57 minutes when 64-
        byte packets are transmitted back-to-back on a 650,000,000
        bit/second link.

   As an aside, a 1-terabit/second (1,000 Gbs) link will cause a 64 bit
   octet counter to wrap in just under 5 years.  Conversely, an
   81,000,000 terabit/second link is required to cause a 64-bit counter
   to wrap in 30 minutes.  We believe that, while technology rapidly
   marches forward, this link speed will not be achieved for at least
   several years, leaving sufficient time to evaluate the introduction
   of 96 bit counters.

   When 64-bit counters are in use, the 32-bit counters MUST still be
   available.  They will report the low 32-bits of the associated 64-bit
   count (e.g., ifInOctets will report the least significant 32 bits of
   ifHCInOctets).  This enhances inter-operability with existing
   implementations at a very minimal cost to agents.

   The new "high capacity" groups are:

   (1)  the ifHCFixedLengthGroup for character-oriented/fixed-length
        interfaces, and the ifHCPacketGroup for packet-based interfaces;
        both of these groups include 64 bit counters for octets, and

   (2)  the ifVHCPacketGroup for packet-based interfaces; this group
        includes 64 bit counters for octets and packets.

3.1.7.  Interface Speed

   Network speeds are increasing.  The range of ifSpeed is limited to
   reporting a maximum speed of (2**31)-1 bits/second, or approximately
   2.2Gbs.  SONET defines an OC-48 interface, which is defined at
   operating at 48 times 51 Mbs, which is a speed in excess of 2.4Gbs.
   Thus, ifSpeed is insufficient for the future, and this memo defines
   an additional object: ifHighSpeed.

   The ifHighSpeed object reports the speed of the interface in
   1,000,000 (1 million) bits/second units.  Thus, the true speed of the
   interface will be the value reported by this object, plus or minus
   500,000 bits/second.







McCloghrie & Kastenholz     Standards Track                    [Page 16]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   Other alternatives considered (but rejected) were:

   (1)  Making the interface speed a 64-bit gauge.  This was rejected
        since the current SMI does not allow such a syntax.

        Furthermore, even if 64-bit gauges were available, their use
        would require additional complexity in agents due to an
        increased requirement for 64-bit operations.

   (2)  We also considered making "high-32 bit" and "low-32-bit"
        objects which, when combined, would be a 64-bit value.  This
        simply seemed overly complex for what we are trying to do.

        Furthermore, a full 64-bits of precision does not seem
        necessary.  The value of ifHighSpeed will be the only report of
        interface speed for interfaces that are faster than
        4,294,967,295 bits per second.  At this speed, the granularity
        of ifHighSpeed will be 1,000,000 bits per second, thus the error
        will be 1/4294, or about 0.02%.  This seems reasonable.

   (3)  Adding a "scale" object, which would define the units which
        ifSpeed's value is.

        This would require two additional objects; one for the scaling
        object, and one to replace the current ifSpeed.  This later
        object is required since the semantics of ifSpeed would be
        significantly altered, and manager stations which do not
        understand the new semantics would be confused.

3.1.8.  Multicast/Broadcast Counters

   In MIB-II, the ifTable counters for multicast and broadcast packets
   are combined as counters of non-unicast packets.  In contrast, the
   ifExtensions MIB [7] defined one set of counters for multicast, and a
   separate set for broadcast packets.  With the separate counters, the
   original combined counters become redundant.  To avoid this
   redundancy, the non-unicast counters are deprecated.

   For the output broadcast and multicast counters defined in RFC 1229,
   their definitions varied slightly from the packet counters in the
   ifTable, in that they did not count errors/discarded packets.  Thus,
   this memo defines new objects with better aligned definitions.
   Counters with 64 bits of range are also needed, as explained above.








McCloghrie & Kastenholz     Standards Track                    [Page 17]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


3.1.9.  Trap Enable

   In the multi-layer interface model, each sub-layer for which there is
   an entry in the ifTable can generate linkUp/Down Traps.  Since
   interface state changes would tend to propagate through the interface
   (from top to bottom, or bottom to top), it is likely that several
   traps would be generated for each linkUp/Down occurrence.

   It is desirable to provide a mechanism for manager stations to
   control the generation of these traps.  To this end, the
   ifLinkUpDownTrapEnable object has been added.  This object allows
   managers to limit generation of traps to just the sub-layers of
   interest.

   The default setting should limit the number of traps generated to one
   per interface per linkUp/Down event.  Furthermore, it seems that the
   state changes of most interest to network managers occur at the
   lowest level of an interface stack.  Therefore we specify that by
   default, only the lowest sub-layer of the interface generate traps.

3.1.10.  Addition of New ifType values

   Over time, there is the need to add new ifType enumerated values for
   new interface types.  If the syntax of ifType were defined in the MIB
   in section 6, then a new version of this MIB would have to be re-
   issued in order to define new values.  In the past, re- issuing of a
   MIB has occurred only after several years.

   Therefore, the syntax of ifType is changed to be a textual
   convention, such that the enumerated integer values are now defined
   in the textual convention, IANAifType, defined in a different
   document.  This allows additional values to be documented without
   having to re-issue a new version of this document.  The Internet
   Assigned Number Authority (IANA) is responsible for the assignment of
   all Internet numbers, including various SNMP-related numbers, and
   specifically, new ifType values.

3.1.11.  InterfaceIndex Textual Convention

   A new textual convention, InterfaceIndex, has been defined.  This
   textual convention "contains" all of the semantics of the ifIndex
   object.  This allows other mib modules to easily import the semantics
   of ifIndex.








McCloghrie & Kastenholz     Standards Track                    [Page 18]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


3.1.12.  New states for IfOperStatus

   Three new states have been added to ifOperStatus: 'dormant', 
   'notPresent', and 'lowerLayerDown'.

   The dormant state indicates that the relevant interface is not
   actually in a condition to pass packets (i.e., it is not "up") but is
   in a "pending" state, waiting for some external event.  For "on-
   demand" interfaces, this new state identifies the situation where the
   interface is waiting for events to place it in the up state.
   Examples of such events might be:

   (1)  having packets to transmit before establishing a connection
        to a remote system;

   (2)  having a remote system establish a connection to the
        interface (e.g. dialing up to a slip-server).

   The notPresent state is a refinement on the down state which
   indicates that the relevant interface is down specifically because
   some component (typically, a hardware component) is not present in
   the managed system.  Examples of use of the notPresent state are:

   (1)  to allow an interface's conceptual row including its counter
        values to be retained across a "hot swap" of a card/module,
        and/or

   (2)  to allow an interface's conceptual row to be created, and
        thereby enable interfaces to be pre-configured prior to
        installation of the hardware needed to make the interface
        operational.

   Agents are not required to support interfaces in the notPresent
   state.  However, from a conceptual viewpoint, when a row in the
   ifTable is created, it first enters the notPresent state and then
   subsequently transitions into the down state; similarly, when a row
   in the ifTable is deleted, it first enters the notPresent state and
   then subsequently the object instances are deleted.  For an agent
   with no support for notPresent, both of these transitions (from the
   notPresent state to the down state, and from the notPresent state to
   the instances being removed) are immediate, i.e., the transition does
   not last long enough to be recorded by ifOperStatus.  Even for those
   agents which do support interfaces in the notPresent state, the
   length of time and conditions under which an interface stays in the
   notPresent state is implementation-specific.






McCloghrie & Kastenholz     Standards Track                    [Page 19]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   The lowerLayerDown state is also a refinement on the down state.
   This new state indicates that this interface runs "on top of" one or
   more other interfaces (see ifStackTable) and that this interface is
   down specifically because one or more of these lower-layer interfaces
   are down.

3.1.13.  IfAdminStatus and IfOperStatus

   The down state of ifOperStatus now has two meanings, depending on the
   value of ifAdminStatus.

   (1)  if ifAdminStatus is not down and ifOperStatus is down then a
        fault condition is presumed to exist on the interface.

   (2)  if ifAdminStatus is down, then ifOperStatus will normally
        also be down (or notPresent) i.e., there is not (necessarily) a
        fault condition on the interface.

   Note that when ifAdminStatus transitions to down, ifOperStatus will
   normally also transition to down.  In this situation, it is possible
   that ifOperStatus's transition will not occur immediately, but rather
   after a small time lag to complete certain operations before going
   "down"; for example, it might need to finish transmitting a packet.
   If a manager station finds that ifAdminStatus is down and
   ifOperStatus is not down for a particular interface, the manager
   station should wait a short while and check again.  If the condition
   still exists, only then should it raise an error indication.
   Naturally, it should also ensure that ifLastChange has not changed
   during this interval.

   Whenever an interface table entry is created (usually as a result of
   system initialization), the relevant instance of ifAdminStatus is set
   to down, and presumably ifOperStatus will be down or notPresent.

   An interface may be enabled in two ways: either as a result of
   explicit management action (e.g. setting ifAdminStatus to up) or as a
   result of the managed system's initialization process.  When
   ifAdminStatus changes to the up state, the related ifOperStatus
   should do one of the following:

   (1)  Change to the up state if and only if the interface is able
        to send and receive packets.

   (2)  Change to the lowerLayerDown state if and only if the
        interface is prevented from entering the up state because of the
        state of one or more of the interfaces beneath it in the
        interface stack.




