File: rfc2737.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (3139 lines) | stat: -rw-r--r-- 125,141 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139






Network Working Group                                      K. McCloghrie
Request for Comments: 2737                           Cisco Systems, Inc.
Obsoletes: 2037                                               A. Bierman
                                                     Cisco Systems, Inc.
                                                           December 1999


                         Entity MIB (Version 2)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it describes managed objects used for managing
   multiple logical and physical entities managed by a single SNMP
   agent.

Table of Contents

   1 The SNMP Management Framework ...............................    2
   2 Overview ....................................................    3
   2.1 Terms .....................................................    4
   2.2 Relationship to Community Strings .........................    5
   2.3 Relationship to SNMP Contexts .............................    5
   2.4 Relationship to Proxy Mechanisms ..........................    6
   2.5 Relationship to a Chassis MIB .............................    6
   2.6 Relationship to the Interfaces MIB ........................    6
   2.7 Relationship to the Other MIBs ............................    7
   2.8 Relationship to Naming Scopes .............................    7
   2.9 Multiple Instances of the Entity MIB ......................    7
   2.10 Re-Configuration of Entities .............................    8
   2.11 Textual Convention Change ................................    8
   2.12 MIB Structure ............................................    8
   2.12.1 entityPhysical Group ...................................    9
   2.12.2 entityLogical Group ....................................   10
   2.12.3 entityMapping Group ....................................   10



McCloghrie & Bierman        Standards Track                     [Page 1]

RFC 2737                 Entity MIB (Version 2)            December 1999


   2.12.4 entityGeneral Group ....................................   11
   2.12.5 entityNotifications Group ..............................   11
   2.13 Multiple Agents ..........................................   11
   2.14 Changes Since RFC 2037 ...................................   11
   2.14.1 Textual Conventions ....................................   11
   2.14.2 New entPhysicalTable Objects ...........................   12
   2.14.3 New entLogicalTable Objects ............................   12
   2.14.4 Bugfixes ...............................................   12
   3 Definitions .................................................   13
   4 Usage Examples ..............................................   38
   4.1 Router/Bridge .............................................   38
   4.2 Repeaters .................................................   44
   5 Intellectual Property .......................................   51
   6 Acknowledgements ............................................   51
   7 References ..................................................   51
   8 Security Considerations .....................................   53
   9 Authors' Addresses ..........................................   55
   10 Full Copyright Statement ...................................   56

1.  The SNMP Management Framework

   The SNMP Management Framework presently consists of five major
   components:

   o  An overall architecture, described in RFC 2571 [RFC2571].

   o  Mechanisms for describing and naming objects and events for the
      purpose of management. The first version of this Structure of
      Management Information (SMI) is called SMIv1 and described in STD
      16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215
      [RFC1215].  The second version, called SMIv2, is described in STD
      58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC
      2580 [RFC2580].

   o  Message protocols for transferring management information. The
      first version of the SNMP message protocol is called SNMPv1 and
      described in STD 15, RFC 1157 [RFC1157]. A second version of the
      SNMP message protocol, which is not an Internet standards track
      protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
      and RFC 1906 [RFC1906]. The third version of the message protocol
      is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572
      [RFC2572] and RFC 2574 [RFC2574].

   o  Protocol operations for accessing management information. The
      first set of protocol operations and associated PDU formats is
      described in STD 15, RFC 1157 [RFC1157]. A second set of protocol
      operations and associated PDU formats is described in RFC 1905
      [RFC1905].



McCloghrie & Bierman        Standards Track                     [Page 2]

RFC 2737                 Entity MIB (Version 2)            December 1999


   o  A set of fundamental applications described in RFC 2573 [RFC2573]
      and the view-based access control mechanism described in RFC 2575
      [RFC2575].

   A more detailed introduction to the current SNMP Management Framework
   can be found in RFC 2570 [RFC2570].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the mechanisms defined in the SMI.

   This memo specifies a MIB module that is compliant to the SMIv2. A
   MIB conforming to the SMIv1 can be produced through the appropriate
   translations. The resulting translated MIB must be semantically
   equivalent, except where objects or events are omitted because no
   translation is possible (use of Counter64). Some machine readable
   information in SMIv2 will be converted into textual descriptions in
   SMIv1 during the translation process. However, this loss of machine
   readable information is not considered to change the semantics of the
   MIB.

2.  Overview

   There is a need for a standardized way of representing a single agent
   which supports multiple instances of one MIB.  This is presently true
   for at least 3 standard MIBs, and is likely to become true for more
   and more MIBs as time passes.  For example:

      - multiple instances of a bridge supported within a single device
        having a single agent;

      - multiple repeaters supported by a single agent;

      - multiple OSPF backbone areas, each one operating as part of its
        own Autonomous System, and each identified by the same area-id
        (e.g., 0.0.0.0), supported inside a single router with one
        agent.

   The fact that it is a single agent in each of these cases implies
   there is some relationship which binds all of these entities
   together.  Effectively, there is some "overall" physical entity which
   houses the sum of the things managed by that one agent, i.e., there
   are multiple "logical" entities within a single physical entity.
   Sometimes, the overall physical entity contains multiple (smaller)
   physical entities and each logical entity is associated with a
   particular physical entity.  Sometimes, the overall physical entity
   is a "compound" of multiple physical entities (e.g., a stack of
   stackable hubs).



McCloghrie & Bierman        Standards Track                     [Page 3]

RFC 2737                 Entity MIB (Version 2)            December 1999


   What is needed is a way to determine exactly what logical entities
   are managed by the agent (with some version of SNMP), and thereby to
   be able to communicate with the agent about a particular logical
   entity.  When different logical entities are associated with
   different physical entities within the overall physical entity, it is
   also useful to be able to use this information to distinguish between
   logical entities.

   In these situations, there is no need for varbinds for multiple
   logical entities to be referenced in the same SNMP message (although
   that might be useful in the future).  Rather, it is sufficient, and
   in some situations preferable, to have the context/community in the
   message identify the logical entity to which the varbinds apply.

   Version 2 of this MIB addresses new requirements that have emerged
   since the publication of the first Entity MIB (RFC 2037 [RFC2037]).
   There is a need for a standardized way of providing non-volatile,
   administratively assigned identifiers for physical components
   represented with the Entity MIB.  There is also a need to align the
   Entity MIB with the SNMPv3 administrative framework (RFC 2571
   [RFC2571]). Implementation experience has shown that additional
   physical component attributes are also desirable.

2.1.  Terms

   Some new terms are used throughout this document:

      - Naming Scope
        A "naming scope" represents the set of information that may be
        potentially accessed through a single SNMP operation. All
        instances within the naming scope share the same unique
        identifier space.  For SNMPv1, a naming scope is identified by
        the value of the associated 'entLogicalCommunity' instance.  For
        SNMPv3, the term 'context' is used instead of 'naming scope'.
        The complete definition of an SNMP context can be found in
        section 3.3.1 of RFC 2571 [RFC2571].

      - Multi-Scoped Object
        A MIB object, for which identical instance values identify
        different managed information in different naming scopes, is
        called a "multi-scoped" MIB object.

      - Single-Scoped Object
        A MIB object, for which identical instance values identify the
        same managed information in different naming scopes, is called a
        "single-scoped" MIB object.





McCloghrie & Bierman        Standards Track                     [Page 4]

RFC 2737                 Entity MIB (Version 2)            December 1999


      - Logical Entity
        A managed system contains one or more logical entities, each
        represented by at most one instantiation of each of a particular
        set of MIB objects.  A set of management functions is associated
        with each logical entity. Examples of logical entities include
        routers, bridges, print-servers, etc.

      - Physical Entity
        A "physical entity" or "physical component" represents an
        identifiable physical resource within a managed system. Zero or
        more logical entities may utilize a physical resource at any
        given time. It is an implementation-specific manner as to which
        physical components are represented by an agent in the
        EntPhysicalTable.  Typically, physical resources (e.g.,
        communications ports, backplanes, sensors, daughter-cards, power
        supplies, the overall chassis) which can be managed via
        functions associated with one or more logical entities are
        included in the MIB.

      - Containment Tree
        Each physical component may be modeled as 'contained' within
        another physical component. A "containment-tree" is the
        conceptual sequence of entPhysicalIndex values which uniquely
        specifies the exact physical location of a physical component
        within the managed system.  It is generated by 'following and
        recording' each 'entPhysicalContainedIn' instance 'up the tree
        towards the root', until a value of zero indicating no further
        containment is found.

2.2.  Relationship to Community Strings

   For community-based SNMP, distinguishing between different logical
   entities is one (but not the only) purpose of the community string
   (STD 15, RFC 1157 [RFC1157]).  This is accommodated by representing
   each community string as a logical entity.

   Note that different logical entities may share the same naming scope
   (and therefore the same values of entLogicalCommunity). This is
   possible, providing they have no need for the same instance of a MIB
   object to represent different managed information.

2.3.  Relationship to SNMP Contexts

   Version 2 of the Entity MIB contains support for associating SNMPv3
   contexts with logical entities. Two new MIB objects, defining an
   SnmpEngineID and ContextName pair, are used together to identify an
   SNMP context associated with a logical entity. This context can be




McCloghrie & Bierman        Standards Track                     [Page 5]

RFC 2737                 Entity MIB (Version 2)            December 1999


   used (in conjunction with the entLogicalTAddress and
   entLogicalTDomain MIB objects) to send SNMPv3 messages on behalf of a
   particular logical entity.

2.4.  Relationship to Proxy Mechanisms

   The Entity MIB is designed to allow functional component discovery.
   The administrative relationships between different logical entities
   are not visible in any Entity MIB tables. An NMS cannot determine
   whether MIB instances in different naming scopes are realized locally
   or remotely (e.g., via some proxy mechanism) by examining any
   particular Entity MIB objects.

   The management of administrative framework functions is not an
   explicit goal of the Entity MIB WG at this time. This new area of
   functionality may be revisited after some operational experience with
   the Entity MIB is gained.

   Note that for community-based versions of SNMP, a network
   administrator will likely be able to associate community strings with
   naming scopes with proprietary mechanisms, as a matter of
   configuration.  There are no mechanisms for managing naming scopes
   defined in this MIB.

