File: rfc2562.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (2747 lines) | stat: -rw-r--r-- 110,633 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747






Network Working Group                                          K. White
Request for Comments: 2562                                    IBM Corp.
Category: Standards Track                                      R. Moore
                                                              IBM Corp.
                                                             April 1999


            Definitions of Protocol and Managed Objects for
              TN3270E Response Time Collection Using SMIv2
                            (TN3270E-RT-MIB)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

   This memo defines the protocol and the Management Information Base
   (MIB) for performing response time data collection on TN3270 and
   TN3270E sessions by a TN3270E server.  The response time data
   collected by a TN3270E server is structured to support both
   validation of service level agreements and performance monitoring of
   TN3270 and TN3270E Sessions.  This MIB has as a prerequisite the
   TN3270E-MIB, reference [20].

   TN3270E, defined by RFC 2355 [19], refers to the enhancements made to
   the Telnet 3270 (TN3270) terminal emulation practices.  Refer to RFC
   1041 [18], STD 8, RFC 854 [16], and STD 31, RFC 860 [17] for a sample
   of what is meant by TN3270 practices.

Table of Contents

   1.0  Introduction  . . . . . . . . . . . . . . . . . . . . . . .  2
   2.0  The SNMP Network Management Framework   . . . . . . . . . .  2
   3.0  Response Time Collection Methodology  . . . . . . . . . . .  3
   3.1  General Response Time Collection  . . . . . . . . . . . . .  3
   3.2  TN3270E Server Response Time Collection   . . . . . . . . .  5
   3.3  Correlating TN3270E Server and Host Response Times  . . . . 10
   3.4  Timestamp Calculation   . . . . . . . . . . . . . . . . . . 11
     3.4.1  DR Usage  . . . . . . . . . . . . . . . . . . . . . . . 12



White & Moore               Standards Track                     [Page 1]

RFC 2562                     TN3270E-RT-MIB                   April 1999


     3.4.2  TIMING-MARK Usage   . . . . . . . . . . . . . . . . . . 13
   3.5  Performance Data Modelling  . . . . . . . . . . . . . . . . 15
     3.5.1  Averaging Response Times  . . . . . . . . . . . . . . . 15
     3.5.2  Response Time Buckets   . . . . . . . . . . . . . . . . 18
   4.0  Structure of the MIB  . . . . . . . . . . . . . . . . . . . 19
   4.1  tn3270eRtCollCtlTable   . . . . . . . . . . . . . . . . . . 19
   4.2  tn3270eRtDataTable  . . . . . . . . . . . . . . . . . . . . 23
   4.3  Notifications   . . . . . . . . . . . . . . . . . . . . . . 24
   4.4  Advisory Spin Lock Usage  . . . . . . . . . . . . . . . . . 26
   5.0  Definitions   . . . . . . . . . . . . . . . . . . . . . . . 26
   6.0  Security Considerations   . . . . . . . . . . . . . . . . . 45
   7.0  Intellectual Property   . . . . . . . . . . . . . . . . . . 45
   8.0  Acknowledgments   . . . . . . . . . . . . . . . . . . . . . 46
   9.0  References  . . . . . . . . . . . . . . . . . . . . . . . . 46
   10.0  Authors' Addresses   . . . . . . . . . . . . . . . . . . . 48
   11.0  Full Copyright Statement   . . . . . . . . . . . . . . . . 49

1.0  Introduction

   This document is a product of the TN3270E Working Group.  It defines
   a protocol and a MIB module to enable a TN3270E server to collect and
   keep track of response time data for both TN3270 and TN3270E clients.
   Basis for implementing this MIB:

   o   TN3270E-MIB, Base Definitions of Managed Objects for TN3270E
       Using SMIv2 [20]

   o   TN3270E RFCs

   o   Telnet Timing Mark Option RFC [17].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119, reference
   [23].

2.0  The SNMP Network Management Framework

   The SNMP Management Framework presently consists of five major
   components:

   o   An overall architecture, described in RFC 2271 [1].

   o   Mechanisms for describing and naming objects and events for the
       purpose of management.  The first version of this Structure of
       Management Information (SMI) is called SMIv1 and described in STD
       16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4].  The
       second version, called SMIv2, is described in RFC 1902 [5], RFC



White & Moore               Standards Track                     [Page 2]

RFC 2562                     TN3270E-RT-MIB                   April 1999


       1903 [6] and RFC 1904 [7].

   o   Message protocols for transferring management information.  The
       first version of the SNMP message protocol is called SNMPv1 and
       described in STD 15, RFC 1157 [8].  A second version of the SNMP
       message protocol, which is not an Internet standards track
       protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC
       1906 [10].  The third version of the message protocol is called
       SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274
       [12].

   o   Protocol operations for accessing management information.  The
       first set of protocol operations and associated PDU formats is
       described in STD 15, RFC 1157 [8].  A second set of protocol
       operations and associated PDU formats is described in RFC 1905
       [13].

   o   A set of fundamental applications described in RFC 2273 [14] and
       the view-based access control mechanism described in RFC 2275
       [15].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the mechanisms defined in the SMI.

   This memo specifies a MIB module that is compliant to the SMIv2.  A
   MIB conforming to the SMIv1 can be produced through the appropriate
   translations.  The resulting translated MIB must be semantically
   equivalent, except where objects or events are omitted because no
   translation is possible (use of Counter64).  Some machine readable
   information in SMIv2 will be converted into textual descriptions in
   SMIv1 during the translation process.  However, this loss of machine
   readable information is not considered to change the semantics of the
   MIB.

3.0  Response Time Collection Methodology

   This section explains the methodology and approach used by the MIB
   defined by this memo for response time data collection by a TN3270E
   server.

3.1  General Response Time Collection

   Two primary methods exist for measuring response times in SNA
   networks:

   o   The Systems Network Architecture Management Services (SNA/MS)
       Response Time Monitoring (RTM) function.



White & Moore               Standards Track                     [Page 3]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   Timestamping using definite response flows.

   This memo defines an approach using definite responses to timestamp
   the flows between a client and its TN3270E server, rather than by use
   of the RTM method. Extensions to the SNA/MS RTM flow were considered,
   but this approach was deemed unsuitable since not all TN3270E server
   implementations have access to their underlying SNA stacks.  The RTM
   concepts of keeping response time buckets for service level
   agreements and of interval-based response time collection for
   performance monitoring are preserved in the MIB module defined in
   this memo.

   As mentioned, this memo focuses on using definite responses to
   timestamp the flows between a client and its TN3270E server for
   generating performance data.  Use of a definite response flow
   requires that the client supports TN3270E with the RESPONSES function
   negotiated.  The TN3270 TIMING-MARK option can be used instead of
   definite response for supporting TN3270 clients or TN3270E clients
   that don't support RESPONSES.  This document focuses first on
   defining the protocol and methods for generating performance data
   using definite responses, and then describes how the TIMING-MARK
   option can be used instead of definite response.

   In an SNA network, a transaction between a client Logical Unit (LU)
   and a target host in general looks as follows:

           ------------------------------------------------
           |                                              |
           | Client LU                    Target SNA Host |
           |                                              |
           |                               Timestamps     |
           |              request              A          |
           | ----------------------------------------->   |
           |              reply(DR)            B      |   |
           | <---------------------------------------<    |
           | |            +/-RSP               C          |
           | >--------------------------------------->    |
           |                                              |
           | DR:     Definite Response requested          |
           | +/-RSP: Definite Response                    |
           |                                              |
           ------------------------------------------------

   This transaction is a simple one, and is being used only to
   illustrate how timestamping at a target SNA host can be used to
   generate response times.  An IBM redbook [12] provides a more
   detailed description of response time collection for a transaction of
   this type.  Note that for the purpose of calculating an approximation



White & Moore               Standards Track                     [Page 4]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   for network transit time, it doesn't matter if the response is
   positive or negative.  Two response time values are typically
   calculated:

   o   Host Transit Time:    Timestamp B - Timestamp A
   o   Network Transit Time: Timestamp C - Timestamp B

   Network transit time is an approximation for the amount of time that
   a transaction requires to flow across a network, since the response
   flow is being substituted for the request flow at the start of the
   transaction.  Network transit time, timestamp C - timestamp B, is the
   amount of time that the definite response request and its response
   required.  Host time, timestamp B - timestamp A, is the actual time
   that the host required to process the transaction.  Experience has
   shown that using the response flow to approximate network transit
   times is useful, and does correlate well with actual network transit
   times.

   A client SHOULD respond to a definite response request when it
   completes processing the transaction.  This is important since it
   increases the accuracy of a total response time.  Clients that
   immediately respond to a definite response request will be attributed
   with lower total response times then those that actually occurred.

   The TN3270E-RT-MIB describes a method of collecting performance data
   that is not appropriate for printer (LU Type 1 or LU Type 3)
   sessions; thus collection of performance data for printer sessions is
   excluded from this MIB.  This exclusion of printer sessions is not
   considered a problem, since these sessions are not the most important
   ones for response time monitoring, and since historically they were
   excluded from SNA/MS RTM collection.  The tn3270eTcpConnResourceType
   object in a tn3270eTcpConnEntry (in the TN3270E-MIB) can be examined
   to determine if a client session is ineligible for response time data
   collection for this reason.

3.2  TN3270E Server Response Time Collection

   A TN3270E server connects a Telnet client performing 3270 emulation
   to a target SNA host over both a client-side network (client to
   TN3270E server) and an SNA Network (TN3270E server to target SNA
   host).  The client-side network is typically TCP/IP, but it need not
   be.  For ease of exposition this document uses the term "IP network"
   to refer to the client-side network, since IP is by far the most
   common protocol for these networks.

   A TN3270E server can use SNA definite responses and the TN3270
   Enhancement (RFC 2355 [19]) RESPONSES function to calculate response
   times for a transaction, by timestamping when a client request



White & Moore               Standards Track                     [Page 5]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   arrives at the server, when the reply arrives from the target host,
   and when the response acknowledging this reply arrives from the
   client.

   Section 3.4, Timestamp Calculation, provides specifics on when in the
   sequence of flows between a TN3270E client and its target SNA host a
   TN3270E server takes the required timestamps.  In addition, it
   provides information on how a TN3270 TIMING-MARK request/response
   flow can be used instead of DR for approximating IP network transit
   times.