McCloghrie & Kastenholz     Standards Track                    [Page 20]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   (3)  Change to the dormant state if and only if the interface is
        found to be operable, but the interface is waiting for other,
        external, events to occur before it can transmit or receive
        packets.  Presumably when the expected events occur, the
        interface will then change to the up state.

   (4)  Remain in the down state if an error or other fault condition
        is detected on the interface.

   (5)  Change to the unknown state if, for some reason, the state of
        the interface can not be ascertained.

   (6)  Change to the testing state if some test(s) must be performed
        on the interface. Presumably after completion of the test, the
        interface's state will change to up, dormant, or down, as
        appropriate.

   (7)  Remain in the notPresent state if interface components are
        missing.

3.1.14.  IfOperStatus in an Interface Stack

   When an interface is a part of an interface-stack, but is not the
   lowest interface in the stack, then:

   (1)  ifOperStatus has the value 'up' if it is able to pass packets
        due to one or more interfaces below it in the stack being 'up',
        irrespective of whether other interfaces below it are 'down', 
        'dormant', 'notPresent', 'lowerLayerDown', 'unknown' or
        'testing'.

   (2)  ifOperStatus may have the value 'up' or 'dormant' if one or
        more interfaces below it in the stack are 'dormant', and all
        others below it are either 'down', 'dormant', 'notPresent',
        'lowerLayerDown', 'unknown' or 'testing'.

   (3)  ifOperStatus has the value 'lowerLayerDown' while all
        interfaces below it in the stack are either 'down',
        'notPresent', 'lowerLayerDown', or 'testing'.

3.1.15.  Traps

   The exact definition of when linkUp and linkDown traps are generated
   has been changed to reflect the changes to ifAdminStatus and
   ifOperStatus.






McCloghrie & Kastenholz     Standards Track                    [Page 21]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   Operational experience indicates that management stations are most
   concerned with an interface being in the down state and the fact that
   this state may indicate a failure.  Thus, it is most useful to
   instrument transitions into/out of either the up state or the down
   state.

   Instrumenting transitions into or out of the up state was rejected
   since it would have the drawback that a demand interface might have
   many transitions between up and dormant, leading to many linkUp traps
   and no linkDown traps.  Furthermore, if a node's only interface is
   the demand interface, then a transition to dormant would entail
   generation of a linkDown trap, necessitating bringing the link to the
   up state (and a linkUp trap)!!

   On the other hand, instrumenting transitions into or out of the down
   state (to/from all other states except notPresent) has the
   advantages:

   (1)  A transition into the down state (from a state other than
        notPresent) will occur when an error is detected on an
        interface.  Error conditions are presumably of great interest to
        network managers.

   (2)  Departing the down state (to a state other than the
        notPresent state) generally indicates that the interface is
        going to either up or dormant, both of which are considered
        "healthy" states.

   Furthermore, it is believed that generating traps on transitions into
   or out of the down state (except to/from the notPresent state) is
   generally consistent with current usage and interpretation of these
   traps by manager stations.

   Transitions to/from the notPresent state are concerned with the
   insertion and removal of hardware, and are outside the scope of these
   traps.

   Therefore, this memo defines that LinkUp and linkDown traps are
   generated on just after ifOperStatus leaves, or just before it
   enters, the down state, respectively; except that LinkUp and linkDown
   traps never generated on transitions to/from the notPresent state.

   Note that this definition allows a node with only one interface to
   transmit a linkDown trap before that interface goes down.  (Of
   course, when the interface is going down because of a failure
   condition, the linkDown trap probably cannot be successfully
   transmitted anyway.)




McCloghrie & Kastenholz     Standards Track                    [Page 22]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   Some interfaces perform a link "training" function when trying to
   bring the interface up.  In the event that such an interface were
   defective, then the training function would fail and the interface
   would remain down, and the training function might be repeated at
   appropriate intervals.  If the interface, while performing this
   training function, were considered to the in the testing state, then
   linkUp and linkDown traps would be generated for each start and end
   of the training function.  This is not the intent of the linkUp and
   linkDown traps, and therefore, while performing such a training
   function, the interface's state should be represented as down.

   An exception to the above generation of linkUp/linkDown traps on
   changes in ifOperStatus, occurs when an interface is "flapping",
   i.e., when it is rapidly oscillating between the up and down states.
   If traps were generated for each such oscillation, the network and
   the network management system would be flooded with unnecessary
   traps.  In such a situation, the agent should rate- limit its
   generation of traps.

3.1.16.  ifSpecific

   The original definition of the OBJECT IDENTIFIER value of ifSpecific
   was not sufficiently clear.  As a result, different implementors used
   it differently, and confusion resulted.  Some implementations set the
   value of ifSpecific to the OBJECT IDENTIFIER that defines the media-
   specific MIB, i.e., the "foo" of:

              foo OBJECT IDENTIFIER ::= { transmission xxx }

   while others set it to be OBJECT IDENTIFIER of the specific table or
   entry in the appropriate media-specific MIB (i.e., fooTable or
   fooEntry), while still others set it be the OBJECT IDENTIFIER of the
   index object of the table's row, including instance identifier,
   (i.e., fooIfIndex.ifIndex).  A definition based on the latter would
   not be sufficient unless it also allowed for media- specific MIBs
   which include several tables, where each table has its own
   (different) indexing.

   The only definition that can both be made explicit and can cover all
   the useful situations is to have ifSpecific be the most general value
   for the media-specific MIB module (the first example given above).
   This effectively makes it redundant because it contains no more
   information than is provided by ifType.  Thus, ifSpecific has been
   deprecated.







McCloghrie & Kastenholz     Standards Track                    [Page 23]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


3.1.17.  Creation/Deletion of Interfaces

   While some interfaces, for example, most physical interfaces, cannot
   be created via network management, other interfaces such as logical
   interfaces sometimes can be.  The ifTable contains only generic
   information about an interface.  Almost all 'create-able' interfaces
   have other, media-specific, information through which configuration
   parameters may be supplied prior to creating such an interface.
   Thus, the ifTable does not itself support the creation or deletion of
   an interface (specifically, it has no RowStatus [2] column).  Rather,
   if a particular interface type supports the dynamic creation and/or
   deletion of an interface of that type, then that media-specific MIB
   should include an appropriate RowStatus object (see the ATM LAN-
   Emulation Client MIB [8] for an example of a MIB which does this).
   Typically, when such a RowStatus object is created/deleted, then the
   conceptual row in the ifTable appears/disappears as a by-product, and
   an ifIndex value (chosen by the agent) is stored in an appropriate
   object in the media-specific MIB.

3.1.18.  All Values Must be Known

   There are a number of situations where an agent does not know the
   value of one or more objects for a particular interface.  In all such
   circumstances, an agent MUST NOT instantiate an object with an
   incorrect value; rather, it MUST respond with the appropriate
   error/exception condition (e.g., noSuchInstance for SNMPv2).

   One example is where an agent is unable to count the occurrences
   defined by one (or more) of the ifTable counters.  In this
   circumstance, the agent MUST NOT instantiate the particular counter
   with a value of, say, zero.  To do so would be to provide mis-
   information to a network management application reading the zero
   value, and thereby assuming that there have been no occurrences of
   the event (e.g., no input errors because ifInErrors is always zero).

   Sometimes the lack of knowledge of an object's value is temporary.
   For example, when the MTU of an interface is a configured value and a
   device dynamically learns the configured value through (after)
   exchanging messages over the interface (e.g., ATM LAN- Emulation
   [8]).  In such a case, the value is not known until after the ifTable
   entry has already been created.  In such a case, the ifTable entry
   should be created without an instance of the object whose value is
   unknown; later, when the value becomes known, the missing object can
   then be instantiated (e.g., the instance of ifMtu is only
   instantiated once the interface's MTU becomes known).






McCloghrie & Kastenholz     Standards Track                    [Page 24]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   As a result of this "known values" rule, management applications MUST
   be able to cope with the responses to retrieving the object instances
   within a conceptual row of the ifTable revealing that some of the
   row's columnar objects are missing/not available.

4.  Media-Specific MIB Applicability

   The exact use and semantics of many objects in this MIB are open to
   some interpretation.  This is a result of the generic nature of this
   MIB.  It is not always possible to come up with specific,
   unambiguous, text that covers all cases and yet preserves the generic
   nature of the MIB.

   Therefore, it is incumbent upon a media-specific MIB designer to,
   wherever necessary, clarify the use of the objects in this MIB with
   respect to the media-specific MIB.

   Specific areas of clarification include

   Layering Model
        The media-specific MIB designer MUST completely and
        unambiguously specify the layering model used.  Each individual
        sub-layer must be identified, as must the ifStackTable's
        portrayal of the relationship(s) between the sub-layers.

   Virtual Circuits
        The media-specific MIB designer MUST specify whether virtual
        circuits are assigned entries in the ifTable or not.  If they
        are, compelling rationale must be presented.

   ifRcvAddressTable
        The media-specific MIB designer MUST specify the applicability
        of the ifRcvAddressTable.

   ifType
        For each of the ifType values to which the media-specific MIB
        applies, it must specify the mapping of ifType values to media-
        specific MIB module(s) and instances of MIB objects within those
        modules.