2.5.  Relationship to a Chassis MIB

   Some readers may recall that a previous IETF working group attempted
   to define a Chassis MIB.  No consensus was reached by that working
   group, possibly because its scope was too broad.  As such, it is not
   the purpose of this MIB to be a "Chassis MIB replacement", nor is it
   within the scope of this MIB to contain all the information which
   might be necessary to manage a "chassis".  On the other hand, the
   entities represented by an implementation of this MIB might well be
   contained in a chassis.

2.6.  Relationship to the Interfaces MIB

   The Entity MIB contains a mapping table identifying physical
   components that have 'external values' (e.g., ifIndex) associated
   with them within a given naming scope.  This table can be used to
   identify the physical location of each interface in the ifTable (RFC
   2233 [RFC2233]).  Since ifIndex values in different contexts are not
   related to one another, the interface to physical component
   associations are relative to the same logical entity within the
   agent.






McCloghrie & Bierman        Standards Track                     [Page 6]

RFC 2737                 Entity MIB (Version 2)            December 1999


   The Entity MIB also contains 'entPhysicalName' and 'entPhysicalAlias'
   objects, which approximate the semantics of the 'ifName' and '
   ifAlias' objects (respectively) from the Interfaces MIB [RFC2233],
   for all types of physical components.

2.7.  Relationship to the Other MIBs

   The Entity MIB contains a mapping table identifying physical
   components that have identifiers from other standard MIBs associated
   with them.  For example, this table can be used along with the
   physical mapping table to identify the physical location of each
   repeater port in the rptrPortTable, or each interface in the ifTable.

2.8.  Relationship to Naming Scopes

   There is some question as to which MIB objects may be returned within
   a given naming scope. MIB objects which are not multi-scoped within a
   managed system are likely to ignore context information in
   implementation. In such a case, it is likely such objects will be
   returned in all naming scopes (e.g., not just the 'default' naming
   scope or the SNMPv3 default context).

   For example, a community string used to access the management
   information for logical device 'bridge2' may allow access to all the
   non-bridge related objects in the 'default' naming scope, as well as
   a second instance of the Bridge MIB (RFC 1493 [RFC1493]).

   It is an implementation-specific matter as to the isolation of
   single-scoped MIB objects by the agent. An agent may wish to limit
   the objects returned in a particular naming scope to just the multi-
   scoped objects in that naming scope (e.g., system group and the
   Bridge MIB).  In this case, all single-scoped management information
   would belong to a common naming scope (e.g., 'default'), which itself
   may contain some multi-scoped objects (e.g., system group).

2.9.  Multiple Instances of the Entity MIB

   It is possible that more than one agent exists in a managed system,
   and in such cases, multiple instances of the Entity MIB (representing
   the same managed objects) may be available to an NMS.

   In order to reduce complexity for agent implementation, multiple
   instances of the Entity MIB are not required to be equivalent or even
   consistent. An NMS may be able to 'align' instances returned by
   different agents by examining the columns of each table, but vendor-
   specific identifiers and (especially) index values are likely to be
   different. Each agent may be managing different subsets of the entire
   chassis as well.



McCloghrie & Bierman        Standards Track                     [Page 7]

RFC 2737                 Entity MIB (Version 2)            December 1999


   When all of a physically-modular device is represented by a single
   agent, the entry for which entPhysicalContainedIn has the value zero
   would likely have 'chassis' as the value of its entPhysicalClass;
   alternatively, for an agent on a module where the agent represents
   only the physical entities on that module (not those on other
   modules), the entry for which entPhysicalContainedIn has the value
   zero would likely have 'module' as the value of its entPhysicalClass.

   An agent implementation of the entLogicalTable is not required to
   contain information about logical entities managed primarily by other
   agents. That is, the entLogicalTAddress and entLogicalTDomain objects
   in the entLogicalTable are provided to support an historical
   multiplexing mechanism, not to identify other SNMP agents.

   Note that the Entity MIB is a single-scoped MIB, in the event an
   agent represents the MIB in different naming scopes.

2.10.  Re-Configuration of Entities

   Most of the MIB objects defined in this MIB have at most a read-only
   MAX-ACCESS clause.  This is a conscious decision by the working group
   to limit this MIB's scope.  The second version of the Entity MIB
   allows a network administrator to configure some common attributes of
   physical components.

2.11.  Textual Convention Change

   Version 1 of the Entity MIB contains three MIB objects defined with
   the (now obsolete) DisplayString textual convention.  In version 2 of
   the Entity MIB, the syntax for these objects has been updated to use
   the (now preferred) SnmpAdminString textual convention.

   The working group realizes that this change is not strictly supported
   by SMIv2.  In our judgment, the alternative of deprecating the old
   objects and defining new objects would have a more adverse impact on
   backward compatibility and interoperability, given the particular
   semantics of these objects.

2.12.  MIB Structure

   The Entity MIB contains five groups of MIB objects:

      - entityPhysical group
        Describes the physical entities managed by a single agent.

      - entityLogical group
        Describes the logical entities managed by a single agent.




McCloghrie & Bierman        Standards Track                     [Page 8]

RFC 2737                 Entity MIB (Version 2)            December 1999


      - entityMapping group
        Describes the associations between the physical entities,
        logical entities, interfaces, and non-interface ports managed by
        a single agent.

      - entityGeneral group
        Describes general system attributes shared by potentially all
        types of entities managed by a single agent.

      - entityNotifications group
        Contains status indication notifications.

2.12.1.  entityPhysical Group

   This group contains a single table to identify physical system
   components, called the entPhysicalTable.

   The entPhysicalTable contains one row per physical entity, and must
   always contain at least one row for an "overall" physical entity,
   which should have an entPhysicalClass value of 'stack(11)', '
   chassis(3)' or 'module(9)'.

   Each row is indexed by an arbitrary, small integer, and contains a
   description and type of the physical entity.  It also optionally
   contains the index number of another entPhysicalEntry indicating a
   containment relationship between the two.

   Version 2 of the Entity MIB provides additional MIB objects for each
   physical entity. Some common read-only attributes have been added, as
   well as three writable string objects.

      - entPhysicalAlias
        This string can be used by an NMS as a non-volatile identifier
        for the physical component. Maintaining a non-volatile string
        for every physical component represented in the entPhysicalTable
        can be costly and unnecessary.  An agent may algorithmically
        generate 'entPhysicalAlias' strings for particular entries
        (e.g., based on the entPhysicalClass value).

      - entPhysicalAssetID
        This string is provided to store a user-specific asset
        identifier for removable physical components.  In order to
        reduce the non-volatile storage needed by a particular agent, a
        network administrator should only assign asset identifiers to
        physical entities which are field-replaceable (i.e., not
        permanently contained within another physical entity).





McCloghrie & Bierman        Standards Track                     [Page 9]

RFC 2737                 Entity MIB (Version 2)            December 1999


      - entPhysicalSerialNum
        This string is provided to store a vendor-specific serial number
        string for physical components.  This is a writable object in
        case an agent cannot identify the serial numbers of all
        installed physical entities, and a network administrator wishes
        to configure the non-volatile serial number strings manually
        (via an NMS application).

2.12.2.  entityLogical Group

   This group contains a single table to identify logical entities,
   called the entLogicalTable.

   The entLogicalTable contains one row per logical entity.  Each row is
   indexed by an arbitrary, small integer and contains a name,
   description, and type of the logical entity. It also contains
   information to allow access to the MIB information for the logical
   entity. This includes SNMP versions that use a community name (with
   some form of implied context representation) and SNMP versions that
   use the SNMP ARCH [RFC2571] method of context identification.

   If a agent represents multiple logical entities with this MIB, then
   this group must be implemented for all logical entities known to the
   agent.

   If an agent represents a single logical entity, or multiple logical
   entities within a single naming scope, then implementation of this
   group may be omitted by the agent.

2.12.3.  entityMapping Group

   This group contains three tables to identify associations between
   different system components.

   The entLPMappingTable contains mappings between entLogicalIndex
   values (logical entities) and entPhysicalIndex values (the physical
   components supporting that entity). A logical entity can map to more
   than one physical component, and more than one logical entity can map
   to (share) the same physical component.  If an agent represents a
   single logical entity, or multiple logical entities within a single
   naming scope, then implementation of this table may be omitted by the
   agent.

   The entAliasMappingTable contains mappings between entLogicalIndex,
   entPhysicalIndex pairs and 'alias' object identifier values.  This
   allows resources managed with other MIBs (e.g., repeater ports,
   bridge ports, physical and logical interfaces) to be identified in
   the physical entity hierarchy. Note that each alias identifier is



McCloghrie & Bierman        Standards Track                    [Page 10]

RFC 2737                 Entity MIB (Version 2)            December 1999


   only relevant in a particular naming scope.  If an agent represents a
   single logical entity, or multiple logical entities within a single
   naming scope, then implementation of this table may be omitted by the
   agent.

   The entPhysicalContainsTable contains simple mappings between
   'entPhysicalContainedIn' values for each container/'containee'
   relationship in the managed system. The indexing of this table allows
   an NMS to quickly discover the 'entPhysicalIndex' values for all
   children of a given physical entity.

2.12.4.  entityGeneral Group

   This group contains general information relating to the other object
   groups.

   At this time, the entGeneral group contains a single scalar object
   (entLastChangeTime), which represents the value of sysUptime when any
   part of the Entity MIB configuration last changed.

2.12.5.  entityNotifications Group

   This group contains notification definitions relating to the overall
   status of the Entity MIB instantiation.

2.13.  Multiple Agents

   Even though a primary motivation for this MIB is to represent the
   multiple logical entities supported by a single agent, it is also
   possible to use it to represent multiple logical entities supported
   by multiple agents (in the same "overall" physical entity).  Indeed,
   it is implicit in the SNMP architecture, that the number of agents is
   transparent to a network management station.

   However, there is no agreement at this time as to the degree of
   cooperation which should be expected for agent implementations.
   Therefore, multiple agents within the same managed system are free to
   implement the Entity MIB independently.  (Refer the section on
   "Multiple Instances of the Entity MIB" for more details).