   The following figure adds a TN3270E server between the client, in
   this case a TN3270E client and the target SNA host:

           ------------------------------------------------
           |                                              |
           | Client            TN3270E           Target   |
           |                    Server          SNA Host  |
           |                   Timestamps                 |
           |                                              |
           | <---IP Network-------><---SNA Network--->    |
           |                                              |
           |      request         D                       |
           | ------------------------------------------>  |
           |      reply(DR)       E                    |  |
           | <----------------------------------------<   |
           | |    +/-RSP          F                       |
           |  >-------------------- - - - - - - - - - >   |
           |                                              |
           ------------------------------------------------

   A TN3270E server can save timestamp D when it receives a client
   request, save timestamp E when the target SNA host replies, and save
   timestamp F when the client responds to the definite response request
   that flowed with the reply.  It doesn't matter whether the target SNA
   host requested a definite response on its reply:  if it didn't, the
   TN3270E server makes the request on its own, to enable it to produce
   timestamp F.  In this case the TN3270E server does not forward the
   response to the target SNA host, as the dotted line in the figure
   indicates.

   Because it is a special case, a transaction in which a target SNA
   host returns an UNBIND in response to a client's request, and the
   TN3270E server forwards the UNBIND to the client, is not included in
   any response time calculations.






White & Moore               Standards Track                     [Page 6]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   In order to generate timestamp F, a TN3270E server MUST insure that
   the transaction specifies DR, and that the TN3270E RESPONSES function
   has been negotiated between itself and the client.  Negotiation of
   the TN3270E RESPONSES function occurs during the client's TN3270E
   session initialization.  The TN3270E servers that the authors are
   aware of do request the RESPONSES function during client session
   initialization.  TN3270E clients either automatically support the
   RESPONSES function, or can be configured during startup to support
   it.

   Using timestamps D, E, and F the following response times can be
   calculated by a TN3270E server:

   o   Total Response time:     Timestamp F - Timestamp D
   o   IP Network Transit Time: Timestamp F - Timestamp E

   Just as in the SNA case presented above, these response times are
   also approximations, since the final +/- RSP from the client is being
   substituted for the request from the client that began the
   transaction.

   The MIB provides an object, tn3270eRtCollCtlType, to control several
   aspects of response time data collection.  One of the available
   options in setting up a response time collection policy is to
   eliminate the IP-network component altogether.  This might be done
   because it is determined either that the additional IP network
   traffic would not be desirable, or that the IP-network component of
   the overall response times is not significant.

   Excluding the IP-network component from response times also has an
   implication for the way in which response time data is aggregated.  A
   TN3270E server may find that some of its clients simply don't support
   any of the functions necessary for the server to calculate the IP-
   network component of response times.  For these clients, the most
   that the server can calculate is the SNA-network component of their
   overall response times; the server records this SNA-network component
   as the TOTAL response time each of these clients' transactions.  If a
   response time collection is aggregating data from a number of
   clients, some of which have the support necessary for including the
   IP-network component in their total response time calculations, and
   some of which do not, then the server aggregates the data differently
   depending on whether the collection has been defined to include or
   exclude the IP-network component:

   o  If the IP-network component is included, then transactions for the
      clients that don't support calculation of the IP-network component
      of their response times are excluded from the aggregation
      altogether.



White & Moore               Standards Track                     [Page 7]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o  If the IP-network component is excluded, then total response times
      for ALL clients include only the SNA-network component, even
      though the server could have included an IP-network component in
      the overall response times for some of these clients.  The server
      does this by setting timestamp F, which marks the end of a
      transaction's total response time, equal to timestamp E, the end
      of the transaction's SNA-network component.

   The principle here is that all the transactions contributing their
   response times to an aggregated value MUST make the same
   contribution.  If the aggregation specifies that an IP-network
   component MUST be included in the aggregation's response times, then
   transactions for which an IP-network component cannot be calculated
   aren't included at all.  If the aggregation specifies that an IP-
   network component is not to be included, then only the SNA-network
   component is used, even for those transactions for which an IP-
   network component could have been calculated.

   There is one more complication here:  the MIB allows a management
   application to enable or disable dynamic definite responses for a
   response time collection.  Once again the purpose of this option is
   to give the network operator control over the amount of traffic
   introduced into the IP network for response time data collection.  A
   DYNAMIC definite response is one that the TN3270E server itself adds
   to a reply, in a transaction for which the SNA application at the
   target SNA host did not specify DR in its reply.  When the +/-RSP
   comes back from the client, the server uses this response to
   calculate timestamp F, but then it does not forward the response on
   to the SNA application (since the application is not expecting a
   response to its reply).

   The dynamic definite responses option is related to the option of
   including or excluding the IP-network component of response times
   (discussed above) as follows:

   o  If the IP-network component is excluded, then there is no reason
      for enabling dynamic definite responses: the server always sets
      timestamp F equal to timestamp E, so the additional IP-network
      traffic elicited by a dynamic definite response would serve no
      purpose.

   o  If the IP-network component is included, then enabling dynamic
      definite responses causes MORE transactions to be included in the
      aggregated response time values:

      -  For clients that do not support sending of responses, timestamp
         F can never be calculated, and so their transactions are never
         included in the aggregate.



White & Moore               Standards Track                     [Page 8]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      -  For clients that support sending of responses, timestamp F will
         always be calculated for transactions in which the host SNA
         application specifies DR in its reply, and so these
         transactions will always be included in the aggregate.

      -  For clients that support sending of responses, having dynamic
         definite responses enabled for a collection results in the
         inclusion of additional transactions in the aggregate:
         specifically, those for which the host SNA application did not
         specify DR in its reply.

   A TN3270E server also has the option of substituting TIMING-MARK
   processing for definite responses in calculating the IP-network
   component of a transaction's response time.  Once again, there is no
   reason for the server to do this if the collection has been set up to
   exclude the IP-network component altogether in computing response
   times.

   The MIB is structured to keep counts and averages for total response
   times (F - D) and their IP-network components (F - E).  A management
   application can obviously calculate from these two values an average
   SNA-network component (E - D) for the response times.  This SNA-
   network component includes the SNA node processing time at both the
   TN3270E server and at the target application.

   A host TN3270E server refers to an implementation where the TN3270E
   server is collocated with the Systems Network Architecture (SNA)
   System Services Control Point (SSCP) for the dependent Secondary
   Logical Units (SLUs) that the server makes available to its clients
   for connecting into an SNA network.  A gateway TN3270E server resides
   on an SNA node other than an SSCP, either an SNA type 2.0 node, a
   boundary-function-attached type 2.1 node, or an APPN node acting in
   the role of a Dependent LU Requester (DLUR).  Host and gateway
   TN3270E server implementations typically differ greatly as to their
   internal implementation and System Definition (SYSDEF) requirements.

   If a host TN3270E server is in the same SNA host as the target
   application, then the SNA-network component of a transaction's
   response time will approximately equal the host transit time (B - A)
   described previously.  A host TN3270E server implementation can,
   however, typically support the establishment of sessions to target
   applications in SNA hosts remote from itself.  In this case the SNA-
   network component of the response time equals the actual SNA-network
   transit time plus two host transit times.







White & Moore               Standards Track                     [Page 9]

RFC 2562                     TN3270E-RT-MIB                   April 1999


3.3  Correlating TN3270E Server and Host Response Times

   It is possible that response time data is collected from TN3270E
   servers at the same time as a management application is monitoring
   the SNA sessions at a host.  For example, a management application
   can be monitoring a secondary logical unit (SLU) while retrieving
   data from a TN3270E server.  Consider the following figure:

           ------------------------------------------------
           |                                              |
           | Client            TN3270E            Target  |
           |                    Server           SNA Host |
           |                   Timestamps         (PLU)   |
           |                    (SLU)           Timestamps|
           | <---IP Network-------><---SNA Network--->    |
           |                                              |
           |      request         D                 A     |
           | ------------------------------------------>  |
           |      reply(DR)       E                 B  |  |
           | <----------------------------------------<   |
           | |    +/-RSP          F                 C     |
           |  >-------------------------------------->    |
           |                                              |
           ------------------------------------------------

   The following response times are available:

   o   Target SNA host transit time:         Timestamp B - Timestamp A
   o   Target SNA host network transit time: Timestamp C - Timestamp B
   o   TN3270E server total response time:   Timestamp F - Timestamp D
   o   TN3270E server IP-network component:  Timestamp F - Timestamp E

   The value added by the TN3270E server in this situation is its
   approximation of the IP-network component of the overall response
   time.  The IP-network component can be subtracted from the total
   network transit time (which can be captured at an SSCP monitoring SNA
   traffic from/to the SLU) to see the actual SNA versus IP network
   transit times.

   The MIB defined by this memo does not specifically address
   correlation of the data it contains with response time data collected
   by direct monitoring of SNA resources:  its focus is exclusively
   response time data collection from a TN3270E server perspective.  It
   has, however, in conjunction with the TN3270E-MIB [10], been
   structured to provide the information necessary for correlation
   between TN3270E server-provided response time information and that
   gathered from directly monitoring SNA resources.




White & Moore               Standards Track                    [Page 10]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   A management application attempting to correlate SNA resource usage
   to Telnet clients can monitor either the tn3270eResMapTable or the
   tn3270eTcpConnTable to determine resource-to-client address mappings.
   Both of these tables are defined by the TN3270E-MIB [10].  Another
   helpful table is the tn3270eSnaMapTable, which provides a mapping
   between SLU names as they are known at the SSCP (VTAM) and their
   local names at the TN3270E server.  Neither the
   tn3270eClientGroupTable, the tn3270eResPoolTable, nor the
   tn3270eClientResMapTable from the TN3270E-MIB can be used for
   correlation, since the mappings defined by these tables can overlap,
   and may not provide one-to-one mappings.

3.4  Timestamp Calculation

   This section goes into more detail concerning when the various
   timestamps can be taken as the flows between a TN3270E client and its
   target SNA host pass through a TN3270E server.  In addition,
   information is provided on how the TN3270 TIMING-MARK
   request/response flow can be used in place of DR for approximating IP
   network transit times.































White & Moore               Standards Track                    [Page 11]

RFC 2562                     TN3270E-RT-MIB                   April 1999


3.4.1  DR Usage

   Consider the following flow:

        ----------------------------------------------------------
        |                                                        |
        | Client            TN3270E            Target SNA        |
        |                    Server              Host            |
        |                   Timestamps                           |
        |                                                        |
        | <---IP Network-------><---SNA Network--->              |
        |                                                        |
        |      request         D    (BB,CD,OIC,ER)               |
        | ------------------------------------------->           |
        |      reply(DR)            (FIC,ER,EB)      |           |
        | <-----------------------------------------<            |
        |      reply                (MIC,ER)                     |
        | <-----------------------------------------<            |
        |      reply                (MIC,ER)                     |
        | <-----------------------------------------<            |
        |      reply           E    (LIC,DR)                     |
        | <-----------------------------------------<            |
        | |    +/-RSP          F                                 |
        |  >---------------------------------------->            |
        |                                                        |
        | BB : Begin Bracket    ER : Response by exception       |
        | EB : End Bracket      DR : Definite Response Requested |
        | CD : Change Direction FIC : First in chain             |
        | OIC: Only in chain    MIC: Middle in chain             |
        | LIC: Last in chain                                     |
        ----------------------------------------------------------

   Timestamp D is taken at the TN3270E server when the server has
   received data from a client for forwarding to its target SNA host,
   and the direction of the SNA session allows the server to forward the
   data immediately (either the direction is inbound towards the SNA
   host, or the session is between brackets).  This is most likely when
   the server finds the end of record indicator in the TCP data received
   from the client.