   However, wherever this interface MIB is specific in the semantics,
   DESCRIPTION, or applicability of objects, the media-specific MIB
   designer MUST NOT change said semantics, DESCRIPTION, or
   applicability.







McCloghrie & Kastenholz     Standards Track                    [Page 25]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


5.  Overview

   This MIB consists of 4 tables:

   ifTable
        This table is the ifTable from MIB-II.

        ifXTable
        This table contains objects that have been added to the
        Interface MIB as a result of the Interface Evolution effort, or
        replacements for objects of the original (MIB-II) ifTable that
        were deprecated because the semantics of said objects have
        significantly changed.  This table also contains objects that
        were previously in the ifExtnsTable.

   ifStackTable
        This table contains objects that define the relationships among
        the sub-layers of an interface.

   ifRcvAddressTable
        This table contains objects that are used to define the media-
        level addresses which this interface will receive.  This table
        is a generic table.  The designers of media- specific MIBs must
        define exactly how this table applies to their specific MIB.

6.  Interfaces Group Definitions

   IF-MIB DEFINITIONS ::= BEGIN

   IMPORTS
       MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32, Counter64,
       Integer32, TimeTicks, mib-2,
       NOTIFICATION-TYPE                        FROM SNMPv2-SMI
       TEXTUAL-CONVENTION, DisplayString,
       PhysAddress, TruthValue, RowStatus,
       TimeStamp, AutonomousType, TestAndIncr   FROM SNMPv2-TC
       MODULE-COMPLIANCE, OBJECT-GROUP          FROM SNMPv2-CONF
       snmpTraps                                FROM SNMPv2-MIB
       IANAifType                               FROM IANAifType-MIB;












McCloghrie & Kastenholz     Standards Track                    [Page 26]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifMIB MODULE-IDENTITY
       LAST-UPDATED "9611031355Z"
       ORGANIZATION "IETF Interfaces MIB Working Group"
       CONTACT-INFO
               "   Keith McCloghrie
                   Cisco Systems, Inc.
                   170 West Tasman Drive
                   San Jose, CA  95134-1706
                   US

                   408-526-5260
                   kzm@cisco.com"
       DESCRIPTION
               "The MIB module to describe generic objects for
               network interface sub-layers.  This MIB is an updated
               version of MIB-II's ifTable, and incorporates the
               extensions defined in RFC 1229."
       REVISION      "9602282155Z"
       DESCRIPTION
               "Revisions made by the Interfaces MIB WG."
       REVISION      "9311082155Z"
       DESCRIPTION
               "Initial revision, published as part of RFC 1573."
       ::= { mib-2 31 }


   ifMIBObjects OBJECT IDENTIFIER ::= { ifMIB 1 }

   interfaces   OBJECT IDENTIFIER ::= { mib-2 2 }


   OwnerString ::= TEXTUAL-CONVENTION
       DISPLAY-HINT "255a"
       STATUS       current
       DESCRIPTION
               "This data type is used to model an administratively
               assigned name of the owner of a resource.  This
               information is taken from the NVT ASCII character set.
               It is suggested that this name contain one or more of
               the following: ASCII form of the manager station's
               transport address, management station name (e.g.,
               domain name), network management personnel's name,
               location, or phone number.  In some cases the agent
               itself will be the owner of an entry.  In these cases,
               this string shall be set to a string starting with
               'agent'."
       SYNTAX       OCTET STRING (SIZE(0..255))




McCloghrie & Kastenholz     Standards Track                    [Page 27]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   -- InterfaceIndex contains the semantics of ifIndex and
   -- should be used for any objects defined on other mib
   -- modules that need these semantics.

   InterfaceIndex ::= TEXTUAL-CONVENTION
       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "A unique value, greater than zero, for each interface
               or interface sub-layer in the managed system.  It is
               recommended that values are assigned contiguously
               starting from 1.  The value for each interface sub-
               layer must remain constant at least from one re-
               initialization of the entity's network management
               system to the next re-initialization."
       SYNTAX       Integer32 (1..2147483647)


   InterfaceIndexOrZero ::= TEXTUAL-CONVENTION
       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "This textual convention is an extension of the
               InterfaceIndex convention.  The latter defines a
               greater than zero value used to identify an interface
               or interface sub-layer in the managed system.  This
               extension permits the additional value of zero.  the
               value zero is object-specific and must therefore be
               defined as part of the description of any object which
               uses this syntax.  Examples of the usage of zero might
               include situations where interface was unknown, or
               when none or all interfaces need to be referenced."
       SYNTAX       Integer32 (0..2147483647)


   ifNumber  OBJECT-TYPE
       SYNTAX      Integer32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of network interfaces (regardless of their
               current state) present on this system."
       ::= { interfaces 1 }








McCloghrie & Kastenholz     Standards Track                    [Page 28]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifTableLastChange  OBJECT-TYPE
       SYNTAX      TimeTicks
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The value of sysUpTime at the time of the last
               creation or deletion of an entry in the ifTable.  If
               the number of entries has been unchanged since the
               last re-initialization of the local network management
               subsystem, then this object contains a zero value."
       ::= { ifMIBObjects 5 }


   -- the Interfaces table

   -- The Interfaces table contains information on the entity's
   -- interfaces.  Each sub-layer below the internetwork-layer
   -- of a network interface is considered to be an interface.

   ifTable OBJECT-TYPE
       SYNTAX      SEQUENCE OF IfEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "A list of interface entries.  The number of entries
               is given by the value of ifNumber."
       ::= { interfaces 2 }

   ifEntry OBJECT-TYPE
       SYNTAX      IfEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "An entry containing management information applicable
               to a particular interface."
       INDEX   { ifIndex }



       ::= { ifTable 1 }

   IfEntry ::=
       SEQUENCE {
           ifIndex                 InterfaceIndex,
           ifDescr                 DisplayString,
           ifType                  IANAifType,
           ifMtu                   Integer32,
           ifSpeed                 Gauge32,



McCloghrie & Kastenholz     Standards Track                    [Page 29]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


           ifPhysAddress           PhysAddress,
           ifAdminStatus           INTEGER,
           ifOperStatus            INTEGER,
           ifLastChange            TimeTicks,
           ifInOctets              Counter32,
           ifInUcastPkts           Counter32,
           ifInNUcastPkts          Counter32,  -- deprecated
           ifInDiscards            Counter32,
           ifInErrors              Counter32,
           ifInUnknownProtos       Counter32,
           ifOutOctets             Counter32,
           ifOutUcastPkts          Counter32,
           ifOutNUcastPkts         Counter32,  -- deprecated
           ifOutDiscards           Counter32,
           ifOutErrors             Counter32,
           ifOutQLen               Gauge32,    -- deprecated
           ifSpecific              OBJECT IDENTIFIER -- deprecated
       }


   ifIndex OBJECT-TYPE
       SYNTAX      InterfaceIndex
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "A unique value, greater than zero, for each
               interface.  It is recommended that values are assigned
               contiguously starting from 1.  The value for each
               interface sub-layer must remain constant at least from
               one re-initialization of the entity's network
               management system to the next re-initialization."
       ::= { ifEntry 1 }

   ifDescr OBJECT-TYPE
       SYNTAX      DisplayString (SIZE (0..255))
       MAX-ACCESS  read-only


       STATUS      current
       DESCRIPTION
               "A textual string containing information about the
               interface.  This string should include the name of the
               manufacturer, the product name and the version of the
               interface hardware/software."
       ::= { ifEntry 2 }






McCloghrie & Kastenholz     Standards Track                    [Page 30]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifType OBJECT-TYPE
       SYNTAX      IANAifType
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The type of interface.  Additional values for ifType
               are assigned by the Internet Assigned Numbers
               Authority (IANA), through updating the syntax of the
               IANAifType textual convention."
       ::= { ifEntry 3 }

   ifMtu OBJECT-TYPE
       SYNTAX      Integer32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The size of the largest packet which can be
               sent/received on the interface, specified in octets.
               For interfaces that are used for transmitting network
               datagrams, this is the size of the largest network
               datagram that can be sent on the interface."
       ::= { ifEntry 4 }

   ifSpeed OBJECT-TYPE
       SYNTAX      Gauge32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "An estimate of the interface's current bandwidth in
               bits per second.  For interfaces which do not vary in
               bandwidth or for those where no accurate estimation
               can be made, this object should contain the nominal
               bandwidth.  If the bandwidth of the interface is
               greater than the maximum value reportable by this
               object then this object should report its maximum
               value (4,294,967,295) and ifHighSpeed must be used to
               report the interace's speed.  For a sub-layer which
               has no concept of bandwidth, this object should be
               zero."
       ::= { ifEntry 5 }

   ifPhysAddress OBJECT-TYPE
       SYNTAX      PhysAddress
       MAX-ACCESS  read-only
       STATUS      current