2.14.  Changes Since RFC 2037

2.14.1.  Textual Conventions

   The PhysicalClass TC text has been clarified, and a new enumeration
   to support 'stackable' components has been added.  The
   SnmpEngineIdOrNone TC has been added to support SNMPv3.




McCloghrie & Bierman        Standards Track                    [Page 11]

RFC 2737                 Entity MIB (Version 2)            December 1999


2.14.2.  New entPhysicalTable Objects

   The entPhysicalHardwareRev, entPhysicalFirmwareRev, and
   entPhysicalSoftwareRev objects have been added for revision
   identification.

   The entPhysicalSerialNum, entPhysicalMfgName, entPhysicalModelName,
   and entPhysicalIsFru objects have been added for better vendor
   identification for physical components.  The entPhysicalSerialNum
   object can be set by a management station in the event the agent
   cannot identify this information.

   The entPhysicalAlias and entPhysicalAssetID objects have been added
   for better user component identification. These objects are intended
   to be set by a management station and preserved by the agent across
   restarts.

2.14.3.  New entLogicalTable Objects

   The entLogicalContextEngineID and entLogicalContextName objects have
   been added to provide an SNMP context for SNMPv3 access on behalf of
   a logical entity.

2.14.4.  Bugfixes

   A bug was fixed in the entLogicalCommunity object. The subrange was
   incorrect (1..255) and is now (0..255).  The description clause has
   also been clarified.  This object is now deprecated.

   The entLastChangeTime object description has been changed to
   generalize the events which cause an update to the last change
   timestamp.

   The syntax was changed from DisplayString to SnmpAdminString for the
   entPhysicalDescr, entPhysicalName, and entLogicalDescr objects.
















McCloghrie & Bierman        Standards Track                    [Page 12]

RFC 2737                 Entity MIB (Version 2)            December 1999


3.  Definitions

ENTITY-MIB DEFINITIONS ::= BEGIN

IMPORTS
    MODULE-IDENTITY, OBJECT-TYPE, mib-2, NOTIFICATION-TYPE
        FROM SNMPv2-SMI
    TDomain, TAddress, TEXTUAL-CONVENTION,
    AutonomousType, RowPointer, TimeStamp, TruthValue
        FROM SNMPv2-TC
    MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
        FROM SNMPv2-CONF
    SnmpAdminString
        FROM SNMP-FRAMEWORK-MIB;

entityMIB MODULE-IDENTITY
    LAST-UPDATED "9912070000Z" -- December 7, 1999
    ORGANIZATION "IETF ENTMIB Working Group"
    CONTACT-INFO
            "        WG E-mail: entmib@cisco.com
                  Subscribe: majordomo@cisco.com
                         msg body: subscribe entmib

                     Keith McCloghrie
                     ENTMIB Working Group Chair
                     Cisco Systems Inc.
                     170 West Tasman Drive
                     San Jose, CA 95134
                     +1 408-526-5260
                     kzm@cisco.com

                     Andy Bierman
                     ENTMIB Working Group Editor
                     Cisco Systems Inc.
                     170 West Tasman Drive
                     San Jose, CA 95134
                     +1 408-527-3711
                     abierman@cisco.com"
    DESCRIPTION
            "The MIB module for representing multiple logical
            entities supported by a single SNMP agent."
    REVISION        "9912070000Z"
    DESCRIPTION
            "Initial Version of Entity MIB (Version 2).
             This revision obsoletes RFC 2037.
             This version published as RFC 2737."
    REVISION        "9610310000Z"
    DESCRIPTION



McCloghrie & Bierman        Standards Track                    [Page 13]

RFC 2737                 Entity MIB (Version 2)            December 1999


            "Initial version (version 1), published as
             RFC 2037."
    ::= { mib-2 47 }

entityMIBObjects OBJECT IDENTIFIER ::= { entityMIB 1 }

-- MIB contains four groups
entityPhysical OBJECT IDENTIFIER ::= { entityMIBObjects 1 }
entityLogical  OBJECT IDENTIFIER ::= { entityMIBObjects 2 }
entityMapping  OBJECT IDENTIFIER ::= { entityMIBObjects 3 }
entityGeneral  OBJECT IDENTIFIER ::= { entityMIBObjects 4 }

-- Textual Conventions
PhysicalIndex ::= TEXTUAL-CONVENTION
    STATUS            current
    DESCRIPTION
            "An arbitrary value which uniquely identifies the physical
            entity.  The value should be a small positive integer; index
            values for different physical entities are not necessarily
            contiguous."
    SYNTAX INTEGER (1..2147483647)

PhysicalClass ::= TEXTUAL-CONVENTION
    STATUS            current
    DESCRIPTION
            "An enumerated value which provides an indication of the
            general hardware type of a particular physical entity.
            There are no restrictions as to the number of
            entPhysicalEntries of each entPhysicalClass, which must be
            instantiated by an agent.

            The enumeration 'other' is applicable if the physical entity
            class is known, but does not match any of the supported
            values.

            The enumeration 'unknown' is applicable if the physical
            entity class is unknown to the agent.

            The enumeration 'chassis' is applicable if the physical
            entity class is an overall container for networking
            equipment.  Any class of physical entity except a stack may
            be contained within a chassis, and a chassis may only be
            contained within a stack.

            The enumeration 'backplane' is applicable if the physical
            entity class is some sort of device for aggregating and
            forwarding networking traffic, such as a shared backplane in
            a modular ethernet switch.  Note that an agent may model a



McCloghrie & Bierman        Standards Track                    [Page 14]

RFC 2737                 Entity MIB (Version 2)            December 1999


            backplane as a single physical entity, which is actually
            implemented as multiple discrete physical components (within
            a chassis or stack).

            The enumeration 'container' is applicable if the physical
            entity class is capable of containing one or more removable
            physical entities, possibly of different types. For example,
            each (empty or full) slot in a chassis will be modeled as a
            container. Note that all removable physical entities should
            be modeled within a container entity, such as field-
            replaceable modules, fans, or power supplies.  Note that all
            known containers should be modeled by the agent, including
            empty containers.

            The enumeration 'powerSupply' is applicable if the physical
            entity class is a power-supplying component.

            The enumeration 'fan' is applicable if the physical entity
            class is a fan or other heat-reduction component.

            The enumeration 'sensor' is applicable if the physical
            entity class is some sort of sensor, such as a temperature
            sensor within a router chassis.

            The enumeration 'module' is applicable if the physical
            entity class is some sort of self-contained sub-system.  If
            it is removable, then it should be modeled within a
            container entity, otherwise it should be modeled directly
            within another physical entity (e.g., a chassis or another
            module).

            The enumeration 'port' is applicable if the physical entity
            class is some sort of networking port, capable of receiving
            and/or transmitting networking traffic.

            The enumeration 'stack' is applicable if the physical entity
            class is some sort of super-container (possibly virtual),
            intended to group together multiple chassis entities.  A
            stack may be realized by a 'virtual' cable, a real
            interconnect cable, attached to multiple chassis, or may in
            fact be comprised of multiple interconnect cables. A stack
            should not be modeled within any other physical entities,
            but a stack may be contained within another stack.  Only
            chassis entities should be contained within a stack."
    SYNTAX      INTEGER  {
       other(1),
       unknown(2),
       chassis(3),



McCloghrie & Bierman        Standards Track                    [Page 15]

RFC 2737                 Entity MIB (Version 2)            December 1999


       backplane(4),
       container(5),     -- e.g., chassis slot or daughter-card holder
       powerSupply(6),
       fan(7),
       sensor(8),
       module(9),        -- e.g., plug-in card or daughter-card
       port(10),
       stack(11)         -- e.g., stack of multiple chassis entities
    }

SnmpEngineIdOrNone ::= TEXTUAL-CONVENTION
    STATUS            current
    DESCRIPTION
            "A specially formatted SnmpEngineID string for use with the
            Entity MIB.

            If an instance of an object of SYNTAX SnmpEngineIdOrNone has
            a non-zero length, then the object encoding and semantics
            are defined by the SnmpEngineID textual convention (see RFC
            2571 [RFC2571]).

            If an instance of an object of SYNTAX SnmpEngineIdOrNone
            contains a zero-length string, then no appropriate
            SnmpEngineID is associated with the logical entity (i.e.,
            SNMPv3 not supported)."
    SYNTAX OCTET STRING (SIZE(0..32)) -- empty string or SnmpEngineID

--           The Physical Entity Table
entPhysicalTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF EntPhysicalEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "This table contains one row per physical entity.  There is
            always at least one row for an 'overall' physical entity."
    ::= { entityPhysical 1 }

entPhysicalEntry       OBJECT-TYPE
    SYNTAX      EntPhysicalEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "Information about a particular physical entity.

            Each entry provides objects (entPhysicalDescr,
            entPhysicalVendorType, and entPhysicalClass) to help an NMS
            identify and characterize the entry, and objects
            (entPhysicalContainedIn and entPhysicalParentRelPos) to help



McCloghrie & Bierman        Standards Track                    [Page 16]

RFC 2737                 Entity MIB (Version 2)            December 1999


            an NMS relate the particular entry to other entries in this
            table."
    INDEX   { entPhysicalIndex }
    ::= { entPhysicalTable 1 }

EntPhysicalEntry ::= SEQUENCE {
      entPhysicalIndex          PhysicalIndex,
      entPhysicalDescr          SnmpAdminString,
      entPhysicalVendorType     AutonomousType,
      entPhysicalContainedIn    INTEGER,
      entPhysicalClass          PhysicalClass,
      entPhysicalParentRelPos   INTEGER,
      entPhysicalName           SnmpAdminString,
      entPhysicalHardwareRev    SnmpAdminString,
      entPhysicalFirmwareRev    SnmpAdminString,
      entPhysicalSoftwareRev    SnmpAdminString,
      entPhysicalSerialNum      SnmpAdminString,
      entPhysicalMfgName        SnmpAdminString,
      entPhysicalModelName      SnmpAdminString,
      entPhysicalAlias          SnmpAdminString,
      entPhysicalAssetID        SnmpAdminString,
      entPhysicalIsFRU          TruthValue
}

entPhysicalIndex    OBJECT-TYPE
    SYNTAX      PhysicalIndex
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "The index for this entry."
    ::= { entPhysicalEntry 1 }

entPhysicalDescr OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "A textual description of physical entity.  This object
            should contain a string which identifies the manufacturer's
            name for the physical entity, and should be set to a
            distinct value for each version or model of the physical
            entity. "
    ::= { entPhysicalEntry 2 }

entPhysicalVendorType OBJECT-TYPE
    SYNTAX      AutonomousType
    MAX-ACCESS  read-only
    STATUS      current



McCloghrie & Bierman        Standards Track                    [Page 17]

RFC 2737                 Entity MIB (Version 2)            December 1999


    DESCRIPTION
            "An indication of the vendor-specific hardware type of the
            physical entity.  Note that this is different from the
            definition of MIB-II's sysObjectID.