   The target SNA application returns its reply in one or more SNA
   Request Units (RUs); in this example there are four RUs in the reply.
   The first RU is marked as first in chain (FIC), the next two are
   marked as middle in chain (MIC), and the last is marked as last in
   chain (LIC).  If the SNA host sends a multiple-RU chain, the server
   does not know until the last RU is received whether DR is being
   requested.  The server's only chance to request DR from the client,
   however, comes when it forwards the FIC RU, since this is the only



White & Moore               Standards Track                    [Page 12]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   time that the TN3270E header is included.  Since a server may forward
   the FIC RU to the client before it receives the LIC RU from the SNA
   host, some servers routinely specify DR on all FIC RUs.

   If the server has specified DR on the TN3270E request for the FIC RU
   in a chain, it takes timestamp E when it forwards the LIC RU to the
   client.  Since timestamp E is used for calculating the IP-network
   time for the transaction, the server SHOULD take timestamp E as close
   as possible to its "Telnet edge".  The server takes timestamp F when
   it receives the RESPONSES response from the client.

   A target SNA application doesn't necessarily return data to a client
   in a transaction; it may, for example, require more data from the
   client before it can formulate a reply.  In this case the application
   may simply return to the TN3270E server a change of direction
   indicator.  At this point the server must send something to the
   client (typically a Write operation with a WCC) to unlock the
   keyboard.  If the server specifies DR on the request to the client
   triggered by its receipt of the change of direction indicator from
   the SNA application, then timestamps E and F can be taken, and the
   usual response times can be calculated.  When the client sends in the
   additional data and gets a textual response from the SNA application,
   the server treats this as a separate transaction from the one
   involving the change of direction.

3.4.2  TIMING-MARK Usage

   It is possible for a TN3270E server to use the TIMING-MARK flow for
   approximating IP network transit times.  Using TIMING-MARKs would
   make it possible for a server to collect performance data for TN3270
   clients, as well as for TN3270E clients that do not support the
   RESPONSES function.  In order for TIMING-MARKs to be used in this
   way, a client can't have the NOP option enabled, since responses are
   needed to the server's TIMING-MARK requests.  An IP network transit
   time approximation using a TIMING-MARK is basically the amount of
   time it takes for a TN3270 server to receive from a client a response
   to a TIMING-MARK request.

   To get an estimate for IP network transit time, a TN3270E server
   sends a TIMING-MARK request to a client after a LIC RU has been
   received, as a means of approximating IP network transit time:










White & Moore               Standards Track                    [Page 13]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        ---------------------------------------------------
        |                                                 |
        | Client            TN3270E             Target    |
        |                    Server              Host     |
        |                   Timestamps                    |
        |                                                 |
        | <---IP Network-------><---SNA Network--->       |
        |                                                 |
        |      request         D    (BB,CD,OIC,ER)        |
        | ------------------------------------------->    |
        |      reply                (FIC,ER,EB)      |    |
        | <-----------------------------------------<     |
        |      reply                (MIC,ER)              |
        | <-----------------------------------------<     |
        |      reply                (MIC,ER)              |
        | <-----------------------------------------<     |
        |      reply           E    (LIC,ER)              |
        | <-----------------------------------------<     |
        |     TIMING-MARK Rqst E'                         |
        | <---------------------                          |
        | |    TIMING-MARK Rsp F'                         |
        |  >------------------->                          |
        |                                                 |
        ---------------------------------------------------

   The response times can then be calculated as follows:

   o   TN3270E server total response time:
       (Timestamp E - Timestamp D) + (Timestamp F' - Timestamp E')

   o   TN3270E server IP network time:  Timestamp F' - Timestamp E'

   If a TN3270E server is performing the TIMING-MARK function
   (independent of the response time monitoring use of the function
   discussed here), then it most likely has a TIMING-MARK interval for
   determining when to examine client sessions for sending the TIMING-
   MARK request.  This interval, which is ordinarily a global value for
   an entire TN3270E server, is represented in the TN3270E-MIB by the
   tn3270eSrvrConfTmNopInterval object.  A TIMING-MARK request is sent
   only if, when it is examined, a client session is found to have had
   no activity for a different fixed length of time, represented in the
   TN3270E-MIB by the tn3270eSrvrConfTmNopInactTime object.

   Servers that support a large number of client sessions should spread
   out the TIMING-MARK requests they send to these clients over the
   activity interval, rather than sending them all in a single burst,
   since otherwise the network may be flooded with TIMING-MARK requests.
   When a server uses TIMING-MARKs for approximating response times,



White & Moore               Standards Track                    [Page 14]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   this tends to introduce a natural spreading into its TIMING-MARK
   requests, since the requests are triggered by the arrival of traffic
   from an SNA host.

   A TN3270E server MUST integrate its normal TIMING-MARK processing
   with its use of TIMING-MARKs for computing response times.  In
   particular, it MUST NOT send a second TIMING-MARK request to a client
   while waiting for the first to return, since this is ruled out by the
   TIMING-MARK protocol itself.  If a TIMING-MARK flow has just been
   performed for a client shortly before the LIC RU arrives, the server
   MAY use the interval from this flow as its approximation for IP
   network transit time, (in other words, as its (F' - E') value) when
   calculating its approximation for the transaction's total response
   time, rather than sending a second TIMING-MARK request so soon after
   the preceding one.

   Regardless of when the server sends its TIMING-MARK request, the
   accuracy of its total response time calculation depends on exactly
   when the client responds to the TIMING-MARK request.

3.5  Performance Data Modelling

   The following two subsections detail how the TN3270E-RT-MIB models
   and controls capture of two types of response time data:  average
   response times and response time buckets.

3.5.1  Averaging Response Times

   Average response times play two different roles in the MIB:

   o   They are made available for management applications to retrieve.
   o   They serve as triggers for emitting notifications.

   Sliding-window averages are used rather than straight interval-based
   averages, because they are often more meaningful, and because they
   cause less notification thrashing.  Sliding-window average
   calculation can, if necessary, be disabled, by setting the sample
   period multiplier, tn3270eRtCollCtlSPMult, to 1, and setting the
   sample period, tn3270eRtCollCtlSPeriod, to the required collection
   interval.

   In order to calculate sliding-window averages, a TN3270E server MUST:

   o   Select a fixed, relatively short, sample period SPeriod; the
       default value for SPeriod in the MIB is 20 seconds.






White & Moore               Standards Track                    [Page 15]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   Select an averaging period multiplier SPMult.  The actual
       collection interval will then be SPMult times SPeriod.  The
       default value for SPMult in the MIB is 30, yielding a default
       collection interval of 10 minutes.  Note that the collection
       interval (SPMult*SPeriod) is always a multiple of the sample
       period.

       Clearlly, SPMult*SPeriod should not be thought of as literally
       the averaging period.  The average calculated will include
       contributions older than that time, and does not weight equally
       all contributions since that time.  In fact, it gives a smoother
       result than a traditional sliding average, as used in finance.
       More subtly, it is best to think of the effective averaging
       period as being 2*SPMult*SPeriod.  To see this, consider how long
       the contribution to the result made by a particular transaction
       lasts.  With a traditional sliding average, it lasts exactly the
       averaging period.  With the aging mechanism described here, it
       has a half-life of SPMult*SPeriod.

   o   Maintain the following counters to keep track of activity within
       the current sample period; these are internal counters, not made
       visible to a management application via the MIB.

       -   T (number of transactions in the period)

       -   TotalRts (sum of the total response times for all
           transactions in the period)

       -   TotalIpRts (sum of the IP network transit times for all
           transactions in the period; note that if IP network transit
           times are being excluded from the response time collection,
           this value will always be 0).

   o   Also maintain sliding counters, initialized to zero, for each of
       the quantities being counted:

       -   AvgCountTrans (sliding count of transactions)
       -   TotalRtsSliding (sliding count of total response times)
       -   TotalIpRtsSliding (sliding count of IP network transit times)

   o   At the end of each sample period, update the sliding interval
       counters, using the following floating-point calculations:

             AvgCountTrans = AvgCountTrans + T
                  - (AvgCountTrans / SPMult)

             TotalRtsSliding = TotalRtsSliding + TotalRts
                  - (TotalRtsSliding / SPMult)



White & Moore               Standards Track                    [Page 16]

RFC 2562                     TN3270E-RT-MIB                   April 1999


             TotalIpRtsSliding = TotalIpRtsSliding + TotalIpRts
                  - (TotalIpRtsSliding / SPMult)

       Then reset T, TotalRts, and TotalIpRts to zero for use during the
       next sample period.

   o   At the end of a collection interval, update the following MIB
       objects as indicated; the floating-point numbers are rounded
       rather than truncated.

        tn3270eRtDataAvgCountTrans = AvgCountTrans
        tn3270eRtDataAvgRt = TotalRtsSliding / AvgCountTrans
        tn3270eRtDataAvgIpRt = TotalIpRtsSliding / AvgCountTrans

       As expected, if IP network transit times are being excluded from
       response time collection, then tn3270eRtDataAvgIpRt will always
       return 0.

   The sliding transaction counter AvgCountTrans is not used for
   updating the MIB object tn3270eRtDataCountTrans:  this object is an
   ordinary SMI Counter32, which maintains a total count of transactions
   since its last discontinuity event.  The sliding counters are used
   only for calculating averages.

   Two mechanisms are present in the MIB to inhibit the generation of an
   excessive number of notifications related to average response times.
   First, there are high and low thresholds for average response times.
   A tn3270eRtExceeded notification is generated the first time a
   statistically significant average response time is found to have
   exceeded the high threshold.  (The test for statistical significance
   is described below.)  After this, no other tn3270eRtExceeded
   notifications are generated until an average response time is found
   to have fallen below the low threshold.

   The other mechanism to limit notifications is the significance test
   for a high average response time.  Intuitively, the significance of
   an average is directly related to the number of samples that go into
   it; so we might be inclined to use a rule such as "for the purpose of
   generating tn3270eRtExceeded notifications, ignore average response
   times based on fewer than 20 transactions in the sample period."