McCloghrie & Kastenholz     Standards Track                    [Page 31]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       DESCRIPTION
               "The interface's address at its protocol sub-layer.
               For example, for an 802.x interface, this object
               normally contains a MAC address.  The interface's
               media-specific MIB must define the bit and byte
               ordering and the format of the value of this object.
               For interfaces which do not have such an address
               (e.g., a serial line), this object should contain an
               octet string of zero length."
       ::= { ifEntry 6 }

   ifAdminStatus OBJECT-TYPE
       SYNTAX  INTEGER {
                   up(1),       -- ready to pass packets
                   down(2),
                   testing(3)   -- in some test mode
               }
       MAX-ACCESS  read-write
       STATUS      current
       DESCRIPTION
               "The desired state of the interface.  The testing(3)
               state indicates that no operational packets can be
               passed.  When a managed system initializes, all
               interfaces start with ifAdminStatus in the down(2)
               state.  As a result of either explicit management
               action or per configuration information retained by
               the managed system, ifAdminStatus is then changed to
               either the up(1) or testing(3) states (or remains in
               the down(2) state)."
       ::= { ifEntry 7 }

   ifOperStatus OBJECT-TYPE
       SYNTAX  INTEGER {
                   up(1),        -- ready to pass packets
                   down(2),
                   testing(3),   -- in some test mode
                   unknown(4),   -- status can not be determined
                                 -- for some reason.
                   dormant(5),
                   notPresent(6),    -- some component is missing
                   lowerLayerDown(7) -- down due to state of
                                     -- lower-layer interface(s)
               }








McCloghrie & Kastenholz     Standards Track                    [Page 32]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The current operational state of the interface.  The
               testing(3) state indicates that no operational packets
               can be passed.  If ifAdminStatus is down(2) then
               ifOperStatus should be down(2).  If ifAdminStatus is
               changed to up(1) then ifOperStatus should change to
               up(1) if the interface is ready to transmit and
               receive network traffic; it should change to
               dormant(5) if the interface is waiting for external
               actions (such as a serial line waiting for an incoming
               connection); it should remain in the down(2) state if
               and only if there is a fault that prevents it from
               going to the up(1) state; it should remain in the
               notPresent(6) state if the interface has missing
               (typically, hardware) components."
       ::= { ifEntry 8 }

   ifLastChange OBJECT-TYPE
       SYNTAX      TimeTicks
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The value of sysUpTime at the time the interface
               entered its current operational state.  If the current
               state was entered prior to the last re-initialization
               of the local network management subsystem, then this
               object contains a zero value."
       ::= { ifEntry 9 }

   ifInOctets OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of octets received on the interface,
               including framing characters.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 10 }







McCloghrie & Kastenholz     Standards Track                    [Page 33]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifInUcastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were not addressed to a
               multicast or broadcast address at this sub-layer.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 11 }

   ifInNUcastPkts OBJECT-TYPE
       SYNTAX  Counter32
       MAX-ACCESS  read-only
       STATUS      deprecated
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were addressed to a
               multicast or broadcast address at this sub-layer.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime.

               This object is deprecated in favour of
               ifInMulticastPkts and ifInBroadcastPkts."
       ::= { ifEntry 12 }

   ifInDiscards OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of inbound packets which were chosen to be
               discarded even though no errors had been detected to
               prevent their being deliverable to a higher-layer
               protocol.  One possible reason for discarding such a
               packet could be to free up buffer space.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."



McCloghrie & Kastenholz     Standards Track                    [Page 34]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       ::= { ifEntry 13 }

   ifInErrors OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "For packet-oriented interfaces, the number of inbound
               packets that contained errors preventing them from
               being deliverable to a higher-layer protocol.  For
               character-oriented or fixed-length interfaces, the
               number of inbound transmission units that contained
               errors preventing them from being deliverable to a
               higher-layer protocol.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 14 }

   ifInUnknownProtos OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "For packet-oriented interfaces, the number of packets
               received via the interface which were discarded
               because of an unknown or unsupported protocol.  For
               character-oriented or fixed-length interfaces that
               support protocol multiplexing the number of
               transmission units received via the interface which
               were discarded because of an unknown or unsupported
               protocol.  For any interface that does not support
               protocol multiplexing, this counter will always be 0.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 15 }










McCloghrie & Kastenholz     Standards Track                    [Page 35]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifOutOctets OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of octets transmitted out of the
               interface, including framing characters.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 16 }

   ifOutUcastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were not
               addressed to a multicast or broadcast address at this
               sub-layer, including those that were discarded or not
               sent.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 17 }

   ifOutNUcastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      deprecated
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were
               addressed to a multicast or broadcast address at this
               sub-layer, including those that were discarded or not
               sent.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime.





McCloghrie & Kastenholz     Standards Track                    [Page 36]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               This object is deprecated in favour of
               ifOutMulticastPkts and ifOutBroadcastPkts."
       ::= { ifEntry 18 }

   ifOutDiscards OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of outbound packets which were chosen to
               be discarded even though no errors had been detected
               to prevent their being transmitted.  One possible
               reason for discarding such a packet could be to free
               up buffer space.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 19 }

   ifOutErrors OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "For packet-oriented interfaces, the number of
               outbound packets that could not be transmitted because
               of errors.  For character-oriented or fixed-length
               interfaces, the number of outbound transmission units
               that could not be transmitted because of errors.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifEntry 20 }


   ifOutQLen OBJECT-TYPE
       SYNTAX      Gauge32
       MAX-ACCESS  read-only
       STATUS      deprecated
       DESCRIPTION
               "The length of the output packet queue (in packets)."
       ::= { ifEntry 21 }





McCloghrie & Kastenholz     Standards Track                    [Page 37]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifSpecific OBJECT-TYPE
       SYNTAX      OBJECT IDENTIFIER
       MAX-ACCESS  read-only
       STATUS      deprecated
       DESCRIPTION
               "A reference to MIB definitions specific to the
               particular media being used to realize the interface.
               It is recommended that this value point to an instance
               of a MIB object in the media-specific MIB, i.e., that
               this object have the semantics associated with the
               InstancePointer textual convention defined in RFC
               1903.  In fact, it is recommended that the media-
               specific MIB specify what value ifSpecific should/can
               take for values of ifType.  If no MIB definitions
               specific to the particular media are available, the
               value should be set to the OBJECT IDENTIFIER { 0 0 }."
       ::= { ifEntry 22 }



   --
   --   Extension to the interface table
   --
   -- This table replaces the ifExtnsTable table.
   --

   ifXTable        OBJECT-TYPE
       SYNTAX      SEQUENCE OF IfXEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "A list of interface entries.  The number of entries
               is given by the value of ifNumber.  This table
               contains additional objects for the interface table."
       ::= { ifMIBObjects 1 }

   ifXEntry        OBJECT-TYPE
       SYNTAX      IfXEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "An entry containing additional management information
               applicable to a particular interface."
       AUGMENTS    { ifEntry }
       ::= { ifXTable 1 }






McCloghrie & Kastenholz     Standards Track                    [Page 38]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   IfXEntry ::=
       SEQUENCE {
           ifName                  DisplayString,
           ifInMulticastPkts       Counter32,
           ifInBroadcastPkts       Counter32,
           ifOutMulticastPkts      Counter32,
           ifOutBroadcastPkts      Counter32,
           ifHCInOctets            Counter64,
           ifHCInUcastPkts         Counter64,
           ifHCInMulticastPkts     Counter64,
           ifHCInBroadcastPkts     Counter64,
           ifHCOutOctets           Counter64,
           ifHCOutUcastPkts        Counter64,
           ifHCOutMulticastPkts    Counter64,
           ifHCOutBroadcastPkts    Counter64,
           ifLinkUpDownTrapEnable  INTEGER,
           ifHighSpeed             Gauge32,
           ifPromiscuousMode       TruthValue,
           ifConnectorPresent      TruthValue,
           ifAlias                 DisplayString,
           ifCounterDiscontinuityTime TimeStamp
       }


   ifName OBJECT-TYPE
       SYNTAX      DisplayString
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The textual name of the interface.  The value of this
               object should be the name of the interface as assigned
               by the local device and should be suitable for use in
               commands entered at the device's `console'.  This
               might be a text name, such as `le0' or a simple port
               number, such as `1', depending on the interface naming
               syntax of the device.  If several entries in the
               ifTable together represent a single interface as named
               by the device, then each will have the same value of
               ifName.  Note that for an agent which responds to SNMP
               queries concerning an interface on some other
               (proxied) device, then the value of ifName for such an
               interface is the proxied device's local name for it.

               If there is no local name, or this object is otherwise
               not applicable, then this object contains a zero-
               length string."
       ::= { ifXEntry 1 }




McCloghrie & Kastenholz     Standards Track                    [Page 39]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifInMulticastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were addressed to a
               multicast address at this sub-layer.  For a MAC layer
               protocol, this includes both Group and Functional
               addresses.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 2 }

   ifInBroadcastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were addressed to a
               broadcast address at this sub-layer.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 3 }

   ifOutMulticastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were
               addressed to a multicast address at this sub-layer,
               including those that were discarded or not sent.  For
               a MAC layer protocol, this includes both Group and
               Functional addresses.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."