            An agent should set this object to a enterprise-specific
            registration identifier value indicating the specific
            equipment type in detail.  The associated instance of
            entPhysicalClass is used to indicate the general type of
            hardware device.

            If no vendor-specific registration identifier exists for
            this physical entity, or the value is unknown by this agent,
            then the value { 0 0 } is returned."
    ::= { entPhysicalEntry 3 }

entPhysicalContainedIn OBJECT-TYPE
    SYNTAX      INTEGER (0..2147483647)
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The value of entPhysicalIndex for the physical entity which
            'contains' this physical entity.  A value of zero indicates
            this physical entity is not contained in any other physical
            entity.  Note that the set of 'containment' relationships
            define a strict hierarchy; that is, recursion is not
            allowed.

            In the event a physical entity is contained by more than one
            physical entity (e.g., double-wide modules), this object
            should identify the containing entity with the lowest value
            of entPhysicalIndex."
    ::= { entPhysicalEntry 4 }

entPhysicalClass OBJECT-TYPE
    SYNTAX      PhysicalClass
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "An indication of the general hardware type of the physical
            entity.

            An agent should set this object to the standard enumeration
            value which most accurately indicates the general class of
            the physical entity, or the primary class if there is more
            than one.

            If no appropriate standard registration identifier exists



McCloghrie & Bierman        Standards Track                    [Page 18]

RFC 2737                 Entity MIB (Version 2)            December 1999


            for this physical entity, then the value 'other(1)' is
            returned. If the value is unknown by this agent, then the
            value 'unknown(2)' is returned."
    ::= { entPhysicalEntry 5 }

entPhysicalParentRelPos OBJECT-TYPE
    SYNTAX      INTEGER (-1..2147483647)
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "An indication of the relative position of this 'child'
            component among all its 'sibling' components. Sibling
            components are defined as entPhysicalEntries which share the
            same instance values of each of the entPhysicalContainedIn
            and entPhysicalClass objects.

            An NMS can use this object to identify the relative ordering
            for all sibling components of a particular parent
            (identified by the entPhysicalContainedIn instance in each
            sibling entry).

            This value should match any external labeling of the
            physical component if possible. For example, for a container
            (e.g., card slot) labeled as 'slot #3',
            entPhysicalParentRelPos should have the value '3'.  Note
            that the entPhysicalEntry for the module plugged in slot 3
            should have an entPhysicalParentRelPos value of '1'.

            If the physical position of this component does not match
            any external numbering or clearly visible ordering, then
            user documentation or other external reference material
            should be used to determine the parent-relative position. If
            this is not possible, then the the agent should assign a
            consistent (but possibly arbitrary) ordering to a given set
            of 'sibling' components, perhaps based on internal
            representation of the components.

            If the agent cannot determine the parent-relative position
            for some reason, or if the associated value of
            entPhysicalContainedIn is '0', then the value '-1' is
            returned. Otherwise a non-negative integer is returned,
            indicating the parent-relative position of this physical
            entity.

            Parent-relative ordering normally starts from '1' and
            continues to 'N', where 'N' represents the highest
            positioned child entity.  However, if the physical entities
            (e.g., slots) are labeled from a starting position of zero,



McCloghrie & Bierman        Standards Track                    [Page 19]

RFC 2737                 Entity MIB (Version 2)            December 1999


            then the first sibling should be associated with a
            entPhysicalParentRelPos value of '0'.  Note that this
            ordering may be sparse or dense, depending on agent
            implementation.

            The actual values returned are not globally meaningful, as
            each 'parent' component may use different numbering
            algorithms. The ordering is only meaningful among siblings
            of the same parent component.

            The agent should retain parent-relative position values
            across reboots, either through algorithmic assignment or use
            of non-volatile storage."
    ::= { entPhysicalEntry 6 }

entPhysicalName OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The textual name of the physical entity.  The value of this
            object should be the name of the component as assigned by
            the local device and should be suitable for use in commands
            entered at the device's `console'.  This might be a text
            name, such as `console' or a simple component number (e.g.,
            port or module number), such as `1', depending on the
            physical component naming syntax of the device.

            If there is no local name, or this object is otherwise not
            applicable, then this object contains a zero-length string.

            Note that the value of entPhysicalName for two physical
            entities will be the same in the event that the console
            interface does not distinguish between them, e.g., slot-1
            and the card in slot-1."
    ::= { entPhysicalEntry 7 }

entPhysicalHardwareRev    OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The vendor-specific hardware revision string for the
            physical entity.  The preferred value is the hardware
            revision identifier actually printed on the component itself
            (if present).

            Note that if revision information is stored internally in a



McCloghrie & Bierman        Standards Track                    [Page 20]

RFC 2737                 Entity MIB (Version 2)            December 1999


            non-printable (e.g., binary) format, then the agent must
            convert such information to a printable format, in an
            implementation-specific manner.

            If no specific hardware revision string is associated with
            the physical component, or this information is unknown to
            the agent, then this object will contain a zero-length
            string."
    ::= { entPhysicalEntry 8 }

entPhysicalFirmwareRev    OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The vendor-specific firmware revision string for the
            physical entity.

            Note that if revision information is stored internally in a
            non-printable (e.g., binary) format, then the agent must
            convert such information to a printable format, in an
            implementation-specific manner.

            If no specific firmware programs are associated with the
            physical component, or this information is unknown to the
            agent, then this object will contain a zero-length string."
    ::= { entPhysicalEntry 9 }

entPhysicalSoftwareRev    OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The vendor-specific software revision string for the
            physical entity.

            Note that if revision information is stored internally in a
            non-printable (e.g., binary) format, then the agent must
            convert such information to a printable format, in an
            implementation-specific manner.

            If no specific software programs are associated with the
            physical component, or this information is unknown to the
            agent, then this object will contain a zero-length string."
    ::= { entPhysicalEntry 10 }

entPhysicalSerialNum   OBJECT-TYPE
    SYNTAX      SnmpAdminString (SIZE (0..32))



McCloghrie & Bierman        Standards Track                    [Page 21]

RFC 2737                 Entity MIB (Version 2)            December 1999


    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
            "The vendor-specific serial number string for the physical
            entity.  The preferred value is the serial number string
            actually printed on the component itself (if present).

            On the first instantiation of an physical entity, the value
            of entPhysicalSerialNum associated with that entity is set
            to the correct vendor-assigned serial number, if this
            information is available to the agent.  If a serial number
            is unknown or non-existent, the entPhysicalSerialNum will be
            set to a zero-length string instead.

            Note that implementations which can correctly identify the
            serial numbers of all installed physical entities do not
            need to provide write access to the entPhysicalSerialNum
            object. Agents which cannot provide non-volatile storage for
            the entPhysicalSerialNum strings are not required to
            implement write access for this object.

            Not every physical component will have a serial number, or
            even need one.  Physical entities for which the associated
            value of the entPhysicalIsFRU object is equal to 'false(2)'
            (e.g., the repeater ports within a repeater module), do not
            need their own unique serial number. An agent does not have
            to provide write access for such entities, and may return a
            zero-length string.

            If write access is implemented for an instance of
            entPhysicalSerialNum, and a value is written into the
            instance, the agent must retain the supplied value in the
            entPhysicalSerialNum instance associated with the same
            physical entity for as long as that entity remains
            instantiated. This includes instantiations across all re-
            initializations/reboots of the network management system,
            including those which result in a change of the physical
            entity's entPhysicalIndex value."
    ::= { entPhysicalEntry 11 }

entPhysicalMfgName   OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The name of the manufacturer of this physical component.
            The preferred value is the manufacturer name string actually
            printed on the component itself (if present).



McCloghrie & Bierman        Standards Track                    [Page 22]

RFC 2737                 Entity MIB (Version 2)            December 1999


            Note that comparisons between instances of the
            entPhysicalModelName, entPhysicalFirmwareRev,
            entPhysicalSoftwareRev, and the entPhysicalSerialNum
            objects, are only meaningful amongst entPhysicalEntries with
            the same value of entPhysicalMfgName.

            If the manufacturer name string associated with the physical
            component is unknown to the agent, then this object will
            contain a zero-length string."
    ::= { entPhysicalEntry 12 }

entPhysicalModelName   OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The vendor-specific model name identifier string associated
            with this physical component.  The preferred value is the
            customer-visible part number, which may be printed on the
            component itself.

            If the model name string associated with the physical
            component is unknown to the agent, then this object will
            contain a zero-length string."
    ::= { entPhysicalEntry 13 }

entPhysicalAlias    OBJECT-TYPE
    SYNTAX      SnmpAdminString (SIZE (0..32))
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
            "This object is an 'alias' name for the physical entity as
            specified by a network manager, and provides a non-volatile
            'handle' for the physical entity.

            On the first instantiation of an physical entity, the value
            of entPhysicalAlias associated with that entity is set to
            the zero-length string.  However, agent may set the value to
            a locally unique default value, instead of a zero-length
            string.

            If write access is implemented for an instance of
            entPhysicalAlias, and a value is written into the instance,
            the agent must retain the supplied value in the
            entPhysicalAlias instance associated with the same physical
            entity for as long as that entity remains instantiated.
            This includes instantiations across all re-
            initializations/reboots of the network management system,



McCloghrie & Bierman        Standards Track                    [Page 23]

RFC 2737                 Entity MIB (Version 2)            December 1999


            including those which result in a change of the physical
            entity's entPhysicalIndex value."
    ::= { entPhysicalEntry 14 }

entPhysicalAssetID OBJECT-TYPE
    SYNTAX      SnmpAdminString (SIZE (0..32))
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
            "This object is a user-assigned asset tracking identifier
            for the physical entity as specified by a network manager,
            and provides non-volatile storage of this information.