   In the case of response times, however, the number of transactions
   sampled in a fixed sampling period is tied to these transactions'
   response times.  A few transactions with long response times can
   guarantee that there will not be many transactions in a sample,
   because these transactions "use up" the sampling time.  Yet this case





White & Moore               Standards Track                    [Page 17]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   of a few transactions with very poor response times should obviously
   be classified as a problem, not as a statistical anomaly based on too
   small a sample.

   The solution is to make the significance level for a sample a
   function of the average response time.  A value IdleCount is
   specified, which is used to qualify an sample as statistically
   significant.  In order to determine at a collection interval whether
   to generate a tn3270eRtExceeded notification, a TN3270E server uses
   the following algorithm:

      if AvgCountTrans * ((AvgRt/ThreshHigh - 1) ** 2) >=  IdleCount
      then generate the notification,

   where AvgRt is the value that would be returned by the object
   tn3270eRtDataAvgRt at the end of the interval, and the "**" notation
   indicates exponientiation.

   Two examples illustrate how this algorithm works.  Suppose that
   IdleCount has been set to 20 transactions, and the high threshold to
   200 msecs per transaction.  If the average observed response time is
   300 msecs, then a notification will be generated only if
   AvgCountTrans >= 80.  If, however, the observed response time is 500
   msecs, then a notification is generated if AvgCountTrans >= 9.

   There is no corresponding significance test for the tn3270eRtOkay
   notification:  this notification is generated based on an average
   response time that falls below the low threshold, regardless of the
   sample size behind that average.

3.5.2  Response Time Buckets

   The MIB also supports collection of response time data into a set of
   five buckets. This data is suitable either for verification of
   service level agreements, or for monitoring by a management
   application to identify performance problems.  The buckets provide
   counts of transactions whose total response times fall into a set of
   specified ranges.

   Like everything for a collection, the "total" response times
   collected in the buckets are governed by the specification of whether
   IP network transit times are to be included in the totals.  Depending
   on how this option is specified, the response times being counted in
   the buckets will either be total response times (F - D), or only SNA
   network transit times (effectively E - D, because when it is
   excluding the IP-network component of transactions, a server makes
   timestamp F identical to timestamp E).




White & Moore               Standards Track                    [Page 18]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   Four bucket boundaries are specified for a response time collection,
   resulting in five buckets.  The first response time bucket counts
   those transactions whose total response times were less than or equal
   to Boundary 1, the second bucket counts those whose response times
   were greater than Boundary 1 but less than or equal to Boundary 2,
   and so on.  The fifth bucket is unbounded on the top, counting all
   transactions whose response times were greater than Boundary 4.

   The four bucket boundaries have default values of:  1 second, 2
   seconds, 5 seconds, and 10 seconds, respectively.  These values are
   the defaults in the 3174 controller's implementation of the SNA/MS
   RTM function, and are thought to be appropriate for this MIB as well.

   In SNA/MS the counter buckets were (by today's standards) relatively
   small, with a maximum value of 65,535.  The bucket objects in the MIB
   are all Counter32's.

   The following figure represents the buckets pictorially:

            ----------------------------------------------
            |                                            |
            |          Response Time Boundaries          |
            | |       |       |       |       |       |  |
            | |       |       |       |       |       |  |
            | |       |       |       |       |      no  |
            | 0      B-1     B-2     B-3     B-4    bound|
            | |       |       |       |       |       |  |
            | |Bucket1|Bucket2|Bucket3|Bucket4|Bucket5|  |
            | -----------------------------------------  |
            |                                            |
            ----------------------------------------------

4.0  Structure of the MIB

   The TN3270E-RT-MIB has the following components:

   o   tn3270eRtCollCtlTable
   o   tn3270eRtDataTable
   o   Notifications
   o   Advisory Spin Lock Usage

4.1  tn3270eRtCollCtlTable

   The tn3270eRtCollCtlTable is indexed by tn3270eSrvrConfIndex and
   tn3270eClientGroupName imported from the TN3270E-MIB.
   tn3270eSrvrConfIndex identifies within a host a particular TN3270E





White & Moore               Standards Track                    [Page 19]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   server.  tn3270eClientGroupName identifies a collection of IP clients
   for which response time data is to be collected.  The set of clients
   is defined using the tn3270eClientGroupTable from the TN3270E-MIB.

   A tn3270eRtCollCtlEntry contains the following objects:

                --------------------------------------------------
      1st Index | tn3270eSrvrConfIndex             Unsigned32    |
      2nd Index | tn3270eClientGroupName           Utf8String    |
                | tn3270eRtCollCtlType             BITS          |
                | tn3270eRtCollCtlSPeriod          Unsigned32    |
                | tn3270eRtCollCtlSPMult           Unsigned32    |
                | tn3270eRtCollCtlThreshHigh       Unsigned32    |
                | tn3270eRtCollCtlThreshLow        Unsigned32    |
                | tn3270eRtCollCtlIdleCount        Unsigned32    |
                | tn3270eRtCollCtlBucketBndry1     Unsigned32    |
                | tn3270eRtCollCtlBucketBndry2     Unsigned32    |
                | tn3270eRtCollCtlBucketBndry3     Unsigned32    |
                | tn3270eRtCollCtlBucketBndry4     Unsigned32    |
                | tn3270eRtCollCtlRowStatus        RowStatus     |
                --------------------------------------------------

   The tn3270eRtCollCtlType object controls the type(s) of response time
   collection that occur, the granularity of the collection, whether
   dynamic definite responses SHOULD be initiated, and whether
   notifications SHOULD be generated.  This object is of BITS SYNTAX,
   and thus allows selection of multiple options.

   The BITS in the tn3270eRtCollCtlType object have the following
   meanings:

   o   aggregate(0) - If this bit is set to 1, then data SHOULD be
       aggregated for the whole client group.  In this case there will
       be only one row created for the collection in the
       tn3270eRtDataTable.  The first two indexes for this row,
       tn3270eSrvrConfIndex and tn3270eClientGroupName, will have the
       same values as the indexes for the corresponding
       tn3270eRtCollCtlEntry.  The third and fourth indexes of an
       aggregated tn3270eRtDataEntry have the values unknown(0)
       (tn3270eRtDataClientAddrType) and a zero-length octet string
       (tn3270eRtDataClientAddress).  The fifth index,
       tn3270eRtDataClientPort, has the value 0.

       If this bit is set to 0, then a separate entry is created in the
       tn3270eRtDataTable from each member of the client group.  In this
       case tn3270eRtDataClientAddress contains the client's actual IP





White & Moore               Standards Track                    [Page 20]

RFC 2562                     TN3270E-RT-MIB                   April 1999


       Address, tn3270eRtDataClientAddrType indicates the address type,
       and tn3270eRtDataClientPort contains the number of the port the
       client is using for its TN3270/TN3270E session.

   o   excludeIpComponent(1) - If this bit is set to 1, then the server
       SHOULD exclude the IP-network component from all the response
       times for this collection.  If the target SNA application
       specifies DR in any of its replies, this DR will still be passed
       down to the client, and the client's response will still be
       forwarded to the application.  But this response will play no
       role in the server's response time calculations.

       If this bit is set to 0, then the server includes in the
       collection only those transactions for which it can include an
       (approximate) IP-network component in the total response time for
       the transaction.  This component MAY be derived from a "natural"
       DR (if the client supports the RESPONSES function), from a
       dynamic DR introduced by the server (if the client supports the
       RESPONSES function and the ddr(2) bit has been set to 1), or from
       TIMING-MARK processing (if the client supports TIMING-MARKs).

       If this bit is set to 1, then the ddr(2) bit is ignored, since
       there is no reason for the server to request additional responses
       from the client(s) in the group.

   o   ddr(2) - If this bit is set to 1, then the server SHOULD, for
       those clients in the group that support the RESPONSES function,
       add a DR request to the FIC reply in each transaction, and use
       the client's subsequent response for calculating an (approximate)
       IP-network component to include in the transaction's total
       response times.

       If this bit is set to 0, then the server does not add a DR
       request that it was not otherwise going to add to any replies
       from the target SNA application.

       If the excludeIpComponent(1) bit is set to 1, then this bit is
       ignored by the server.

   o   average(3) - If this bit is set to 1, then the server SHOULD
       calculate a sliding-window average for the collection, based on
       the parameters specified for the group.

       If this bit is set to 0, then an average is not calculated.  In
       this case the tn3270eRtExceeded and tn3270eRtOkay notifications
       are not generated, even if the traps(5) bit is set to 1.





White & Moore               Standards Track                    [Page 21]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   buckets(4) - If this bit is set to 1, then the server SHOULD
       create and increment response time buckets for the collection,
       based on the parameters specified for the group.

       If this bit is set to 0, then response time buckets are not
       created.

   o   traps(5) - If this bit is set to 1, then a TN3270E Server is
       enabled to generate notifications pertaining to an
       tn3270eCollCtlEntry.  tn3270CollStart and tn3270CollEnd
       generation is enabled simply by traps(5) being set to 1.
       tn3270eRtExceeded and tn3270eRtOkay generation enablement
       requires that average(3) be set to 1 in addition to the traps(5)
       requirement.

       If traps(5) is set to 0, then none of the notifications defined
       in this MIB are generated for a particular tn3270eRtCollCtlEntry.

   Either the average(3) or the buckets(4) bit MUST be set to 1 in order
   for response time data collection to occur; both bits MAY be set to
   1.  If the average(3) bit is set to 1, then the following objects
   have meaning, and are used to control the calculation of the
   averages, as well as the generation of the two notifications related
   to them:

   o   tn3270eRtCollCtlSPeriod
   o   tn3270eRtCollCtlSPMult
   o   tn3270eRtCollCtlThreshHigh
   o   tn3270eRtCollCtlThreshLow
   o   tn3270eRtCollCtlIdleCount

   The previous objects' values are meaningless if the associated
   average(3) bit is not set to 1.

   If the buckets(4) bit is set to 1, then the following objects have
   meaning, and specify the bucket boundaries:

   o   tn3270eRtCollCtlBucketBndry1
   o   tn3270eRtCollCtlBucketBndry2
   o   tn3270eRtCollCtlBucketBndry3
   o   tn3270eRtCollCtlBucketBndry4

   The previous objects' values are meaningless if the associated
   buckets(4) bit is not set to 1.