McCloghrie & Kastenholz     Standards Track                    [Page 40]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       ::= { ifXEntry 4 }

   ifOutBroadcastPkts OBJECT-TYPE
       SYNTAX      Counter32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were
               addressed to a broadcast address at this sub-layer,
               including those that were discarded or not sent.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 5 }

   --
   -- High Capacity Counter objects.  These objects are all
   -- 64 bit versions of the "basic" ifTable counters.  These
   -- objects all have the same basic semantics as their 32-bit
   -- counterparts, however, their syntax has been extended
   -- to 64 bits.
   --

   ifHCInOctets OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current

       DESCRIPTION
               "The total number of octets received on the interface,
               including framing characters.  This object is a 64-bit
               version of ifInOctets.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 6 }










McCloghrie & Kastenholz     Standards Track                    [Page 41]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifHCInUcastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were not addressed to a
               multicast or broadcast address at this sub-layer.
               This object is a 64-bit version of ifInUcastPkts.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 7 }

   ifHCInMulticastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were addressed to a
               multicast address at this sub-layer.  For a MAC layer
               protocol, this includes both Group and Functional
               addresses.  This object is a 64-bit version of
               ifInMulticastPkts.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 8 }


   ifHCInBroadcastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The number of packets, delivered by this sub-layer to
               a higher (sub-)layer, which were addressed to a
               broadcast address at this sub-layer.  This object is a
               64-bit version of ifInBroadcastPkts.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of



McCloghrie & Kastenholz     Standards Track                    [Page 42]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               ifCounterDiscontinuityTime."
       ::= { ifXEntry 9 }

   ifHCOutOctets OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of octets transmitted out of the
               interface, including framing characters.  This object
               is a 64-bit version of ifOutOctets.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 10 }

   ifHCOutUcastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were not
               addressed to a multicast or broadcast address at this
               sub-layer, including those that were discarded or not
               sent.  This object is a 64-bit version of
               ifOutUcastPkts.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 11 }

   ifHCOutMulticastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were
               addressed to a multicast address at this sub-layer,
               including those that were discarded or not sent.  For
               a MAC layer protocol, this includes both Group and
               Functional addresses.  This object is a 64-bit version
               of ifOutMulticastPkts.



McCloghrie & Kastenholz     Standards Track                    [Page 43]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 12 }

   ifHCOutBroadcastPkts OBJECT-TYPE
       SYNTAX      Counter64
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The total number of packets that higher-level
               protocols requested be transmitted, and which were
               addressed to a broadcast address at this sub-layer,
               including those that were discarded or not sent.  This
               object is a 64-bit version of ifOutBroadcastPkts.

               Discontinuities in the value of this counter can occur
               at re-initialization of the management system, and at
               other times as indicated by the value of
               ifCounterDiscontinuityTime."
       ::= { ifXEntry 13 }

   ifLinkUpDownTrapEnable  OBJECT-TYPE
       SYNTAX      INTEGER { enabled(1), disabled(2) }
       MAX-ACCESS  read-write
       STATUS      current
       DESCRIPTION

               "Indicates whether linkUp/linkDown traps should be
               generated for this interface.

               By default, this object should have the value
               enabled(1) for interfaces which do not operate on
               'top' of any other interface (as defined in the
               ifStackTable), and disabled(2) otherwise."
       ::= { ifXEntry 14 }

   ifHighSpeed OBJECT-TYPE
       SYNTAX      Gauge32
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "An estimate of the interface's current bandwidth in
               units of 1,000,000 bits per second.  If this object
               reports a value of `n' then the speed of the interface
               is somewhere in the range of `n-500,000' to
               `n+499,999'.  For interfaces which do not vary in



McCloghrie & Kastenholz     Standards Track                    [Page 44]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               bandwidth or for those where no accurate estimation
               can be made, this object should contain the nominal
               bandwidth.  For a sub-layer which has no concept of
               bandwidth, this object should be zero."
       ::= { ifXEntry 15 }

   ifPromiscuousMode  OBJECT-TYPE
       SYNTAX      TruthValue
       MAX-ACCESS  read-write
       STATUS      current
       DESCRIPTION
               "This object has a value of false(2) if this interface
               only accepts packets/frames that are addressed to this
               station.  This object has a value of true(1) when the
               station accepts all packets/frames transmitted on the
               media.  The value true(1) is only legal on certain
               types of media.  If legal, setting this object to a
               value of true(1) may require the interface to be reset
               before becoming effective.

               The value of ifPromiscuousMode does not affect the
               reception of broadcast and multicast packets/frames by
               the interface."
       ::= { ifXEntry 16 }

   ifConnectorPresent   OBJECT-TYPE
       SYNTAX      TruthValue
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "This object has the value 'true(1)' if the interface
               sublayer has a physical connector and the value
               'false(2)' otherwise."
       ::= { ifXEntry 17 }

   ifAlias   OBJECT-TYPE
       SYNTAX      DisplayString (SIZE(0..64))
       MAX-ACCESS  read-write
       STATUS      current
       DESCRIPTION
               "This object is an 'alias' name for the interface as
               specified by a network manager, and provides a non-
               volatile 'handle' for the interface.

               On the first instantiation of an interface, the value
               of ifAlias associated with that interface is the
               zero-length string.  As and when a value is written
               into an instance of ifAlias through a network



McCloghrie & Kastenholz     Standards Track                    [Page 45]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               management set operation, then the agent must retain
               the supplied value in the ifAlias instance associated
               with the same interface for as long as that interface
               remains instantiated, including across all re-
               initializations/reboots of the network management
               system, including those which result in a change of
               the interface's ifIndex value.

               An example of the value which a network manager might
               store in this object for a WAN interface is the
               (Telco's) circuit number/identifier of the interface.

               Some agents may support write-access only for
               interfaces having particular values of ifType.  An
               agent which supports write access to this object is
               required to keep the value in non-volatile storage,
               but it may limit the length of new values depending on
               how much storage is already occupied by the current
               values for other interfaces."
       ::= { ifXEntry 18 }

   ifCounterDiscontinuityTime OBJECT-TYPE
       SYNTAX      TimeStamp
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
               "The value of sysUpTime on the most recent occasion at
               which any one or more of this interface's counters
               suffered a discontinuity.  The relevant counters are
               the specific instances associated with this interface
               of any Counter32 or Counter64 object contained in the
               ifTable or ifXTable.  If no such discontinuities have
               occurred since the last re-initialization of the local
               management subsystem, then this object contains a zero
               value."
       ::= { ifXEntry 19 }


   --           The Interface Stack Group
   --
   -- Implementation of this group is mandatory for all systems
   --

   ifStackTable  OBJECT-TYPE
        SYNTAX        SEQUENCE OF IfStackEntry
        MAX-ACCESS    not-accessible
        STATUS        current
        DESCRIPTION



McCloghrie & Kastenholz     Standards Track                    [Page 46]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               "The table containing information on the relationships
               between the multiple sub-layers of network interfaces.
               In particular, it contains information on which sub-
               layers run 'on top of' which other sub-layers, where
               each sub-layer corresponds to a conceptual row in the
               ifTable.  For example, when the sub-layer with ifIndex
               value x runs over the sub-layer with ifIndex value y,
               then this table contains:

                 ifStackStatus.x.y=active

               For each ifIndex value, I, which identifies an active
               interface, there are always at least two instantiated
               rows in this table associated with I.  For one of
               these rows, I is the value of ifStackHigherLayer; for
               the other, I is the value of ifStackLowerLayer.  (If I
               is not involved in multiplexing, then these are the
               only two rows associated with I.)

               For example, two rows exist even for an interface
               which has no others stacked on top or below it:

                 ifStackStatus.0.x=active
                 ifStackStatus.x.0=active "
        ::= { ifMIBObjects 2 }


   ifStackEntry  OBJECT-TYPE
        SYNTAX        IfStackEntry
        MAX-ACCESS    not-accessible
        STATUS        current
        DESCRIPTION
               "Information on a particular relationship between two
               sub-layers, specifying that one sub-layer runs on
               'top' of the other sub-layer.  Each sub-layer
               corresponds to a conceptual row in the ifTable."
        INDEX { ifStackHigherLayer, ifStackLowerLayer }
        ::= { ifStackTable 1 }


   IfStackEntry ::=
       SEQUENCE {
           ifStackHigherLayer  Integer32,
           ifStackLowerLayer   Integer32,
           ifStackStatus       RowStatus
        }





McCloghrie & Kastenholz     Standards Track                    [Page 47]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifStackHigherLayer  OBJECT-TYPE
        SYNTAX        Integer32
        MAX-ACCESS    not-accessible
        STATUS        current
        DESCRIPTION
               "The value of ifIndex corresponding to the higher
               sub-layer of the relationship, i.e., the sub-layer
               which runs on 'top' of the sub-layer identified by the
               corresponding instance of ifStackLowerLayer.  If there
               is no higher sub-layer (below the internetwork layer),
               then this object has the value 0."
        ::= { ifStackEntry 1 }


   ifStackLowerLayer  OBJECT-TYPE
        SYNTAX        Integer32
        MAX-ACCESS    not-accessible
        STATUS        current
        DESCRIPTION
               "The value of ifIndex corresponding to the lower sub-
               layer of the relationship, i.e., the sub-layer which
               runs 'below' the sub-layer identified by the
               corresponding instance of ifStackHigherLayer.  If
               there is no lower sub-layer, then this object has the
               value 0."
        ::= { ifStackEntry 2 }


   ifStackStatus  OBJECT-TYPE
       SYNTAX         RowStatus
       MAX-ACCESS     read-create
       STATUS         current
       DESCRIPTION
               "The status of the relationship between two sub-
               layers.