            On the first instantiation of an physical entity, the value
            of entPhysicalAssetID associated with that entity is set to
            the zero-length string.

            Not every physical component will have a asset tracking
            identifier, or even need one.  Physical entities for which
            the associated value of the entPhysicalIsFRU object is equal
            to 'false(2)' (e.g., the repeater ports within a repeater
            module), do not need their own unique asset tracking
            identifier. An agent does not have to provide write access
            for such entities, and may instead return a zero-length
            string.

            If write access is implemented for an instance of
            entPhysicalAssetID, and a value is written into the
            instance, the agent must retain the supplied value in the
            entPhysicalAssetID instance associated with the same
            physical entity for as long as that entity remains
            instantiated.  This includes instantiations across all re-
            initializations/reboots of the network management system,
            including those which result in a change of the physical
            entity's entPhysicalIndex value.

            If no asset tracking information is associated with the
            physical component, then this object will contain a zero-
            length string."
    ::= { entPhysicalEntry 15 }

entPhysicalIsFRU OBJECT-TYPE
    SYNTAX      TruthValue
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "This object indicates whether or not this physical entity
            is considered a 'field replaceable unit' by the vendor.  If



McCloghrie & Bierman        Standards Track                    [Page 24]

RFC 2737                 Entity MIB (Version 2)            December 1999


            this object contains the value 'true(1)' then this
            entPhysicalEntry identifies a field replaceable unit.  For
            all entPhysicalEntries which represent components that are
            permanently contained within a field replaceable unit, the
            value 'false(2)' should be returned for this object."

    ::= { entPhysicalEntry 16 }

--           The Logical Entity Table
entLogicalTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF EntLogicalEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "This table contains one row per logical entity.  For agents
            which implement more than one naming scope, at least one
            entry must exist. Agents which instantiate all MIB objects
            within a single naming scope are not required to implement
            this table."
    ::= { entityLogical 1 }

entLogicalEntry       OBJECT-TYPE
    SYNTAX      EntLogicalEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "Information about a particular logical entity.  Entities
            may be managed by this agent or other SNMP agents (possibly)
            in the same chassis."
    INDEX       { entLogicalIndex }
    ::= { entLogicalTable 1 }

EntLogicalEntry ::= SEQUENCE {
      entLogicalIndex            INTEGER,
      entLogicalDescr            SnmpAdminString,
      entLogicalType             AutonomousType,
      entLogicalCommunity        OCTET STRING,
      entLogicalTAddress         TAddress,
      entLogicalTDomain          TDomain,
      entLogicalContextEngineID  SnmpEngineIdOrNone,
      entLogicalContextName      SnmpAdminString
}

entLogicalIndex OBJECT-TYPE
    SYNTAX      INTEGER (1..2147483647)
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION



McCloghrie & Bierman        Standards Track                    [Page 25]

RFC 2737                 Entity MIB (Version 2)            December 1999


            "The value of this object uniquely identifies the logical
            entity. The value should be a small positive integer; index
            values for different logical entities are are not
            necessarily contiguous."
    ::= { entLogicalEntry 1 }

entLogicalDescr OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "A textual description of the logical entity.  This object
            should contain a string which identifies the manufacturer's
            name for the logical entity, and should be set to a distinct
            value for each version of the logical entity. "
    ::= { entLogicalEntry 2 }

entLogicalType OBJECT-TYPE
    SYNTAX      AutonomousType
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "An indication of the type of logical entity.  This will
            typically be the OBJECT IDENTIFIER name of the node in the
            SMI's naming hierarchy which represents the major MIB
            module, or the majority of the MIB modules, supported by the
            logical entity.  For example:
               a logical entity of a regular host/router -> mib-2
               a logical entity of a 802.1d bridge -> dot1dBridge
               a logical entity of a 802.3 repeater -> snmpDot3RptrMgmt
            If an appropriate node in the SMI's naming hierarchy cannot
            be identified, the value 'mib-2' should be used."
    ::= { entLogicalEntry 3 }

entLogicalCommunity OBJECT-TYPE
    SYNTAX      OCTET STRING (SIZE (0..255))
    MAX-ACCESS  read-only
    STATUS      deprecated
    DESCRIPTION
            "An SNMPv1 or SNMPv2C community-string which can be used to
            access detailed management information for this logical
            entity.  The agent should allow read access with this
            community string (to an appropriate subset of all managed
            objects) and may also return a community string based on the
            privileges of the request used to read this object.  Note
            that an agent may return a community string with read-only
            privileges, even if this object is accessed with a read-
            write community string. However, the agent must take care



McCloghrie & Bierman        Standards Track                    [Page 26]

RFC 2737                 Entity MIB (Version 2)            December 1999


            not to return a community string which allows more
            privileges than the community string used to access this
            object.

            A compliant SNMP agent may wish to conserve naming scopes by
            representing multiple logical entities in a single 'default'
            naming scope.  This is possible when the logical entities
            represented by the same value of entLogicalCommunity have no
            object instances in common.  For example, 'bridge1' and
            'repeater1' may be part of the main naming scope, but at
            least one additional community string is needed to represent
            'bridge2' and 'repeater2'.

            Logical entities 'bridge1' and 'repeater1' would be
            represented by sysOREntries associated with the 'default'
            naming scope.

            For agents not accessible via SNMPv1 or SNMPv2C, the value
            of this object is the empty string.  This object may also
            contain an empty string if a community string has not yet
            been assigned by the agent, or no community string with
            suitable access rights can be returned for a particular SNMP
            request.

            Note that this object is deprecated. Agents which implement
            SNMPv3 access should use the entLogicalContextEngineID and
            entLogicalContextName objects to identify the context
            associated with each logical entity.  SNMPv3 agents may
            return a zero-length string for this object, or may continue
            to return a community string (e.g., tri-lingual agent
            support)."
    ::= { entLogicalEntry 4 }

entLogicalTAddress OBJECT-TYPE
    SYNTAX      TAddress
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The transport service address by which the logical entity
            receives network management traffic, formatted according to
            the corresponding value of entLogicalTDomain.

            For snmpUDPDomain, a TAddress is 6 octets long, the initial
            4 octets containing the IP-address in network-byte order and
            the last 2 containing the UDP port in network-byte order.
            Consult 'Transport Mappings for Version 2 of the Simple
            Network Management Protocol' (RFC 1906 [RFC1906]) for
            further information on snmpUDPDomain."



McCloghrie & Bierman        Standards Track                    [Page 27]

RFC 2737                 Entity MIB (Version 2)            December 1999


    ::= { entLogicalEntry 5 }

entLogicalTDomain OBJECT-TYPE
    SYNTAX      TDomain
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "Indicates the kind of transport service by which the
            logical entity receives network management traffic.
            Possible values for this object are presently found in the
            Transport Mappings for SNMPv2 document (RFC 1906
            [RFC1906])."
    ::= { entLogicalEntry 6 }

entLogicalContextEngineID    OBJECT-TYPE
    SYNTAX      SnmpEngineIdOrNone
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The authoritative contextEngineID that can be used to send
            an SNMP message concerning information held by this logical
            entity, to the address specified by the associated
            'entLogicalTAddress/entLogicalTDomain' pair.

            This object, together with the associated
            entLogicalContextName object, defines the context associated
            with a particular logical entity, and allows access to SNMP
            engines identified by a contextEngineId and contextName
            pair.

            If no value has been configured by the agent, a zero-length
            string is returned, or the agent may choose not to
            instantiate this object at all."
    ::= { entLogicalEntry 7 }

entLogicalContextName    OBJECT-TYPE
    SYNTAX      SnmpAdminString
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The contextName that can be used to send an SNMP message
            concerning information held by this logical entity, to the
            address specified by the associated
            'entLogicalTAddress/entLogicalTDomain' pair.

            This object, together with the associated
            entLogicalContextEngineID object, defines the context
            associated with a particular logical entity, and allows



McCloghrie & Bierman        Standards Track                    [Page 28]

RFC 2737                 Entity MIB (Version 2)            December 1999


            access to SNMP engines identified by a contextEngineId and
            contextName pair.

            If no value has been configured by the agent, a zero-length
            string is returned, or the agent may choose not to
            instantiate this object at all."
    ::= { entLogicalEntry 8 }

entLPMappingTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF EntLPMappingEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "This table contains zero or more rows of logical entity to
            physical equipment associations. For each logical entity
            known by this agent, there are zero or more mappings to the
            physical resources which are used to realize that logical
            entity.

            An agent should limit the number and nature of entries in
            this table such that only meaningful and non-redundant
            information is returned. For example, in a system which
            contains a single power supply, mappings between logical
            entities and the power supply are not useful and should not
            be included.

            Also, only the most appropriate physical component which is
            closest to the root of a particular containment tree should
            be identified in an entLPMapping entry.

            For example, suppose a bridge is realized on a particular
            module, and all ports on that module are ports on this
            bridge. A mapping between the bridge and the module would be
            useful, but additional mappings between the bridge and each
            of the ports on that module would be redundant (since the
            entPhysicalContainedIn hierarchy can provide the same
            information). If, on the other hand, more than one bridge
            was utilizing ports on this module, then mappings between
            each bridge and the ports it used would be appropriate.