   If an entry in the tn3270RtCollCtlTable has the value active(1) for
   its RowStatus, then an implementation SHALL NOT allow Set operations
   for any objects in the entry except:



White & Moore               Standards Track                    [Page 22]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   tn3270eRtCollCtlThreshHigh
   o   tn3270eRtCollCtlThreshLow
   o   tn3270eRtCollCtlRowStatus

4.2  tn3270eRtDataTable

   Either a single entry or multiple entries are created in the
   tn3270eRtDataTable for each tn3270eRtCollCtlEntry, depending on
   whether tn3270eRtCollCtlType in the control entry has aggregate(0)
   selected.  The contents of an entry in the tn3270eRtDataTable depend
   on the contents of the corresponding entry in the
   tn3270eRtCollCtlTable:  as described above, some objects in the data
   entry return meaningful values only when the average(3) option is
   selected in the control entry, while others return meaningful values
   only when the buckets(4) option is selected.  If both options are
   selected, then all the objects return meaningful values.  When an
   object is not specified to return a meaningful value, an
   implementation may return any syntactically valid value in response
   to a Get operation.

   The following objects return meaningful values if and only if the
   average(3) option was selected in the corresponding
   tn3270eRtCollCtlEntry:

   o   tn3270eRtDataAvgRt
   o   tn3270eRtDataAvgIpRt
   o   tn3270eRtDataAvgCountTrans
   o   tn3270eRtDataIntTimeStamp
   o   tn3270eRtDataTotalRts
   o   tn3270eRtDataTotalIpRts
   o   tn3270eRtDataCountTrans
   o   tn3270eRtDataCountDrs
   o   tn3270eRtDataElapsRndTrpSq
   o   tn3270eRtDataElapsIpRtSq

   The first three objects in this list return values derived from the
   sliding-window average calculations described earlier.  The time of
   the most recent sample for these calculations is returned in the
   tn3270eRtDataIntTimeStamp object.  The next four objects are normal
   Counter32 objects, maintaining counts of total response time and
   total transactions.  The last two objects return sum of the squares
   values, to enable variance calculations by a management application.

   The following objects return meaningful values if and only if the
   buckets(4) option was selected in the corresponding
   tn3270eRtCollCtlEntry:





White & Moore               Standards Track                    [Page 23]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   tn3270eRtDataBucket1Rts
   o   tn3270eRtDataBucket2Rts
   o   tn3270eRtDataBucket3Rts
   o   tn3270eRtDataBucket4Rts
   o   tn3270eRtDataBucket5Rts

   A discontinuity object, tn3270eRtDataDiscontinuityTime, can be used
   by a management application to detect when the values of the counter
   objects in this table may have been reset, or otherwise experienced a
   discontinuity.  A possible cause for such a discontinuity is the
   TN3270E server's being stopped or restarted.  This object returns a
   meaningful value regardless of which collection control options were
   selected.

   An object, tn3270eRtDataRtMethod, identifies whether the IP Network
   Time was calculated using either the definite response or TIMING-MARK
   approach.

   When an entry is created in the tn3270eRtCollCtlTable with its
   tn3270eRtCollCtlType aggregate(0) bit set to 1, an entry is
   automatically created in the tn3270eRtDataTable; this entry's
   tn3270eRtDataClientAddress has the value of a zero-length octet
   string, its tn3270eRtDataClientAddrType has the value of unknown(0),
   and its tn3270eRtDataClientPort has the value 0.

   When an entry is created in the tn3270eRtCollCtlTable with its
   tn3270eRtCollCtlType aggregate(0) bit set to 0, a separate entry is
   created in the tn3270eRtDataTable for each member of the client group
   that currently has a session with the TN3270E server.  Entries are
   subsequently created for clients that the TN3270E server determines
   to be members of the client group when these clients establish
   sessions with the server.  Entries are also created when clients with
   existing sessions are added to the group.

   All entries associated with a tn3270eRtCollCtlEntry are deleted from
   the tn3270eRtDataTable when that entry is deleted from the
   tn3270eRtCollCtlTable.  An entry for an individual client in a client
   group is deleted when its TCP connection terminates.  Once it has
   been created, a client's entry in the tn3270eRtDataTable remains
   active as long as the collection's tn3270eRtCollCtlEntry exists, even
   if the client is removed from the client group for the
   tn3270eRtCollCtlEntry.

4.3  Notifications

   This MIB defines four notifications related to a tn3270eRtDataEntry.
   If the associated tn3270eRtCollCtlType object's traps(5) bit is set
   to 1, then the tn3270RtCollStart and tn3270RtCollEnd notifications



White & Moore               Standards Track                    [Page 24]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   are generated when, respsectively, the tn3270eRtDataEntry is created
   and deleted.  If, in addition, this tn3270eRtCollCtlType object's
   average(3) bit is set to 1, then the the tn3270eRtExceeded and
   tn3270eRtOkay notifications are generated when the conditions they
   report occur.

   The following notifications are defined by this MIB:

   o   tn3270eRtExceeded - The purpose of this notification is to signal
       that a performance problem has been detected.  If average(3)
       response time data is being collected, then this notification is
       generated whenever (1) an average response time is first found,
       on a collection interval boundary, to have exceeded the high
       threshold tn3270eRtCollCtlThreshHigh specified for the client
       group, AND (2) the sample on which the average is based is
       determined to have been a significant one, via the significance
       algorithm described earlier.  This notification is not generated
       again for a tn3270eRtDataEntry until an average response time
       falling below the low threshold tn3270eRtCollCtlThreshLow
       specified for the client group has occurred for the entry.

   o   tn3270eRtOkay - The purpose of this notification is to signal
       that a previously reported performance problem has been resolved.
       If average(3) response time data is being collected, then this
       notification is generated whenever (1) a tn3270eRtExceeded
       notification has already been generated, AND (2) an average
       response time is first found, on a collection interval boundary,
       to have fallen below the low threshold tn3270eRtCollCtlThreshLow
       specified for the client group.  This notification is not
       generated again for a tn3270eRtDataEntry until an average
       response time exceeding the high threshold
       tn3270eRtCollCtlThreshHigh specified for the client group has
       occurred for the entry.

   Taken together, the two preceding notifications serve to minimize the
   generation of an excessive number of traps in the case of an average
   response time that oscillates about its high threshold.

   o   tn3270eRtCollStart - This notification is generated whenever data
       collection begins for a client group, or when a new
       tn3270eRtDataEntry becomes active.  The primary purpose of this
       notification is signal to a management application that a new
       client TCP session has been established, and to provide the IP-
       to-resource mapping for the session.  This notification is not
       critical when average(3) data collection is not being performed
       for the client group.





White & Moore               Standards Track                    [Page 25]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   o   tn3270eRtCollEnd - This notification is generated whenever a data
       collection ends.  For an aggregate collection, this occurs when
       the corresponding tn3270eRtCollCtlEntry is deleted.  For an
       individual collection, this occurs either when the
       tn3270eRtCollCtlEntry is deleted, or when the client's TCP
       connection terminates.  The purpose of this notification is to
       enable a management application to complete a monitoring function
       that it was performing, by returning final values for the
       collection's data objects.

4.4  Advisory Spin Lock Usage

   Within the TN3270E-RT-MIB, tn3270eRtSpinLock is defined as an
   advisory lock that allows cooperating TN3270E-RT-MIB applications to
   coordinate their use of the tn3270eRtCollCtlTable.  When creating a
   new entry or altering an existing entry in the tn3270eRtCollCtlTable,
   an application SHOULD make use of tn3270eRtSpinLock to serialize
   application changes or additions.  Since this is an advisory lock,
   its use by management applications SHALL NOT be enforced by agents.
   Agents MUST, however, implement the tn3270eRtSpinLock object.

5.0  Definitions

  TN3270E-RT-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
      Counter32, Unsigned32, Gauge32
                  FROM SNMPv2-SMI
      RowStatus, DateAndTime, TimeStamp, TestAndIncr
                  FROM SNMPv2-TC
      MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
                  FROM SNMPv2-CONF
      tn3270eSrvrConfIndex, tn3270eClientGroupName,
      tn3270eResMapElementType
                  FROM TN3270E-MIB
      IANATn3270eAddrType, IANATn3270eAddress
                  FROM IANATn3270eTC-MIB
      snanauMIB
                  FROM SNA-NAU-MIB;

    tn3270eRtMIB   MODULE-IDENTITY
        LAST-UPDATED "9807270000Z" -- July 27, 1998
        ORGANIZATION "TN3270E Working Group"
        CONTACT-INFO
          "Kenneth White (kennethw@vnet.ibm.com)
           IBM Corp. - Dept. BRQA/Bldg. 501/G114
           P.O. Box 12195



White & Moore               Standards Track                    [Page 26]

RFC 2562                     TN3270E-RT-MIB                   April 1999


           3039 Cornwallis
           RTP, NC 27709-2195

           Robert Moore (remoore@us.ibm.com)
           IBM Corp. - Dept. BRQA/Bldg. 501/G114
           P.O. Box 12195
           3039 Cornwallis
           RTP, NC 27709-2195
           (919) 254-4436"
       DESCRIPTION
          "This module defines a portion of the management
          information base (MIB) that enables monitoring of
          TN3270 and TN3270E clients' response times by a
          TN3270E server."
       REVISION  "9807270000Z" -- July 27, 1998
       DESCRIPTION
           "RFC nnnn (Proposed Standard)" -- RFC Editor to fill in
  ::= { snanauMIB 9 }
  -- snanauMIB ::= { mib-2 34 }

  -- Top level structure of the MIB

  tn3270eRtNotifications   OBJECT IDENTIFIER  ::= { tn3270eRtMIB 0 }
  tn3270eRtObjects         OBJECT IDENTIFIER  ::= { tn3270eRtMIB 1 }
  tn3270eRtConformance     OBJECT IDENTIFIER  ::= { tn3270eRtMIB 3 }

  -- MIB Objects

  -- Response Time Control Table

  tn3270eRtCollCtlTable  OBJECT-TYPE
      SYNTAX       SEQUENCE OF Tn3270eRtCollCtlEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
        "The response time monitoring collection control table,
        which allows a management application to control the
        types of response time data being collected, and the
        clients for which it is being collected.

        This table is indexed by tn3270eSrvrConfIndex and
        tn3270eClientGroupName imported from the
        TN3270E-MIB.  tn3270eSrvrConfIndex indicates within
        a host which TN3270E server an entry applies to.
        tn3270eClientGroupName it identifies the set of IP
        clients for which response time data is being collected.
        The particular IP clients making up the set are identified
        in the tn3270eClientGroupTable in the TN3270E-MIB."