               Changing the value of this object from 'active' to
               'notInService' or 'destroy' will likely have
               consequences up and down the interface stack.  Thus,
               write access to this object is likely to be
               inappropriate for some types of interfaces, and many
               implementations will choose not to support write-
               access for any type of interface."
       ::= { ifStackEntry 3 }

   ifStackLastChange OBJECT-TYPE
       SYNTAX         TimeTicks
       MAX-ACCESS     read-only



McCloghrie & Kastenholz     Standards Track                    [Page 48]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       STATUS         current
       DESCRIPTION
               "The value of sysUpTime at the time of the last change
               of the (whole) interface stack.  A change of the
               interface stack is defined to be any creation,
               deletion, or change in value of any instance of
               ifStackStatus.  If the interface stack has been
               unchanged since the last re-initialization of the
               local network management subsystem, then this object
               contains a zero value."
       ::= { ifMIBObjects 6 }


   --   Generic Receive Address Table
   --
   -- This group of objects is mandatory for all types of
   -- interfaces which can receive packets/frames addressed to
   -- more than one address.
   --
   -- This table replaces the ifExtnsRcvAddr table.  The main
   -- difference is that this table makes use of the RowStatus
   -- textual convention, while ifExtnsRcvAddr did not.

   ifRcvAddressTable  OBJECT-TYPE
       SYNTAX      SEQUENCE OF IfRcvAddressEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "This table contains an entry for each address
               (broadcast, multicast, or uni-cast) for which the
               system will receive packets/frames on a particular
               interface, except as follows:

               - for an interface operating in promiscuous mode,
               entries are only required for those addresses for
               which the system would receive frames were it not
               operating in promiscuous mode.

               - for 802.5 functional addresses, only one entry is
               required, for the address which has the functional
               address bit ANDed with the bit mask of all functional
               addresses for which the interface will accept frames.

               A system is normally able to use any unicast address
               which corresponds to an entry in this table as a
               source address."
       ::= { ifMIBObjects 4 }




McCloghrie & Kastenholz     Standards Track                    [Page 49]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifRcvAddressEntry  OBJECT-TYPE
       SYNTAX      IfRcvAddressEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "A list of objects identifying an address for which
               the system will accept packets/frames on the
               particular interface identified by the index value
               ifIndex."
       INDEX  { ifIndex, ifRcvAddressAddress }
       ::= { ifRcvAddressTable 1 }

   IfRcvAddressEntry ::=
       SEQUENCE {
           ifRcvAddressAddress   PhysAddress,
           ifRcvAddressStatus    RowStatus,
           ifRcvAddressType      INTEGER
       }

   ifRcvAddressAddress OBJECT-TYPE
       SYNTAX      PhysAddress
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
               "An address for which the system will accept
               packets/frames on this entry's interface."

       ::= { ifRcvAddressEntry 1 }

   ifRcvAddressStatus OBJECT-TYPE
       SYNTAX      RowStatus
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
               "This object is used to create and delete rows in the
               ifRcvAddressTable."

       ::= { ifRcvAddressEntry 2 }

   ifRcvAddressType OBJECT-TYPE
       SYNTAX      INTEGER {
                       other(1),
                       volatile(2),
                       nonVolatile(3)
                   }

       MAX-ACCESS  read-create
       STATUS      current



McCloghrie & Kastenholz     Standards Track                    [Page 50]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       DESCRIPTION
               "This object has the value nonVolatile(3) for those
               entries in the table which are valid and will not be
               deleted by the next restart of the managed system.
               Entries having the value volatile(2) are valid and
               exist, but have not been saved, so that will not exist
               after the next restart of the managed system.  Entries
               having the value other(1) are valid and exist but are
               not classified as to whether they will continue to
               exist after the next restart."

       DEFVAL  { volatile }
       ::= { ifRcvAddressEntry 3 }

   -- definition of interface-related traps.

   linkDown NOTIFICATION-TYPE
           OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
           STATUS  current
           DESCRIPTION
               "A linkDown trap signifies that the SNMPv2 entity,
               acting in an agent role, has detected that the
               ifOperStatus object for one of its communication links
               is about to enter the down state from some other state
               (but not from the notPresent state).  This other state
               is indicated by the included value of ifOperStatus."
       ::= { snmpTraps 3 }

   linkUp NOTIFICATION-TYPE
           OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
           STATUS  current
           DESCRIPTION
               "A linkDown trap signifies that the SNMPv2 entity,
               acting in an agent role, has detected that the
               ifOperStatus object for one of its communication links
               left the down state and transitioned into some other
               state (but not into the notPresent state).  This other
               state is indicated by the included value of
               ifOperStatus."
       ::= { snmpTraps 4 }

   -- conformance information

   ifConformance OBJECT IDENTIFIER ::= { ifMIB 2 }

   ifGroups      OBJECT IDENTIFIER ::= { ifConformance 1 }
   ifCompliances OBJECT IDENTIFIER ::= { ifConformance 2 }




McCloghrie & Kastenholz     Standards Track                    [Page 51]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   -- compliance statements

   ifCompliance2 MODULE-COMPLIANCE
       STATUS  current
       DESCRIPTION
               "The compliance statement for SNMPv2 entities which
               have network interfaces."

       MODULE  -- this module
           MANDATORY-GROUPS { ifGeneralInformationGroup, ifStackGroup2,
                              ifCounterDiscontinuityGroup }

           GROUP       ifFixedLengthGroup
           DESCRIPTION
               "This group is mandatory for all network interfaces
               which are character-oriented or transmit data in
               fixed-length transmission units."

           GROUP       ifHCFixedLengthGroup
           DESCRIPTION
               "This group is mandatory only for those network
               interfaces which are character-oriented or transmit
               data in fixed-length transmission units, and for which
               the value of the corresponding instance of ifSpeed is
               greater than 20,000,000 bits/second."

           GROUP       ifPacketGroup
           DESCRIPTION
               "This group is mandatory for all network interfaces
               which are packet-oriented."

           GROUP       ifHCPacketGroup
           DESCRIPTION
               "This group is mandatory only for those network
               interfaces which are packet-oriented and for which the
               value of the corresponding instance of ifSpeed is
               greater than 650,000,000 bits/second."

           GROUP       ifRcvAddressGroup
           DESCRIPTION
               "The applicability of this group MUST be defined by
               the media-specific MIBs.  Media-specific MIBs must
               define the exact meaning, use, and semantics of the
               addresses in this group."







McCloghrie & Kastenholz     Standards Track                    [Page 52]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


           OBJECT      ifLinkUpDownTrapEnable
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required."

           OBJECT      ifPromiscuousMode
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required."

           OBJECT      ifStackStatus
           SYNTAX      INTEGER { active(1) } -- subset of RowStatus
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required, and only one of the six
               enumerated values for the RowStatus textual convention
               need be supported, specifically: active(1)."

           OBJECT       ifAdminStatus
           SYNTAX       INTEGER { up(1), down(2) }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support for the
               value testing(3)."

           OBJECT       ifAlias
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required."

       ::= { ifCompliances 2 }

   -- units of conformance

   ifGeneralInformationGroup    OBJECT-GROUP
       OBJECTS { ifIndex, ifDescr, ifType, ifSpeed, ifPhysAddress,
                 ifAdminStatus, ifOperStatus, ifLastChange,
                 ifLinkUpDownTrapEnable, ifConnectorPresent,
                 ifHighSpeed, ifName, ifNumber, ifAlias,
                 ifTableLastChange }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               applicable to all network interfaces."
       ::= { ifGroups 10 }

   -- the following five groups are mutually exclusive; at most
   -- one of these groups is implemented for any interface



McCloghrie & Kastenholz     Standards Track                    [Page 53]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifFixedLengthGroup    OBJECT-GROUP
       OBJECTS { ifInOctets, ifOutOctets, ifInUnknownProtos,
                 ifInErrors, ifOutErrors }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               specific to non-high speed (non-high speed interfaces
               transmit and receive at speeds less than or equal to
               20,000,000 bits/second) character-oriented or fixed-
               length-transmission network interfaces."
       ::= { ifGroups 2 }

   ifHCFixedLengthGroup    OBJECT-GROUP
       OBJECTS { ifHCInOctets, ifHCOutOctets,
                 ifInOctets, ifOutOctets, ifInUnknownProtos,
                 ifInErrors, ifOutErrors }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               specific to high speed (greater than 20,000,000
               bits/second) character-oriented or fixed-length-
               transmission network interfaces."
       ::= { ifGroups 3 }

   ifPacketGroup    OBJECT-GROUP
       OBJECTS { ifInOctets, ifOutOctets, ifInUnknownProtos,
                 ifInErrors, ifOutErrors,
                 ifMtu, ifInUcastPkts, ifInMulticastPkts,
                 ifInBroadcastPkts, ifInDiscards,
                 ifOutUcastPkts, ifOutMulticastPkts,
                 ifOutBroadcastPkts, ifOutDiscards,
                 ifPromiscuousMode }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               specific to non-high speed (non-high speed interfaces
               transmit and receive at speeds less than or equal to
               20,000,000 bits/second) packet-oriented network
               interfaces."
       ::= { ifGroups 4 }

   ifHCPacketGroup    OBJECT-GROUP
       OBJECTS { ifHCInOctets, ifHCOutOctets,
                 ifInOctets, ifOutOctets, ifInUnknownProtos,
                 ifInErrors, ifOutErrors,
                 ifMtu, ifInUcastPkts, ifInMulticastPkts,
                 ifInBroadcastPkts, ifInDiscards,
                 ifOutUcastPkts, ifOutMulticastPkts,