            Also, in the case of a single backplane repeater, a mapping
            for the backplane to the single repeater entity is not
            necessary."
    ::= { entityMapping 1 }

entLPMappingEntry       OBJECT-TYPE
    SYNTAX      EntLPMappingEntry
    MAX-ACCESS  not-accessible



McCloghrie & Bierman        Standards Track                    [Page 29]

RFC 2737                 Entity MIB (Version 2)            December 1999


    STATUS      current
    DESCRIPTION
            "Information about a particular logical entity to physical
            equipment association. Note that the nature of the
            association is not specifically identified in this entry.
            It is expected that sufficient information exists in the
            MIBs used to manage a particular logical entity to infer how
            physical component information is utilized."
    INDEX       { entLogicalIndex, entLPPhysicalIndex }
    ::= { entLPMappingTable 1 }

EntLPMappingEntry ::= SEQUENCE {
      entLPPhysicalIndex         PhysicalIndex
}

entLPPhysicalIndex OBJECT-TYPE
    SYNTAX      PhysicalIndex
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The value of this object identifies the index value of a
            particular entPhysicalEntry associated with the indicated
            entLogicalEntity."
    ::= { entLPMappingEntry 1 }

-- logical entity/component to alias table
entAliasMappingTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF EntAliasMappingEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "This table contains zero or more rows, representing
            mappings of logical entity and physical component to
            external MIB identifiers.  Each physical port in the system
            may be associated with a mapping to an external identifier,
            which itself is associated with a particular logical
            entity's naming scope.  A 'wildcard' mechanism is provided
            to indicate that an identifier is associated with more than
            one logical entity."
    ::= { entityMapping 2 }

entAliasMappingEntry       OBJECT-TYPE
    SYNTAX      EntAliasMappingEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "Information about a particular physical equipment, logical
            entity to external identifier binding. Each logical



McCloghrie & Bierman        Standards Track                    [Page 30]

RFC 2737                 Entity MIB (Version 2)            December 1999


            entity/physical component pair may be associated with one
            alias mapping.  The logical entity index may also be used as
            a 'wildcard' (refer to the entAliasLogicalIndexOrZero object
            DESCRIPTION clause for details.)

            Note that only entPhysicalIndex values which represent
            physical ports (i.e. associated entPhysicalClass value is
            'port(10)') are permitted to exist in this table."
    INDEX { entPhysicalIndex, entAliasLogicalIndexOrZero }
    ::= { entAliasMappingTable 1 }

EntAliasMappingEntry ::= SEQUENCE {
      entAliasLogicalIndexOrZero        INTEGER,
      entAliasMappingIdentifier          RowPointer
}

entAliasLogicalIndexOrZero OBJECT-TYPE
    SYNTAX      INTEGER (0..2147483647)
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "The value of this object identifies the logical entity
            which defines the naming scope for the associated instance
            of the 'entAliasMappingIdentifier' object.

            If this object has a non-zero value, then it identifies the
            logical entity named by the same value of entLogicalIndex.

            If this object has a value of zero, then the mapping between
            the physical component and the alias identifier for this
            entAliasMapping entry is associated with all unspecified
            logical entities. That is, a value of zero (the default
            mapping) identifies any logical entity which does not have
            an explicit entry in this table for a particular
            entPhysicalIndex/entAliasMappingIdentifier pair.

            For example, to indicate that a particular interface (e.g.,
            physical component 33) is identified by the same value of
            ifIndex for all logical entities, the following instance
            might exist:

                    entAliasMappingIdentifier.33.0 = ifIndex.5

            In the event an entPhysicalEntry is associated differently
            for some logical entities, additional entAliasMapping
            entries may exist, e.g.:

                    entAliasMappingIdentifier.33.0 = ifIndex.6



McCloghrie & Bierman        Standards Track                    [Page 31]

RFC 2737                 Entity MIB (Version 2)            December 1999


                    entAliasMappingIdentifier.33.4 =  ifIndex.1
                    entAliasMappingIdentifier.33.5 =  ifIndex.1
                    entAliasMappingIdentifier.33.10 = ifIndex.12

            Note that entries with non-zero entAliasLogicalIndexOrZero
            index values have precedence over any zero-indexed entry. In
            this example, all logical entities except 4, 5, and 10,
            associate physical entity 33 with ifIndex.6."
    ::= { entAliasMappingEntry 1 }

entAliasMappingIdentifier OBJECT-TYPE
    SYNTAX      RowPointer
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The value of this object identifies a particular conceptual
            row associated with the indicated entPhysicalIndex and
            entLogicalIndex pair.

            Since only physical ports are modeled in this table, only
            entries which represent interfaces or ports are allowed.  If
            an ifEntry exists on behalf of a particular physical port,
            then this object should identify the associated 'ifEntry'.
            For repeater ports, the appropriate row in the
            'rptrPortGroupTable' should be identified instead.

            For example, suppose a physical port was represented by
            entPhysicalEntry.3, entLogicalEntry.15 existed for a
            repeater, and entLogicalEntry.22 existed for a bridge.  Then
            there might be two related instances of
            entAliasMappingIdentifier:
               entAliasMappingIdentifier.3.15 == rptrPortGroupIndex.5.2
               entAliasMappingIdentifier.3.22 == ifIndex.17
            It is possible that other mappings (besides interfaces and
            repeater ports) may be defined in the future, as required.

            Bridge ports are identified by examining the Bridge MIB and
            appropriate ifEntries associated with each 'dot1dBasePort',
            and are thus not represented in this table."
    ::= { entAliasMappingEntry 2 }

-- physical mapping table
entPhysicalContainsTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF EntPhysicalContainsEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "A table which exposes the container/'containee'



McCloghrie & Bierman        Standards Track                    [Page 32]

RFC 2737                 Entity MIB (Version 2)            December 1999


            relationships between physical entities. This table provides
            all the information found by constructing the virtual
            containment tree for a given entPhysicalTable, but in a more
            direct format.

            In the event a physical entity is contained by more than one
            other physical entity (e.g., double-wide modules), this
            table should include these additional mappings, which cannot
            be represented in the entPhysicalTable virtual containment
            tree."
    ::= { entityMapping 3 }

entPhysicalContainsEntry OBJECT-TYPE
    SYNTAX      EntPhysicalContainsEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
            "A single container/'containee' relationship."
    INDEX       { entPhysicalIndex, entPhysicalChildIndex }
    ::= { entPhysicalContainsTable 1 }

EntPhysicalContainsEntry ::= SEQUENCE {
      entPhysicalChildIndex     PhysicalIndex
}

entPhysicalChildIndex OBJECT-TYPE
    SYNTAX      PhysicalIndex
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The value of entPhysicalIndex for the contained physical
            entity."
    ::= { entPhysicalContainsEntry 1 }

-- last change time stamp for the whole MIB
entLastChangeTime OBJECT-TYPE
    SYNTAX      TimeStamp
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
            "The value of sysUpTime at the time a conceptual row is
            created, modified, or deleted in any of these tables:
                    - entPhysicalTable
                    - entLogicalTable
                    - entLPMappingTable
                    - entAliasMappingTable
                    - entPhysicalContainsTable
            "



McCloghrie & Bierman        Standards Track                    [Page 33]

RFC 2737                 Entity MIB (Version 2)            December 1999


    ::= { entityGeneral 1 }

-- Entity MIB Trap Definitions
entityMIBTraps      OBJECT IDENTIFIER ::= { entityMIB 2 }
entityMIBTrapPrefix OBJECT IDENTIFIER ::= { entityMIBTraps 0 }

entConfigChange NOTIFICATION-TYPE
    STATUS             current
    DESCRIPTION
            "An entConfigChange notification is generated when the value
            of entLastChangeTime changes. It can be utilized by an NMS
            to trigger logical/physical entity table maintenance polls.

            An agent should not generate more than one entConfigChange
            'notification-event' in a given time interval (five seconds
            is the suggested default).  A 'notification-event' is the
            transmission of a single trap or inform PDU to a list of
            notification destinations.

            If additional configuration changes occur within the
            throttling period, then notification-events for these
            changes should be suppressed by the agent until the current
            throttling period expires.  At the end of a throttling
            period, one notification-event should be generated if any
            configuration changes occurred since the start of the
            throttling period. In such a case, another throttling period
            is started right away.

            An NMS should periodically check the value of
            entLastChangeTime to detect any missed entConfigChange
            notification-events, e.g., due to throttling or transmission
            loss."
   ::= { entityMIBTrapPrefix 1 }

-- conformance information
entityConformance OBJECT IDENTIFIER ::= { entityMIB 3 }

entityCompliances OBJECT IDENTIFIER ::= { entityConformance 1 }
entityGroups      OBJECT IDENTIFIER ::= { entityConformance 2 }

-- compliance statements
entityCompliance MODULE-COMPLIANCE
    STATUS  deprecated
    DESCRIPTION
            "The compliance statement for SNMP entities which implement
            version 1 of the Entity MIB."
    MODULE  -- this module
        MANDATORY-GROUPS {



McCloghrie & Bierman        Standards Track                    [Page 34]

RFC 2737                 Entity MIB (Version 2)            December 1999


                           entityPhysicalGroup,
                           entityLogicalGroup,
                           entityMappingGroup,
                           entityGeneralGroup,
                           entityNotificationsGroup
        }
    ::= { entityCompliances 1 }

entity2Compliance MODULE-COMPLIANCE
    STATUS  current
    DESCRIPTION
            "The compliance statement for SNMP entities which implement
            version 2 of the Entity MIB."
    MODULE  -- this module
        MANDATORY-GROUPS {
                           entityPhysicalGroup,
                           entityPhysical2Group,
                           entityGeneralGroup,
                           entityNotificationsGroup
        }
        GROUP entityLogical2Group
        DESCRIPTION
            "Implementation of this group is not mandatory for agents
            which model all MIB object instances within a single naming
            scope."

        GROUP entityMappingGroup
        DESCRIPTION
            "Implementation of the entPhysicalContainsTable is mandatory
            for all agents.  Implementation of the entLPMappingTable and
            entAliasMappingTables are not mandatory for agents which
            model all MIB object instances within a single naming scope.

            Note that the entAliasMappingTable may be useful for all
            agents, however implementation of the entityLogicalGroup or
            entityLogical2Group is required to support this table."

        OBJECT entPhysicalSerialNum
        MIN-ACCESS   not-accessible
        DESCRIPTION
            "Read and write access is not required for agents which
            cannot identify serial number information for physical
            entities, and/or cannot provide non-volatile storage for
            NMS-assigned serial numbers.

            Write access is not required for agents which can identify
            serial number information for physical entities, but cannot
            provide non-volatile storage for NMS-assigned serial



McCloghrie & Bierman        Standards Track                    [Page 35]

RFC 2737                 Entity MIB (Version 2)            December 1999


            numbers.

            Write access is not required for physical entities for
            physical entities for which the associated value of the
            entPhysicalIsFRU object is equal to 'false(2)'."