White & Moore               Standards Track                    [Page 27]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      ::= { tn3270eRtObjects 1}

  tn3270eRtCollCtlEntry    OBJECT-TYPE
      SYNTAX        Tn3270eRtCollCtlEntry
      MAX-ACCESS    not-accessible
      STATUS        current
      DESCRIPTION
        "An entry in the TN3270E response time monitoring collection
        control table.  To handle the case of multiple TN3270E
        servers on the same host, the first index of this table is
        the tn3270eSrvrConfIndex from the TN3270E-MIB."
      INDEX {
        tn3270eSrvrConfIndex,    -- Server's index
        tn3270eClientGroupName } -- What to collect on
      ::= { tn3270eRtCollCtlTable 1 }

  Tn3270eRtCollCtlEntry ::= SEQUENCE {
      tn3270eRtCollCtlType              BITS,
      tn3270eRtCollCtlSPeriod           Unsigned32,
      tn3270eRtCollCtlSPMult            Unsigned32,
      tn3270eRtCollCtlThreshHigh        Unsigned32,
      tn3270eRtCollCtlThreshLow         Unsigned32,
      tn3270eRtCollCtlIdleCount         Unsigned32,
      tn3270eRtCollCtlBucketBndry1      Unsigned32,
      tn3270eRtCollCtlBucketBndry2      Unsigned32,
      tn3270eRtCollCtlBucketBndry3      Unsigned32,
      tn3270eRtCollCtlBucketBndry4      Unsigned32,
      tn3270eRtCollCtlRowStatus         RowStatus   }

  -- The OID { tn3270eRtCollCtlEntry 1 } is not used

  tn3270eRtCollCtlType  OBJECT-TYPE
      SYNTAX    BITS {
                       aggregate(0),
                       excludeIpComponent(1),
                       ddr(2),
                       average(3),
                       buckets(4),
                       traps(5)
                     }
      MAX-ACCESS   read-create
      STATUS       current
      DESCRIPTION
        "This object controls what types of response time data to
         collect, whether to summarize the data across the members
         of a client group or keep it individually, whether to
         introduce dynamic definite responses, and whether to
         generate traps.



White & Moore               Standards Track                    [Page 28]

RFC 2562                     TN3270E-RT-MIB                   April 1999


         aggregate(0)          - Aggregate response time data for the
                                 client group as a whole.  If this bit
                                 is set to 0, then maintain response
                                 time data separately for each member
                                 of the client group.
         excludeIpComponent(1) - Do not include the IP-network
                                 component in any response times.
         ddr(2)                - Enable dynamic definite response.
         average(3)            - Produce an average response time
                                 based on a specified collection
                                 interval.
         buckets(4)            - Maintain tn3270eRtDataBucket values in
                                 a corresponding tn3270eRtDataEntry,
                                 based on the bucket boundaries specified
                                 in the tn3270eRtCollCtlBucketBndry
                                 objects          .
         traps(5)              - generate the notifications specified
                                 in this MIB module.  The
                                 tn3270eRtExceeded and tn3270eRtOkay
                                 notifications are generated only if
                                 average(3) is also specified."
      ::= { tn3270eRtCollCtlEntry 2 }

  tn3270eRtCollCtlSPeriod OBJECT-TYPE
      SYNTAX  Unsigned32 (15..86400) -- 15 second min, 24 hour max
      UNITS   "seconds"
      MAX-ACCESS   read-create
      STATUS       current
      DESCRIPTION
        "The number of seconds that defines the sample period.
         The actual interval is defined as tn3270eRtCollCtlSPeriod
         times tn3270eRtCollCtlSPMult.

         The value of this object is used only if the corresponding
         tn3270eRtCollCtlType has the average(3) setting."
      DEFVAL   {20}    -- 20 seconds
      ::= { tn3270eRtCollCtlEntry 3 }

  tn3270eRtCollCtlSPMult OBJECT-TYPE
      SYNTAX  Unsigned32 (1..5760) -- 5760 x SPeriod of 15 is 24 hours
      UNITS   "period"
      MAX-ACCESS   read-create
      STATUS       current
      DESCRIPTION
        "The sample period multiplier; this value is multiplied by
        the sample period, tn3270eRtCollCtlSPeriod, to determine
        the collection interval.




White & Moore               Standards Track                    [Page 29]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        Sliding-window average calculation can, if necessary, be
        disabled, by setting the sample period multiplier,
        tn3270eRtCollCtlSPMult, to 1, and setting the sample
        period, tn3270eRtCollCtlSPeriod, to the required
        collection interval.

        The value of this object is used only if the corresponding
        tn3270eRtCollCtlType has the average(3) setting."
      DEFVAL   { 30 }    -- yields an interval of 10 minutes when
                         -- used with the default SPeriod value
      ::= { tn3270eRtCollCtlEntry 4 }

  tn3270eRtCollCtlThreshHigh  OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The threshold for generating a tn3270eRtExceeded
        notification, signalling that a monitored total response
        time has exceeded the specified limit.  A value of zero
        for this object suppresses generation of this notification.
        The value of this object is used only if the corresponding
        tn3270eRtCollCtlType has average(3) and traps(5) selected.

        A tn3270eRtExceeded notification is not generated again for a
        tn3270eRtDataEntry until an average response time falling below
        the low threshold tn3270eRtCollCtlThreshLow specified for the
        client group has occurred for the entry."

      DEFVAL   { 0 }   -- suppress notifications
      ::= { tn3270eRtCollCtlEntry 5 }

  tn3270eRtCollCtlThreshLow   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The threshold for generating a tn3270eRtOkay notification,
        signalling that a monitored total response time has fallen
        below the specified limit.  A value of zero for this object
        suppresses generation of this notification.  The value of
        this object is used only if the corresponding
        tn3270eRtCollCtlType has average(3) and traps(5) selected.

        A tn3270eRtOkay notification is not generated again for a
        tn3270eRtDataEntry until an average response time



White & Moore               Standards Track                    [Page 30]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        exceeding the high threshold tn3270eRtCollCtlThreshHigh
        specified for the client group has occurred for the entry."
      DEFVAL   { 0 }   -- suppress notifications
      ::= { tn3270eRtCollCtlEntry 6 }

  tn3270eRtCollCtlIdleCount   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "transactions"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The value of this object is used to determine whether a
        sample that yields an average response time exceeding the
        value of tn3270eRtCollCtlThreshHigh was a statistically
        valid one.  If the following statement is true, then the
        sample was statistically valid, and so a tn3270eRtExceeded
        notification should be generated:

          AvgCountTrans * ((AvgRt/ThreshHigh - 1) ** 2) >=  IdleCount

        This comparison is done only if the corresponding
        tn3270eRtCollCtlType has average(3) and traps(5) selected."
      DEFVAL { 1 }
      ::= { tn3270eRtCollCtlEntry 7 }

  tn3270eRtCollCtlBucketBndry1   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "tenths of seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The value of this object defines the range of transaction
         response times counted in the Tn3270eRtDataBucket1Rts
         object: those less than or equal to this value."
      DEFVAL { 10 }
      ::= { tn3270eRtCollCtlEntry 8 }

  tn3270eRtCollCtlBucketBndry2   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "tenths of seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The value of this object, together with that of the
        tn3270eRtCollCtlBucketBndry1 object, defines the range
        of transaction response times counted in the
        Tn3270eRtDataBucket2Rts object: those greater than the
        value of the tn3270eRtCollCtlBucketBndry1 object, and



White & Moore               Standards Track                    [Page 31]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        less than or equal to the value of this object."
      DEFVAL { 20 }
      ::= { tn3270eRtCollCtlEntry 9 }

  tn3270eRtCollCtlBucketBndry3   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "tenths of seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The value of this object, together with that of the
        tn3270eRtCollCtlBucketBndry2 object, defines the range of
        transaction response times counted in the
        Tn3270eRtDataBucket3Rts object:  those greater than the
        value of the tn3270eRtCollCtlBucketBndry2 object, and less
        than or equal to the value of this object."
      DEFVAL { 50 }
      ::= { tn3270eRtCollCtlEntry 10 }

  tn3270eRtCollCtlBucketBndry4   OBJECT-TYPE
      SYNTAX            Unsigned32
      UNITS             "tenths of seconds"
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "The value of this object, together with that of the
        tn3270eRtCollCtlBucketBndry3 object, defines the range
        of transaction response times counted in the
        Tn3270eRtDataBucket4Rts object: those greater than the
        value of the tn3270eRtCollCtlBucketBndry3 object, and
        less than or equal to the value of this object.

        The value of this object also defines the range of
        transaction response times counted in the
        Tn3270eRtDataBucket5Rts object: those greater than the
        value of this object."
      DEFVAL { 100 }
      ::= { tn3270eRtCollCtlEntry 11 }

  tn3270eRtCollCtlRowStatus  OBJECT-TYPE
      SYNTAX            RowStatus
      MAX-ACCESS        read-create
      STATUS            current
      DESCRIPTION
        "This object allows entries to be created and deleted
         in the tn3270eRtCollCtlTable.  An entry in this table
         is deleted by setting this object to destroy(6).
         Deleting an entry in this table has the side-effect



White & Moore               Standards Track                    [Page 32]

RFC 2562                     TN3270E-RT-MIB                   April 1999


         of removing all entries from the tn3270eRtDataTable
         that are associated with the entry being deleted."
      ::= { tn3270eRtCollCtlEntry 12 }


  -- TN3270E Response Time Data Table

  tn3270eRtDataTable  OBJECT-TYPE
      SYNTAX       SEQUENCE OF Tn3270eRtDataEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
        "The response time data table.  Entries in this table are
         created based on entries in the tn3270eRtCollCtlTable."
      ::= { tn3270eRtObjects 2 }

  tn3270eRtDataEntry  OBJECT-TYPE
      SYNTAX        Tn3270eRtDataEntry
      MAX-ACCESS    not-accessible
      STATUS        current
      DESCRIPTION
        "Entries in this table are created based upon the
        tn3270eRtCollCtlTable.  When the corresponding
        tn3270eRtCollCtlType has aggregate(0) specified, a single
        entry is created in this table, with a tn3270eRtDataClientAddrType
        of unknown(0), a zero-length octet string value for
        tn3270eRtDataClientAddress, and a tn3270eRtDataClientPort value of
        0.  When aggregate(0) is not specified, a separate entry is
        created for each client in the group.