McCloghrie & Kastenholz     Standards Track                    [Page 54]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


                 ifOutBroadcastPkts, ifOutDiscards,
                 ifPromiscuousMode }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               specific to high speed (greater than 20,000,000
               bits/second but less than or equal to 650,000,000
               bits/second) packet-oriented network interfaces."
       ::= { ifGroups 5 }

   ifVHCPacketGroup    OBJECT-GROUP
       OBJECTS { ifHCInUcastPkts, ifHCInMulticastPkts,
                 ifHCInBroadcastPkts, ifHCOutUcastPkts,
                 ifHCOutMulticastPkts, ifHCOutBroadcastPkts,
                 ifHCInOctets, ifHCOutOctets,
                 ifInOctets, ifOutOctets, ifInUnknownProtos,
                 ifInErrors, ifOutErrors,
                 ifMtu, ifInUcastPkts, ifInMulticastPkts,
                 ifInBroadcastPkts, ifInDiscards,
                 ifOutUcastPkts, ifOutMulticastPkts,
                 ifOutBroadcastPkts, ifOutDiscards,
                 ifPromiscuousMode }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information
               specific to higher speed (greater than 650,000,000
               bits/second) packet-oriented network interfaces."
       ::= { ifGroups 6 }

   ifRcvAddressGroup    OBJECT-GROUP
       OBJECTS { ifRcvAddressStatus, ifRcvAddressType }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information on the
               multiple addresses which an interface receives."
       ::= { ifGroups 7 }

   ifStackGroup2    OBJECT-GROUP
       OBJECTS { ifStackStatus, ifStackLastChange }
       STATUS  current
       DESCRIPTION
               "A collection of objects providing information on the
               layering of MIB-II interfaces."
       ::= { ifGroups 11 }

   ifCounterDiscontinuityGroup  OBJECT-GROUP
       OBJECTS { ifCounterDiscontinuityTime }
       STATUS  current



McCloghrie & Kastenholz     Standards Track                    [Page 55]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       DESCRIPTION
               "A collection of objects providing information
               specific to interface counter discontinuities."
       ::= { ifGroups 13 }

   -- Deprecated Definitions - Objects


   --
   --    The Interface Test Table
   --
   -- This group of objects is optional.  However, a media-specific
   -- MIB may make implementation of this group mandatory.
   --
   -- This table replaces the ifExtnsTestTable
   --

   ifTestTable   OBJECT-TYPE
       SYNTAX      SEQUENCE OF IfTestEntry
       MAX-ACCESS  not-accessible
       STATUS      deprecated
       DESCRIPTION
               "This table contains one entry per interface.  It
               defines objects which allow a network manager to
               instruct an agent to test an interface for various
               faults.  Tests for an interface are defined in the
               media-specific MIB for that interface.  After invoking
               a test, the object ifTestResult can be read to
               determine the outcome.  If an agent can not perform
               the test, ifTestResult is set to so indicate.  The
               object ifTestCode can be used to provide further
               test-specific or interface-specific (or even
               enterprise-specific) information concerning the
               outcome of the test.  Only one test can be in progress
               on each interface at any one time.  If one test is in
               progress when another test is invoked, the second test
               is rejected.  Some agents may reject a test when a
               prior test is active on another interface.

               Before starting a test, a manager-station must first
               obtain 'ownership' of the entry in the ifTestTable for
               the interface to be tested.  This is accomplished with
               the ifTestId and ifTestStatus objects as follows:

            try_again:
                get (ifTestId, ifTestStatus)
                while (ifTestStatus != notInUse)
                    /*



McCloghrie & Kastenholz     Standards Track                    [Page 56]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


                     * Loop while a test is running or some other
                     * manager is configuring a test.
                     */
                    short delay
                    get (ifTestId, ifTestStatus)
                }

                /*
                 * Is not being used right now -- let's compete
                 * to see who gets it.
                 */
                lock_value = ifTestId

                if ( set(ifTestId = lock_value, ifTestStatus = inUse,
                         ifTestOwner = 'my-IP-address') == FAILURE)
                    /*
                     * Another manager got the ifTestEntry -- go
                     * try again
                     */
                    goto try_again;

                /*
                 * I have the lock
                 */
                set up any test parameters.

                /*
                 * This starts the test
                 */
                set(ifTestType = test_to_run);

                wait for test completion by polling ifTestResult

                when test completes, agent sets ifTestResult
                     agent also sets ifTestStatus = 'notInUse'

                retrieve any additional test results, and ifTestId

                if (ifTestId == lock_value+1) results are valid

              A manager station first retrieves the value of the
              appropriate ifTestId and ifTestStatus objects,
              periodically repeating the retrieval if necessary,
              until the value of ifTestStatus is 'notInUse'.  The
              manager station then tries to set the same ifTestId
              object to the value it just retrieved, the same
              ifTestStatus object to 'inUse', and the corresponding
              ifTestOwner object to a value indicating itself.  If



McCloghrie & Kastenholz     Standards Track                    [Page 57]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


              the set operation succeeds then the manager has
              obtained ownership of the ifTestEntry, and the value of
              the ifTestId object is incremented by the agent (per
              the semantics of TestAndIncr).  Failure of the set
              operation indicates that some other manager has
              obtained ownership of the ifTestEntry.

              Once ownership is obtained, any test parameters can be
              setup, and then the test is initiated by setting
              ifTestType.  On completion of the test, the agent sets
              ifTestStatus to 'notInUse'.  Once this occurs, the
              manager can retrieve the results.  In the (rare) event
              that the invocation of tests by two network managers
              were to overlap, then there would be a possibility that
              the first test's results might be overwritten by the
              second test's results prior to the first results being
              read.  This unlikely circumstance can be detected by a
              network manager retrieving ifTestId at the same time as
              retrieving the test results, and ensuring that the
              results are for the desired request.

              If ifTestType is not set within an abnormally long
              period of time after ownership is obtained, the agent
              should time-out the manager, and reset the value of the
              ifTestStatus object back to 'notInUse'.  It is
              suggested that this time-out period be 5 minutes.

              In general, a management station must not retransmit a
              request to invoke a test for which it does not receive
              a response; instead, it properly inspects an agent's
              MIB to determine if the invocation was successful.
              Only if the invocation was unsuccessful, is the
              invocation request retransmitted.

              Some tests may require the interface to be taken off-
              line in order to execute them, or may even require the
              agent to reboot after completion of the test.  In these
              circumstances, communication with the management
              station invoking the test may be lost until after
              completion of the test.  An agent is not required to
              support such tests.  However, if such tests are
              supported, then the agent should make every effort to
              transmit a response to the request which invoked the
              test prior to losing communication.  When the agent is
              restored to normal service, the results of the test are
              properly made available in the appropriate objects.
              Note that this requires that the ifIndex value assigned
              to an interface must be unchanged even if the test



McCloghrie & Kastenholz     Standards Track                    [Page 58]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


              causes a reboot.  An agent must reject any test for
              which it cannot, perhaps due to resource constraints,
              make available at least the minimum amount of
              information after that test completes."
       ::= { ifMIBObjects 3 }

   ifTestEntry OBJECT-TYPE
       SYNTAX       IfTestEntry
       MAX-ACCESS   not-accessible
       STATUS       deprecated
       DESCRIPTION
               "An entry containing objects for invoking tests on an
               interface."
       AUGMENTS  { ifEntry }
       ::= { ifTestTable 1 }

   IfTestEntry ::=
       SEQUENCE {
           ifTestId           TestAndIncr,
           ifTestStatus       INTEGER,
           ifTestType         AutonomousType,
           ifTestResult       INTEGER,
           ifTestCode         OBJECT IDENTIFIER,
           ifTestOwner        OwnerString
       }

   ifTestId         OBJECT-TYPE
       SYNTAX       TestAndIncr
       MAX-ACCESS   read-write
       STATUS       deprecated
       DESCRIPTION
               "This object identifies the current invocation of the
               interface's test."
       ::= { ifTestEntry 1 }

   ifTestStatus     OBJECT-TYPE
       SYNTAX       INTEGER { notInUse(1), inUse(2) }
       MAX-ACCESS   read-write
       STATUS       deprecated
       DESCRIPTION
               "This object indicates whether or not some manager
               currently has the necessary 'ownership' required to
               invoke a test on this interface.  A write to this
               object is only successful when it changes its value
               from 'notInUse(1)' to 'inUse(2)'.  After completion of
               a test, the agent resets the value back to
               'notInUse(1)'."
       ::= { ifTestEntry 2 }



McCloghrie & Kastenholz     Standards Track                    [Page 59]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   ifTestType       OBJECT-TYPE
       SYNTAX       AutonomousType
       MAX-ACCESS   read-write
       STATUS       deprecated
       DESCRIPTION
               "A control variable used to start and stop operator-
               initiated interface tests.  Most OBJECT IDENTIFIER
               values assigned to tests are defined elsewhere, in
               association with specific types of interface.
               However, this document assigns a value for a full-
               duplex loopback test, and defines the special meanings
               of the subject identifier:

                   noTest  OBJECT IDENTIFIER ::= { 0 0 }

               When the value noTest is written to this object, no
               action is taken unless a test is in progress, in which
               case the test is aborted.  Writing any other value to
               this object is only valid when no test is currently in
               progress, in which case the indicated test is
               initiated.