        OBJECT entPhysicalAlias
        MIN-ACCESS   read-only
        DESCRIPTION
            "Write access is required only if the associated
            entPhysicalClass value is equal to 'chassis(3)'."

        OBJECT entPhysicalAssetID
        MIN-ACCESS   not-accessible
        DESCRIPTION
            "Read and write access is not required for agents which
            cannot provide non-volatile storage for NMS-assigned asset
            identifiers.

            Write access is not required for physical entities for which
            the associated value of entPhysicalIsFRU is equal to
            'false(2)'."
    ::= { entityCompliances 2 }

-- MIB groupings
entityPhysicalGroup    OBJECT-GROUP
    OBJECTS {
              entPhysicalDescr,
              entPhysicalVendorType,
              entPhysicalContainedIn,
              entPhysicalClass,
              entPhysicalParentRelPos,
              entPhysicalName
            }
    STATUS  current
    DESCRIPTION
            "The collection of objects which are used to represent
            physical system components, for which a single agent
            provides management information."
    ::= { entityGroups 1 }

entityLogicalGroup    OBJECT-GROUP
    OBJECTS {
              entLogicalDescr,
              entLogicalType,
              entLogicalCommunity,
              entLogicalTAddress,
              entLogicalTDomain



McCloghrie & Bierman        Standards Track                    [Page 36]

RFC 2737                 Entity MIB (Version 2)            December 1999


            }
    STATUS  deprecated
    DESCRIPTION
            "The collection of objects which are used to represent the
            list of logical entities for which a single agent provides
            management information."
    ::= { entityGroups 2 }

entityMappingGroup    OBJECT-GROUP
    OBJECTS {
              entLPPhysicalIndex,
              entAliasMappingIdentifier,
              entPhysicalChildIndex
            }
    STATUS  current
    DESCRIPTION
            "The collection of objects which are used to represent the
            associations between multiple logical entities, physical
            components, interfaces, and port identifiers for which a
            single agent provides management information."
    ::= { entityGroups 3 }

entityGeneralGroup    OBJECT-GROUP
    OBJECTS {
              entLastChangeTime
            }
    STATUS  current
    DESCRIPTION
            "The collection of objects which are used to represent
            general entity information for which a single agent provides
            management information."
    ::= { entityGroups 4 }

entityNotificationsGroup NOTIFICATION-GROUP
    NOTIFICATIONS { entConfigChange }
    STATUS        current
    DESCRIPTION
            "The collection of notifications used to indicate Entity MIB
            data consistency and general status information."
    ::= { entityGroups 5 }

entityPhysical2Group    OBJECT-GROUP
    OBJECTS {
              entPhysicalHardwareRev,
              entPhysicalFirmwareRev,
              entPhysicalSoftwareRev,
              entPhysicalSerialNum,
              entPhysicalMfgName,



McCloghrie & Bierman        Standards Track                    [Page 37]

RFC 2737                 Entity MIB (Version 2)            December 1999


              entPhysicalModelName,
              entPhysicalAlias,
              entPhysicalAssetID,
              entPhysicalIsFRU
            }

    STATUS  current
    DESCRIPTION
            "The collection of objects which are used to represent
            physical system components, for which a single agent
            provides management information.  This group augments the
            objects contained in the entityPhysicalGroup."
    ::= { entityGroups 6 }

entityLogical2Group    OBJECT-GROUP
    OBJECTS {
              entLogicalDescr,
              entLogicalType,
              entLogicalTAddress,
              entLogicalTDomain,
              entLogicalContextEngineID,
              entLogicalContextName
            }
    STATUS  current
    DESCRIPTION
            "The collection of objects which are used to represent the
            list of logical entities for which a single SNMP entity
            provides management information."
    ::= { entityGroups 7 }

END

4.  Usage Examples

   The following sections iterate the instance values for two example
   networking devices. These examples are kept simple to make them more
   understandable. Auxiliary components, such as fans, sensors, empty
   slots, and sub-modules are not shown, but might be modeled in real
   implementations.

4.1.  Router/Bridge

   A router containing two slots.  Each slot contains a 3 port
   router/bridge module. Each port is represented in the ifTable.  There
   are two logical instances of OSPF running and two logical bridges:

   Physical entities -- entPhysicalTable:
     1 Field-replaceable physical chassis:



McCloghrie & Bierman        Standards Track                    [Page 38]

RFC 2737                 Entity MIB (Version 2)            December 1999


       entPhysicalDescr.1 ==             'Acme Chassis Model 100'
       entPhysicalVendorType.1 ==        acmeProducts.chassisTypes.1
       entPhysicalContainedIn.1 ==       0
       entPhysicalClass.1 ==             chassis(3)
       entPhysicalParentRelPos.1 ==      0
       entPhysicalName.1 ==              '100-A'
       entPhysicalHardwareRev.1 ==       'A(1.00.02)'
       entPhysicalSoftwareRev.1 ==       ''
       entPhysicalFirmwareRev.1 ==       ''
       entPhysicalSerialNum.1 ==         'C100076544'
       entPhysicalMfgName.1 ==           'Acme'
       entPhysicalModelName.1 ==         '100'
       entPhysicalAlias.1 ==             'cl-SJ17-3-006:rack1:rtr-U3'
       entPhysicalAssetID.1 ==           '0007372293'
       entPhysicalIsFRU.1 ==             true(1)

     2 slots within the chassis:
       entPhysicalDescr.2 ==             'Acme Chassis Slot Type AA'
       entPhysicalVendorType.2  ==       acmeProducts.slotTypes.1
       entPhysicalContainedIn.2 ==       1
       entPhysicalClass.2 ==             container(5)
       entPhysicalParentRelPos.2 ==      1
       entPhysicalName.2 ==              'S1'
       entPhysicalHardwareRev.2 ==       'B(1.00.01)'
       entPhysicalSoftwareRev.2 ==       ''
       entPhysicalFirmwareRev.2 ==       ''
       entPhysicalSerialNum.2 ==         ''
       entPhysicalMfgName.2 ==           'Acme'
       entPhysicalModelName.2 ==         'AA'
       entPhysicalAlias.2 ==             ''
       entPhysicalAssetID.2 ==           ''
       entPhysicalIsFRU.2 ==             false(2)

       entPhysicalDescr.3 ==             'Acme Chassis Slot Type AA'
       entPhysicalVendorType.3 =         acmeProducts.slotTypes.1
       entPhysicalContainedIn.3 ==       1
       entPhysicalClass.3 ==             container(5)
       entPhysicalParentRelPos.3 ==      2
       entPhysicalName.3 ==              'S2'
       entPhysicalHardwareRev.3 ==       '1.00.07'
       entPhysicalSoftwareRev.3 ==       ''
       entPhysicalFirmwareRev.3 ==       ''
       entPhysicalSerialNum.3 ==         ''
       entPhysicalMfgName.3 ==           'Acme'
       entPhysicalModelName.3 ==         'AA'
       entPhysicalAlias.3 ==             ''
       entPhysicalAssetID.3 ==           ''
       entPhysicalIsFRU.3 ==             false(2)



McCloghrie & Bierman        Standards Track                    [Page 39]

RFC 2737                 Entity MIB (Version 2)            December 1999


     2 Field-replaceable modules:
     Slot 1 contains a module with 3 ports:
       entPhysicalDescr.4 ==             'Acme Router-100'
       entPhysicalVendorType.4  ==       acmeProducts.moduleTypes.14
       entPhysicalContainedIn.4 ==       2
       entPhysicalClass.4 ==             module(9)
       entPhysicalParentRelPos.4 ==      1
       entPhysicalName.4 ==              'M1'
       entPhysicalHardwareRev.4 ==       '1.00.07'
       entPhysicalSoftwareRev.4 ==       '1.4.1'
       entPhysicalFirmwareRev.4 ==       'A(1.1)'
       entPhysicalSerialNum.4 ==         'C100087363'
       entPhysicalMfgName.4 ==           'Acme'
       entPhysicalModelName.4 ==         'R100-FE'
       entPhysicalAlias.4 ==             'rtr-U3:m1:SJ17-3-eng'
       entPhysicalAssetID.4 ==           '0007372462'
       entPhysicalIsFRU.4 ==             true(1)

       entPhysicalDescr.5 ==             'Acme Ethernet-100 Port'
       entPhysicalVendorType.5  ==       acmeProducts.portTypes.2
       entPhysicalContainedIn.5 ==       4
       entPhysicalClass.5 ==             port(10)
       entPhysicalParentRelPos.5 ==      1
       entPhysicalName.5 ==              'P1'
       entPhysicalHardwareRev.5 ==       'G(1.02)'
       entPhysicalSoftwareRev.5 ==       ''
       entPhysicalFirmwareRev.5 ==       '1.1'
       entPhysicalSerialNum.5 ==         ''
       entPhysicalMfgName.5 ==           'Acme'
       entPhysicalModelName.5 ==         'FE-100'
       entPhysicalAlias.5 ==             ''
       entPhysicalAssetID.5 ==           ''
       entPhysicalIsFRU.5 ==             false(2)

       entPhysicalDescr.6 ==             'Acme Ethernet-100 Port'
       entPhysicalVendorType.6  ==       acmeProducts.portTypes.2
       entPhysicalContainedIn.6 ==       4
       entPhysicalClass.6 ==             port(10)
       entPhysicalParentRelPos.6 ==      2
       entPhysicalName.6 ==              'P2'
       entPhysicalHardwareRev.6 ==       'G(1.02)'
       entPhysicalSoftwareRev.6 ==       ''
       entPhysicalFirmwareRev.6 ==       '1.1'
       entPhysicalSerialNum.6 ==         ''
       entPhysicalMfgName.6 ==           'Acme'
       entPhysicalModelName.6 ==         'FE-100'
       entPhysicalAlias.6 ==             ''
       entPhysicalAssetID.6 ==           ''



McCloghrie & Bierman        Standards Track                    [Page 40]