        Note that the following objects defined within an entry in this
        table can  wrap:
            tn3270eRtDataTotalRts
            tn3270eRtDataTotalIpRts
            tn3270eRtDataCountTrans
            tn3270eRtDataCountDrs
            tn3270eRtDataElapsRnTrpSq
            tn3270eRtDataElapsIpRtSq
            tn3270eRtDataBucket1Rts
            tn3270eRtDataBucket2Rts
            tn3270eRtDataBucket3Rts
            tn3270eRtDataBucket4Rts
            tn3270eRtDataBucket5Rts"
      INDEX {
         tn3270eSrvrConfIndex,      -- Server's local index
         tn3270eClientGroupName,    -- Collection target
         tn3270eRtDataClientAddrType,
         tn3270eRtDataClientAddress,



White & Moore               Standards Track                    [Page 33]

RFC 2562                     TN3270E-RT-MIB                   April 1999


         tn3270eRtDataClientPort }
      ::= { tn3270eRtDataTable 1 }

  Tn3270eRtDataEntry ::= SEQUENCE {
         tn3270eRtDataClientAddrType        IANATn3270eAddrType,
         tn3270eRtDataClientAddress         IANATn3270eAddress,
         tn3270eRtDataClientPort            Unsigned32,
         tn3270eRtDataAvgRt                 Gauge32,
         tn3270eRtDataAvgIpRt               Gauge32,
         tn3270eRtDataAvgCountTrans         Gauge32,
         tn3270eRtDataIntTimeStamp          DateAndTime,
         tn3270eRtDataTotalRts              Counter32,
         tn3270eRtDataTotalIpRts            Counter32,
         tn3270eRtDataCountTrans            Counter32,
         tn3270eRtDataCountDrs              Counter32,
         tn3270eRtDataElapsRndTrpSq         Unsigned32,
         tn3270eRtDataElapsIpRtSq           Unsigned32,
         tn3270eRtDataBucket1Rts            Counter32,
         tn3270eRtDataBucket2Rts            Counter32,
         tn3270eRtDataBucket3Rts            Counter32,
         tn3270eRtDataBucket4Rts            Counter32,
         tn3270eRtDataBucket5Rts            Counter32,
         tn3270eRtDataRtMethod              INTEGER,
         tn3270eRtDataDiscontinuityTime     TimeStamp
     }

  tn3270eRtDataClientAddrType   OBJECT-TYPE
      SYNTAX    IANATn3270eAddrType
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
        "Indicates the type of address represented by the value
        of tn3270eRtDataClientAddress.  The value unknown(0) is
        used if aggregate data is being collected for the client
        group."
      ::= { tn3270eRtDataEntry 1 }

  tn3270eRtDataClientAddress   OBJECT-TYPE
      SYNTAX    IANATn3270eAddress
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
        "Contains the IP address of the TN3270 client being
        monitored.  A zero-length octet string is used if
        aggregate data is being collected for the client group."
      ::= { tn3270eRtDataEntry 2 }

  tn3270eRtDataClientPort   OBJECT-TYPE



White & Moore               Standards Track                    [Page 34]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      SYNTAX       Unsigned32(0..65535)
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
        "Contains the client port number of the TN3270 client being
        monitored.  The value 0 is used if aggregate data is being
        collected for the client group, or if the
        tn3270eRtDataClientAddrType identifies an address type that
        does not support ports."
      ::= { tn3270eRtDataEntry 3 }

  tn3270eRtDataAvgRt OBJECT-TYPE
      SYNTAX       Gauge32
      UNITS        "tenths of seconds"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The average total response time measured over the last
        collection interval."
      DEFVAL { 0 }
      ::= { tn3270eRtDataEntry 4 }

  tn3270eRtDataAvgIpRt OBJECT-TYPE
      SYNTAX       Gauge32
      UNITS        "tenths of seconds"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The average IP response time measured over the last
        collection interval."
      DEFVAL { 0 }
      ::= { tn3270eRtDataEntry 5 }

  tn3270eRtDataAvgCountTrans   OBJECT-TYPE
      SYNTAX       Gauge32
      UNITS        "transactions"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The sliding transaction count used for calculating the
        values of the tn3270eRtDataAvgRt and tn3270eRtDataAvgIpRt
        objects.  The actual transaction count is available in
        the tn3270eRtDataCountTrans object.

        The initial value of this object, before any averages have
        been calculated, is 0."
      ::= { tn3270eRtDataEntry 6 }




White & Moore               Standards Track                    [Page 35]

RFC 2562                     TN3270E-RT-MIB                   April 1999


  tn3270eRtDataIntTimeStamp   OBJECT-TYPE
      SYNTAX       DateAndTime
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The date and time of the last interval that
        tn3270eRtDataAvgRt, tn3270eRtDataAvgIpRt, and
        tn3270eRtDataAvgCountTrans were calculated.

        Prior to the calculation of the first interval
        averages, this object returns the value
        0x0000000000000000000000.  When this value is
        returned, the remaining objects in the entry have
        no significance."
      ::= { tn3270eRtDataEntry 7 }

  tn3270eRtDataTotalRts   OBJECT-TYPE
      SYNTAX       Counter32
      UNITS        "tenths of seconds"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the total response times collected.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 8 }

  tn3270eRtDataTotalIpRts   OBJECT-TYPE
      SYNTAX       Counter32
      UNITS        "tenths of seconds"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the total IP-network response times
        collected.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 9 }

  tn3270eRtDataCountTrans   OBJECT-TYPE
      SYNTAX       Counter32
      UNITS        "transactions"
      MAX-ACCESS   read-only
      STATUS       current



White & Moore               Standards Track                    [Page 36]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      DESCRIPTION
        "The count of the total number of transactions detected.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 10 }

  tn3270eRtDataCountDrs   OBJECT-TYPE
      SYNTAX       Counter32
      UNITS        "definite responses"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the total number of definite responses
        detected.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 11 }

  tn3270eRtDataElapsRndTrpSq   OBJECT-TYPE
      SYNTAX       Unsigned32
      UNITS        "tenths of seconds squared"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The sum of the elapsed round trip time squared.  The sum
        of the squares is kept in order to enable calculation of
        a variance."
      DEFVAL { 0 }
      ::= { tn3270eRtDataEntry 12 }

  tn3270eRtDataElapsIpRtSq   OBJECT-TYPE
      SYNTAX       Unsigned32
      UNITS        "tenths of seconds squared"
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The sum of the elapsed IP round trip time squared.
        The sum of the squares is kept in order to enable
        calculation of a variance."
      DEFVAL { 0 }
      ::= { tn3270eRtDataEntry 13 }

  tn3270eRtDataBucket1Rts   OBJECT-TYPE
      SYNTAX       Counter32



White & Moore               Standards Track                    [Page 37]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the response times falling into bucket 1.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 14 }

  tn3270eRtDataBucket2Rts   OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the response times falling into bucket 2.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 15 }

  tn3270eRtDataBucket3Rts   OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the response times falling into bucket 3.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 16 }

  tn3270eRtDataBucket4Rts  OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the response times falling into bucket 4.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 17 }

  tn3270eRtDataBucket5Rts  OBJECT-TYPE
      SYNTAX       Counter32



White & Moore               Standards Track                    [Page 38]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The count of the response times falling into bucket 5.

        A management application can detect discontinuities in this
        counter by monitoring the tn3270eRtDataDiscontinuityTime
        object."
      ::= { tn3270eRtDataEntry 18 }

  tn3270eRtDataRtMethod OBJECT-TYPE
      SYNTAX       INTEGER {
                             none(0),
                             responses(1),
                             timingMark(2)
                           }
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
        "The value of this object indicates the method that was
        used in calculating the IP network time.

        The value 'none(0) indicates that response times were not
        calculated for the IP network."
      ::= { tn3270eRtDataEntry 19 }

  tn3270eRtDataDiscontinuityTime OBJECT-TYPE
      SYNTAX      TimeStamp
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
          "The value of sysUpTime on the most recent occasion at
          which one or more of this entry's counter objects
          suffered a discontinuity.  This may happen if a TN3270E
          server is stopped and then restarted, and local methods
          are used to set up collection policy
          (tn3270eRtCollCtlTable entries)."
      ::= { tn3270eRtDataEntry 20 }


  tn3270eRtSpinLock OBJECT-TYPE
      SYNTAX      TestAndIncr
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
        "An advisory lock used to allow cooperating TN3270E-RT-MIB
        applications to coordinate their use of the
        tn3270eRtCollCtlTable.



White & Moore               Standards Track                    [Page 39]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        When creating a new entry or altering an existing entry
        in the tn3270eRtCollCtlTable, an application should make
        use of tn3270eRtSpinLock to serialize application changes
        or additions.

        Since this is an advisory lock, the use of this lock is
        not enforced."
      ::= { tn3270eRtObjects 3 }

  -- Notifications

  tn3270eRtExceeded   NOTIFICATION-TYPE
      OBJECTS {
         tn3270eRtDataIntTimeStamp,
         tn3270eRtDataAvgRt,
         tn3270eRtDataAvgIpRt,
         tn3270eRtDataAvgCountTrans,
         tn3270eRtDataRtMethod
      }
      STATUS  current
      DESCRIPTION
        "This notification is generated when the average response
        time, tn3270eRtDataAvgRt, exceeds
        tn3270eRtCollCtlThresholdHigh at the end of a collection
        interval specified by tn3270eCollCtlSPeriod
        times tn3270eCollCtlSPMult.  Note that the corresponding
        tn3270eCollCtlType must have traps(5) and average(3) set
        for this notification to be generated.  In addition,
        tn3270eRtDataAvgCountTrans, tn3270eRtCollCtlThreshHigh, and
        tn3270eRtDataAvgRt are algorithmically compared to
        tn3270eRtCollCtlIdleCount for determination if this
        notification will be suppressed."
      ::= { tn3270eRtNotifications 1 }

  tn3270eRtOkay   NOTIFICATION-TYPE
      OBJECTS {
         tn3270eRtDataIntTimeStamp,
         tn3270eRtDataAvgRt,
         tn3270eRtDataAvgIpRt,
         tn3270eRtDataAvgCountTrans,
         tn3270eRtDataRtMethod
      }
      STATUS  current
      DESCRIPTION
        "This notification is generated when the average response
        time, tn3270eRtDataAvgRt, falls below
        tn3270eRtCollCtlThresholdLow at the end of a collection
        interval specified by tn3270eCollCtlSPeriod times



White & Moore               Standards Track                    [Page 40]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        tn3270eCollCtlSPMult, after a tn3270eRtExceeded
        notification was generated.  Note that the corresponding
        tn3270eCollCtlType must have traps(5) and average(3)
        set for this notification to be generated."
      ::= { tn3270eRtNotifications 2 }

  tn3270eRtCollStart NOTIFICATION-TYPE
      OBJECTS {
         tn3270eRtDataRtMethod,       -- type of collection
         tn3270eResMapElementType     -- type of resource
      }
      STATUS  current
      DESCRIPTION
        "This notification is generated when response time data
        collection is enabled for a member of a client group.
        In order for this notification to occur the corresponding
        tn3270eRtCollCtlType must have traps(5) selected.