               When read, this object always returns the most recent
               value that ifTestType was set to.  If it has not been
               set since the last initialization of the network
               management subsystem on the agent, a value of noTest
               is returned."
       ::= { ifTestEntry 3 }

   ifTestResult  OBJECT-TYPE
       SYNTAX       INTEGER {
                        none(1),          -- no test yet requested
                        success(2),
                        inProgress(3),
                        notSupported(4),
                        unAbleToRun(5),   -- due to state of system
                        aborted(6),
                        failed(7)
                    }
       MAX-ACCESS   read-only
       STATUS       deprecated
       DESCRIPTION
               "This object contains the result of the most recently
               requested test, or the value none(1) if no tests have
               been requested since the last reset.  Note that this
               facility provides no provision for saving the results
               of one test when starting another, as could be
               required if used by multiple managers concurrently."



McCloghrie & Kastenholz     Standards Track                    [Page 60]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


       ::= { ifTestEntry 4 }

   ifTestCode  OBJECT-TYPE
       SYNTAX       OBJECT IDENTIFIER
       MAX-ACCESS   read-only
       STATUS       deprecated
       DESCRIPTION
               "This object contains a code which contains more
               specific information on the test result, for example
               an error-code after a failed test.  Error codes and
               other values this object may take are specific to the
               type of interface and/or test.  The value may have the
               semantics of either the AutonomousType or
               InstancePointer textual conventions as defined in RFC
               1903.  The identifier:

                   testCodeUnknown  OBJECT IDENTIFIER ::= { 0 0 }

               is defined for use if no additional result code is
               available."
       ::= { ifTestEntry 5 }

   ifTestOwner      OBJECT-TYPE
       SYNTAX       OwnerString
       MAX-ACCESS   read-write
       STATUS       deprecated
       DESCRIPTION
               "The entity which currently has the 'ownership'
               required to invoke a test on this interface."
       ::= { ifTestEntry 6 }

   -- Deprecated Definitions - Groups


   ifGeneralGroup    OBJECT-GROUP
       OBJECTS { ifDescr, ifType, ifSpeed, ifPhysAddress,
                 ifAdminStatus, ifOperStatus, ifLastChange,
                 ifLinkUpDownTrapEnable, ifConnectorPresent,
                 ifHighSpeed, ifName }
       STATUS  deprecated
       DESCRIPTION
               "A collection of objects deprecated in favour of
               ifGeneralInformationGroup."
       ::= { ifGroups 1 }


   ifTestGroup    OBJECT-GROUP
       OBJECTS { ifTestId, ifTestStatus, ifTestType,



McCloghrie & Kastenholz     Standards Track                    [Page 61]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


                 ifTestResult, ifTestCode, ifTestOwner }
       STATUS  deprecated
       DESCRIPTION
               "A collection of objects providing the ability to
               invoke tests on an interface."
       ::= { ifGroups 8 }


   ifStackGroup    OBJECT-GROUP
       OBJECTS { ifStackStatus }
       STATUS  deprecated
       DESCRIPTION
               "The previous collection of objects providing
               information on the layering of MIB-II interfaces."
       ::= { ifGroups 9 }


   ifOldObjectsGroup    OBJECT-GROUP
       OBJECTS { ifInNUcastPkts, ifOutNUcastPkts,
                 ifOutQLen, ifSpecific }
       STATUS  deprecated
       DESCRIPTION
               "The collection of objects deprecated from the
               original MIB-II interfaces group."
       ::= { ifGroups 12 }


   -- Deprecated Definitions - Compliance

   ifCompliance MODULE-COMPLIANCE
       STATUS  deprecated
       DESCRIPTION
               "The previous compliance statement for SNMPv2 entities
               which have network interfaces."

       MODULE  -- this module
           MANDATORY-GROUPS { ifGeneralGroup, ifStackGroup }

           GROUP       ifFixedLengthGroup
           DESCRIPTION
               "This group is mandatory for all network interfaces
               which are character-oriented or transmit data in
               fixed-length transmission units."

           GROUP       ifHCFixedLengthGroup
           DESCRIPTION
               "This group is mandatory only for those network
               interfaces which are character-oriented or transmit



McCloghrie & Kastenholz     Standards Track                    [Page 62]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


               data in fixed-length transmission units, and for which
               the value of the corresponding instance of ifSpeed is
               greater than 20,000,000 bits/second."

           GROUP       ifPacketGroup
           DESCRIPTION
               "This group is mandatory for all network interfaces
               which are packet-oriented."

           GROUP       ifHCPacketGroup
           DESCRIPTION
               "This group is mandatory only for those network
               interfaces which are packet-oriented and for which the
               value of the corresponding instance of ifSpeed is
               greater than 650,000,000 bits/second."

           GROUP       ifTestGroup
           DESCRIPTION
               "This group is optional.  Media-specific MIBs which
               require interface tests are strongly encouraged to use
               this group for invoking tests and reporting results.
               A medium specific MIB which has mandatory tests may
               make implementation of this group mandatory."

           GROUP       ifRcvAddressGroup
           DESCRIPTION
               "The applicability of this group MUST be defined by
               the media-specific MIBs.  Media-specific MIBs must
               define the exact meaning, use, and semantics of the
               addresses in this group."

           OBJECT      ifLinkUpDownTrapEnable
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required."

           OBJECT      ifPromiscuousMode
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required."

           OBJECT      ifStackStatus
           SYNTAX      INTEGER { active(1) } -- subset of RowStatus
           MIN-ACCESS  read-only
           DESCRIPTION
               "Write access is not required, and only one of the six
               enumerated values for the RowStatus textual convention
               need be supported, specifically: active(1)."



McCloghrie & Kastenholz     Standards Track                    [Page 63]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


           OBJECT       ifAdminStatus
           SYNTAX       INTEGER { up(1), down(2) }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support for the
               value testing(3)."
       ::= { ifCompliances 1 }

   END

7.  Acknowledgements

   This memo has been produced by the IETF's Interfaces MIB working-
   group.

   The original proposal evolved from conversations and discussions with
   many people, including at least the following: Fred Baker, Ted
   Brunner, Chuck Davin, Jeremy Greene, Marshall Rose, Kaj Tesink, and
   Dean Throop.

8.  References

   [1]  Case, J., McCloghrie, K., Rose, M., and
        S. Waldbusser, "Structure of Management Information for
        version 2 of the Simple Network Management Protocol
        (SNMPv2)", RFC 1902, January 1996.

   [2]  Case, J., McCloghrie, K., Rose, M., and
        S. Waldbusser, "Textual Conventions for version 2 of the
        Simple Network Management Protocol (SNMPv2)", RFC 1903,
        January 1996.

   [3]  Case, J., McCloghrie, K., Rose, M., and
        S. Waldbusser, "Protocol Operations for version 2 of the
        Simple Network Management Protocol (SNMPv2)", RFC 1905,
        January 1996.

   [4]  McCloghrie, K., and M. Rose, "Management Information Base for
        Network Management of TCP/IP-based internets - MIB-II", STD
        17, RFC 1213, March 1991.

   [5]  Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
        Network Management Protocol", STD 15, RFC 1157, May 1990.

   [6]  Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

   [7]  McCloghrie, K., "Extensions to the Generic-Interface MIB", RFC
        1229, May 1991.



McCloghrie & Kastenholz     Standards Track                    [Page 64]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


   [8]  ATM Forum Technical Committee, "LAN Emulation Client
        Management: Version 1.0 Specification", af-lane-0044.000, ATM
        Forum, September 1995.

   [9]  Stewart, B., "Definitions of Managed Objects for Character
        Stream Devices using SMIv2", RFC 1658, July 1994.

   [10] Bradner, S., "Key words for use in RFCs to Indicate
        Requirements Levels", RFC 2119, March 1997.

9.  Security Considerations

   This MIB contains both readable objects whose values provide the
   number and status of a device's network interfaces, and write-able
   objects which allow an administrator to control the interfaces and to
   perform tests on the interfaces.  Unauthorized access to the readable
   objects is relatively innocuous.  Unauthorized access to the write-
   able objects could cause a denial of service, or in combination with
   other (e.g., physical) security breaches, could cause unauthorized
   connectivity to a device.

10.  Authors' Addresses

   Keith McCloghrie
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA  95134-1706

   Phone: 408-526-5260
   EMail: kzm@cisco.com


   Frank Kastenholz
   FTP Software
   2 High Street
   North Andover, Mass. USA 01845

   Phone: 508-685-4000
   EMail: kasten@ftp.com












McCloghrie & Kastenholz     Standards Track                    [Page 65]

RFC 2233            Interfaces Group MIB using SMIv2       November 1997


11.  Full Copyright Statement

   Copyright (C) The Internet Society (1997).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























McCloghrie & Kastenholz     Standards Track                    [Page 66]