        tn3270eResMapElementType contains a valid value only if
        tn3270eRtDataClientAddress contains a valid address
        (rather than a zero-length octet string)."
      ::= { tn3270eRtNotifications 3 }

  tn3270eRtCollEnd   NOTIFICATION-TYPE
      OBJECTS {
         tn3270eRtDataDiscontinuityTime,
         tn3270eRtDataAvgRt,
         tn3270eRtDataAvgIpRt,
         tn3270eRtDataAvgCountTrans,
         tn3270eRtDataIntTimeStamp,
         tn3270eRtDataTotalRts,
         tn3270eRtDataTotalIpRts,
         tn3270eRtDataCountTrans,
         tn3270eRtDataCountDrs,
         tn3270eRtDataElapsRndTrpSq,
         tn3270eRtDataElapsIpRtSq,
         tn3270eRtDataBucket1Rts,
         tn3270eRtDataBucket2Rts,
         tn3270eRtDataBucket3Rts,
         tn3270eRtDataBucket4Rts,
         tn3270eRtDataBucket5Rts,
         tn3270eRtDataRtMethod
      }
      STATUS  current
      DESCRIPTION
        "This notification is generated when an tn3270eRtDataEntry
        is deleted after being active (actual data collected), in
        order to enable a management application monitoring an



White & Moore               Standards Track                    [Page 41]

RFC 2562                     TN3270E-RT-MIB                   April 1999


        tn3270eRtDataEntry to get the entry's final values.  Note
        that the corresponding tn3270eCollCtlType must have traps(5)
        set for this notification to be generated."
      ::= { tn3270eRtNotifications 4 }

  -- Conformance Statement

  tn3270eRtGroups       OBJECT IDENTIFIER ::= { tn3270eRtConformance 1 }
  tn3270eRtCompliances  OBJECT IDENTIFIER ::= { tn3270eRtConformance 2 }

  -- Compliance statements

  tn3270eRtCompliance     MODULE-COMPLIANCE
      STATUS current
      DESCRIPTION
        "The compliance statement for agents that support the
        TN327E-RT-MIB."
      MODULE   -- this module
         MANDATORY-GROUPS { tn3270eRtGroup, tn3270eRtNotGroup }

      OBJECT tn3270eRtCollCtlType
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation to
            this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlSPeriod
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to allow the user to change
            the default value of this object, and is allowed to
            use a different default."

      OBJECT tn3270eRtCollCtlSPMult
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlThreshHigh
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlThreshLow
         MIN-ACCESS  read-only
         DESCRIPTION



White & Moore               Standards Track                    [Page 42]

RFC 2562                     TN3270E-RT-MIB                   April 1999


            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlIdleCount
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlBucketBndry1
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlBucketBndry2
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlBucketBndry3
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlBucketBndry4
         MIN-ACCESS  read-only
         DESCRIPTION
            "The agent is not required to support a SET operation
            to this object in the absence of adequate security."

      OBJECT tn3270eRtCollCtlRowStatus
         SYNTAX   INTEGER {
                           active(1) -- subset of RowStatus
                          }
         MIN-ACCESS read-only
         DESCRIPTION
            "Write access is not required, and only one of the six
            enumerated values for the RowStatus textual convention
            need be supported, specifically: active(1)."

      ::= {tn3270eRtCompliances 1 }

  -- Group definitions

  tn3270eRtGroup         OBJECT-GROUP



White & Moore               Standards Track                    [Page 43]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      OBJECTS {
          tn3270eRtCollCtlType,
          tn3270eRtCollCtlSPeriod,
          tn3270eRtCollCtlSPMult,
          tn3270eRtCollCtlThreshHigh,
          tn3270eRtCollCtlThreshLow,
          tn3270eRtCollCtlIdleCount,
          tn3270eRtCollCtlBucketBndry1,
          tn3270eRtCollCtlBucketBndry2,
          tn3270eRtCollCtlBucketBndry3,
          tn3270eRtCollCtlBucketBndry4,
          tn3270eRtCollCtlRowStatus,
          tn3270eRtDataDiscontinuityTime,
          tn3270eRtDataAvgRt,
          tn3270eRtDataAvgIpRt,
          tn3270eRtDataAvgCountTrans,
          tn3270eRtDataIntTimeStamp,
          tn3270eRtDataTotalRts,
          tn3270eRtDataTotalIpRts,
          tn3270eRtDataCountTrans,
          tn3270eRtDataCountDrs,
          tn3270eRtDataElapsRndTrpSq,
          tn3270eRtDataElapsIpRtSq,
          tn3270eRtDataBucket1Rts,
          tn3270eRtDataBucket2Rts,
          tn3270eRtDataBucket3Rts,
          tn3270eRtDataBucket4Rts,
          tn3270eRtDataBucket5Rts,
          tn3270eRtDataRtMethod,
          tn3270eRtSpinLock }
      STATUS  current
      DESCRIPTION
        "This group is mandatory for all implementations that
        support the TN3270E-RT-MIB. "
      ::= { tn3270eRtGroups 1 }

  tn3270eRtNotGroup         NOTIFICATION-GROUP
      NOTIFICATIONS {
          tn3270eRtExceeded,
          tn3270eRtOkay,
          tn3270eRtCollStart,
          tn3270eRtCollEnd
       }








White & Moore               Standards Track                    [Page 44]

RFC 2562                     TN3270E-RT-MIB                   April 1999


      STATUS  current
      DESCRIPTION
        "The notifications that must be supported when the
        TN3270E-RT-MIB is implemented. "
      ::= { tn3270eRtGroups 2 }

  END


6.0  Security Considerations

   Certain management information defined in this MIB may be considered
   sensitive in some network environments.  Therefore, authentication of
   received SNMP requests and controlled access to management
   information SHOULD be employed in such environments.  An
   authentication protocol is defined in [12].  A protocol for access
   control is defined in [15].

   Several objects in this MIB allow write access or provide for row
   creation.  Allowing this support in a non-secure environment can have
   a negative effect on network operations.  It is RECOMMENDED that
   implementers seriously consider whether set operations or row
   creation SHOULD be allowed without providing, at a minimum,
   authentication of request origin.  It is RECOMMENDED that without
   such support that the following objects be implemented as read-only:

   o   tn3270eRtCollCtlType
   o   tn3270eRtCollCtlSPeriod
   o   tn3270eRtCollCtlSPMult
   o   tn3270eRtCollCtlThreshHigh
   o   tn3270eRtCollCtlThreshLow
   o   tn3270eRtCollCtlIdleCount
   o   tn3270eRtCollCtlBucketBndry1
   o   tn3270eRtCollCtlBucketBndry2
   o   tn3270eRtCollCtlBucketBndry3
   o   tn3270eRtCollCtlBucketBndry4
   o   tn3270eRtCollCtlRowStatus

   The administrative method to use to create and manage the
   tn3270eRtCollCtlTable when SET support is not allowed is outside of
   the scope of this memo.

7.0  Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights



White & Moore               Standards Track                    [Page 45]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementers or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.

8.0  Acknowledgments

   This document is a product of the TN3270E Working Group.  Special
   thanks are due to Derek Bolton and Michael Boe of Cisco Systems for
   their numerous comments and suggestions for improving the structure
   of this MIB.  Thanks also to Randy Presuhn of BMC Software for his
   valuable review comments on several versions of the document.

9.0  References

   [1]  Harrington D., Presuhn, R. and B. Wijnen, "An Architecture for
        Describing SNMP Management Frameworks", RFC 2271, January 1998.

   [2]  Rose, M. and K. McCloghrie, "Structure and Identification of
        Management Information for TCP/IP-based Internets", STD 16, RFC
        1155, May 1990.

   [3]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
        RFC 1212, March 1991.

   [4]  Rose, M., "A Convention for Defining Traps for use with the
        SNMP", RFC 1215, March 1991.

   [5]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure
        of Management Information for Version 2 of the Simple Network
        Management Protocol (SNMPv2)", RFC 1902, January 1996.

   [6]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual
        Conventions for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1903, January 1996.





White & Moore               Standards Track                    [Page 46]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   [7]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Conformance Statements for Version 2 of the Simple Network
        Management Protocol (SNMPv2)", RFC 1904, January 1996.

   [8]  Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
        Network Management Protocol", STD 15, RFC 1157, May 1990.

   [9]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Introduction to Community-based SNMPv2", RFC 1901, January
        1996.

   [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
        Mappings for Version 2 of the Simple Network Management Protocol
        (SNMPv2)", RFC 1906, January 1996.

   [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
        Processing and Dispatching for the Simple Network Management
        Protocol (SNMP)", RFC 2272, January 1998.

   [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
        for version 3 of the Simple Network Management Protocol
        (SNMPv3)", RFC 2274, January 1998.

   [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
        Operations for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1905, January 1996.

   [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
        2273, January 1998.

   [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
        Control Model (VACM) for the Simple Network Management Protocol
        (SNMP)", RFC 2275, January 1998.

   [16] Postel, J. and J. Reynolds, "Telnet Protocol Specification", STD
        8, RFC 854, May 1983.

   [17] Postel, J. and J. Reynolds, "Telnet Timing Mark Option", STD 31,
        RFC 860, May 1983.

   [18] Rekhter, J., "Telnet 3270 Regime Option", RFC 1041, January
        1988.

   [19] Kelly, B., "TN3270 Enhancements", RFC 2355, June 1998.

   [20] White, K. and R. Moore, "Base Definitions of Managed Objects for
        TN3270E Using SMIv2", RFC 2561, April 1999.




White & Moore               Standards Track                    [Page 47]

RFC 2562                     TN3270E-RT-MIB                   April 1999


   [21] IBM, International Technical Support Centers, "Response Time
        Data Gathering", GG24-3212-01, November 1990.

   [22] Hovey, R. and S. Bradner, "The Organizations Involved in the
        IETF Standards Process", BCP 11, RFC 2028, October 1996.

   [23] Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

10.0  Authors' Addresses

   Kenneth D. White
   Dept. BRQA/Bldg. 501/G114
   IBM Corporation
   P.O.Box 12195
   3039 Cornwallis
   Research Triangle Park, NC 27709, USA

   EMail: kennethw@vnet.ibm.com


   Robert Moore
   Dept. BRQA/Bldg. 501/G114
   IBM Corporation
   P.O.Box 12195
   3039 Cornwallis
   Research Triangle Park, NC 27709, USA

   Phone: +1-919-254-7507
   EMail: remoore@us.ibm.com





















White & Moore               Standards Track                    [Page 48]

RFC 2562                     TN3270E-RT-MIB                   April 1999


11.0  Full Copyright Statement

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























White & Moore               Standards Track                    [Page 49]