RFC 2737                 Entity MIB (Version 2)            December 1999


       entPhysicalIsFRU.6 ==             false(2)

       entPhysicalDescr.7 ==             'Acme Router-100 FDDI-Port'
       entPhysicalVendorType.7  ==       acmeProducts.portTypes.3
       entPhysicalContainedIn.7 ==       4
       entPhysicalClass.7 ==             port(10)
       entPhysicalParentRelPos.7 ==      3
       entPhysicalName.7 ==              'P3'
       entPhysicalHardwareRev.7 ==       'B(1.03)'
       entPhysicalSoftwareRev.7 ==       '2.5.1'
       entPhysicalFirmwareRev.7 ==       '2.5F'
       entPhysicalSerialNum.7 ==         ''
       entPhysicalMfgName.7 ==           'Acme'
       entPhysicalModelName.7 ==         'FDDI-100'
       entPhysicalAlias.7 ==             ''
       entPhysicalAssetID.7 ==           ''
       entPhysicalIsFRU.7 ==             false(2)

     Slot 2 contains another 3-port module:
       entPhysicalDescr.8 ==             'Acme Router-100 Comm Module'
       entPhysicalVendorType.8  ==       acmeProducts.moduleTypes.15
       entPhysicalContainedIn.8 ==       3
       entPhysicalClass.8 ==             module(9)
       entPhysicalParentRelPos.8 ==      1
       entPhysicalName.8 ==              'M2'
       entPhysicalHardwareRev.8 ==       '2.01.00'
       entPhysicalSoftwareRev.8 ==       '3.0.7'
       entPhysicalFirmwareRev.8 ==       'A(1.2)'
       entPhysicalSerialNum.8 ==         'C100098732'
       entPhysicalMfgName.8 ==           'Acme'
       entPhysicalModelName.8 ==         'C100'
       entPhysicalAlias.8 ==             'rtr-U3:m2:SJ17-2-eng'
       entPhysicalAssetID.8 ==           '0007373982'
       entPhysicalIsFRU.8 ==             true(1)

       entPhysicalDescr.9 ==             'Acme Fddi-100 Port'
       entPhysicalVendorType.9 ==        acmeProducts.portTypes.5
       entPhysicalContainedIn.9 ==       8
       entPhysicalClass.9 ==             port(10)
       entPhysicalParentRelPos.9 ==      1
       entPhysicalName.9 ==              'FDDI Primary'
       entPhysicalHardwareRev.9 ==       'CC(1.07)'
       entPhysicalSoftwareRev.9 ==       '2.0.34'
       entPhysicalFirmwareRev.9 ==       '1.1'
       entPhysicalSerialNum.9 ==         ''
       entPhysicalMfgName.9 ==           'Acme'
       entPhysicalModelName.9 ==         'FDDI-100'
       entPhysicalAlias.9 ==             ''



McCloghrie & Bierman        Standards Track                    [Page 41]

RFC 2737                 Entity MIB (Version 2)            December 1999


       entPhysicalAssetID.9 ==           ''
       entPhysicalIsFRU.9 ==             false(2)

       entPhysicalDescr.10 ==            'Acme Ethernet-100 Port'
       entPhysicalVendorType.10 ==       acmeProducts.portTypes.2
       entPhysicalContainedIn.10 ==      8
       entPhysicalClass.10 ==            port(10)
       entPhysicalParentRelPos.10 ==     2
       entPhysicalName.10 ==             'Ethernet A'
       entPhysicalHardwareRev.10 ==      'G(1.04)'
       entPhysicalSoftwareRev.10 ==      ''
       entPhysicalFirmwareRev.10 ==      '1.3'
       entPhysicalSerialNum.10 ==        ''
       entPhysicalMfgName.10 ==          'Acme'
       entPhysicalModelName.10 ==        'FE-100'
       entPhysicalAlias.10 ==            ''
       entPhysicalAssetID.10 ==          ''
       entPhysicalIsFRU.10 ==            false(2)
       entPhysicalDescr.11 ==            'Acme Ethernet-100 Port'
       entPhysicalVendorType.11 ==       acmeProducts.portTypes.2
       entPhysicalContainedIn.11 ==      8
       entPhysicalClass.11 ==            port(10)
       entPhysicalParentRelPos.11 ==     3
       entPhysicalName.11 ==             'Ethernet B'
       entPhysicalHardwareRev.11 ==      'G(1.04)'
       entPhysicalSoftwareRev.11 ==      ''
       entPhysicalFirmwareRev.11 ==      '1.3'
       entPhysicalSerialNum.11 ==        ''
       entPhysicalMfgName.11 ==          'Acme'
       entPhysicalModelName.11 ==        'FE-100'
       entPhysicalAlias.11 ==            ''
       entPhysicalAssetID.11 ==          ''
       entPhysicalIsFRU.11 ==            false(2)

   Logical entities -- entLogicalTable; no SNMPv3 support
     2 OSPF instances:
       entLogicalDescr.1 ==              'Acme OSPF v1.1'
       entLogicalType.1 ==               ospf
       entLogicalCommunity.1 ==          'public-ospf1'
       entLogicalTAddress.1 ==           124.125.126.127:161
       entLogicalTDomain.1 ==            snmpUDPDomain
       entLogicalContextEngineID.1 ==    ''
       entLogicalContextName.1 ==        ''

       entLogicalDescr.2 ==              'Acme OSPF v1.1'
       entLogicalType.2 ==               ospf
       entLogicalCommunity.2 ==          'public-ospf2'
       entLogicalTAddress.2 ==           124.125.126.127:161



McCloghrie & Bierman        Standards Track                    [Page 42]

RFC 2737                 Entity MIB (Version 2)            December 1999


       entLogicalTDomain.2 ==            snmpUDPDomain
       entLogicalContextEngineID.2 ==    ''
       entLogicalContextName.2 ==        ''

     2 logical bridges:
       entLogicalDescr.3 ==              'Acme Bridge v2.1.1'
       entLogicalType.3  ==              dot1dBridge
       entLogicalCommunity.3 ==          'public-bridge1'
       entLogicalTAddress.3 ==           124.125.126.127:161
       entLogicalTDomain.3 ==            snmpUDPDomain
       entLogicalContextEngineID.3 ==    ''
       entLogicalContextName.3 ==        ''

       entLogicalDescr.4 ==              'Acme Bridge v2.1.1'
       entLogicalType.4 ==               dot1dBridge
       entLogicalCommunity.4 ==          'public-bridge2'
       entLogicalTAddress.4 ==           124.125.126.127:161
       entLogicalTDomain.4 ==            snmpUDPDomain
       entLogicalContextEngineID.4 ==    ''
       entLogicalContextName.4 ==        ''

   Logical to Physical Mappings:
     1st OSPF instance: uses module 1-port 1
         entLPPhysicalIndex.1.5 ==         5

     2nd OSPF instance: uses module 2-port 1
         entLPPhysicalIndex.2.9 ==         9

     1st bridge group: uses module 1, all ports

     [ed. -- Note that these mappings are included in the table since
     another logical entity (1st OSPF) utilizes one of the
     ports. If this were not the case, then a single mapping
     to the module (e.g., entLPPhysicalIndex.3.4) would be
     present instead. ]
         entLPPhysicalIndex.3.5 ==         5
         entLPPhysicalIndex.3.6 ==         6
         entLPPhysicalIndex.3.7 ==         7

     2nd bridge group: uses module 2, all ports
         entLPPhysicalIndex.4.9  ==        9
         entLPPhysicalIndex.4.10 ==        10
         entLPPhysicalIndex.4.11 ==        11

   Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:
     Example 1: ifIndex values are global to all logical entities
         entAliasMappingIdentifier.5.0 ==  ifIndex.1
         entAliasMappingIdentifier.6.0 ==  ifIndex.2



McCloghrie & Bierman        Standards Track                    [Page 43]

RFC 2737                 Entity MIB (Version 2)            December 1999


         entAliasMappingIdentifier.7.0 ==  ifIndex.3
         entAliasMappingIdentifier.9.0 ==  ifIndex.4
         entAliasMappingIdentifier.10.0 == ifIndex.5
         entAliasMappingIdentifier.11.0 == ifIndex.6

     Example 2: ifIndex values are not shared by all logical entities
         entAliasMappingIdentifier.5.0 ==  ifIndex.1
         entAliasMappingIdentifier.5.3 ==  ifIndex.101
         entAliasMappingIdentifier.6.0 ==  ifIndex.2
         entAliasMappingIdentifier.6.3 ==  ifIndex.102
         entAliasMappingIdentifier.7.0 ==  ifIndex.3
         entAliasMappingIdentifier.7.3 ==  ifIndex.103
         entAliasMappingIdentifier.9.0 ==  ifIndex.4
         entAliasMappingIdentifier.9.3 ==  ifIndex.204
         entAliasMappingIdentifier.10.0 == ifIndex.5
         entAliasMappingIdentifier.10.3 == ifIndex.205
         entAliasMappingIdentifier.11.0 == ifIndex.6
         entAliasMappingIdentifier.11.3 == ifIndex.206

   Physical Containment Tree -- entPhysicalContainsTable
     chassis has two containers:
         entPhysicalChildIndex.1.2 ==      2
         entPhysicalChildIndex.1.3 ==      3

     container 1 has a module:
         entPhysicalChildIndex.2.4 ==      4

     container 2 has a module:
         entPhysicalChildIndex.3.8 ==      8

     module 1 has 3 ports:
         entPhysicalChildIndex.4.5 ==      5
         entPhysicalChildIndex.4.6 ==      6
         entPhysicalChildIndex.4.7 ==      7

     module 2 has 3 ports:
         entPhysicalChildIndex.8.9 ==      9
         entPhysicalChildIndex.8.10 ==     10
         entPhysicalChildIndex.1.11 ==     11

4.2.  Repeaters

   A 3-slot Hub with 2 backplane ethernet segments.  Slot three is
   empty, and the remaining slots contain ethernet repeater modules.

   Note that this example assumes an older Repeater MIB implementation,
   (RFC 1516 [RFC1516]) rather than the new Repeater MIB (RFC 2108
   [RFC2108]).  The new version contains an object called '



McCloghrie & Bierman        Standards Track                    [Page 44]

RFC 2737                 Entity MIB (Version 2)            December 1999


   rptrPortRptrId', which should be used to identify repeater port
   groupings, rather than with community strings or contexts.

Physical entities -- entPhysicalTable:
   1 Field-replaceable physical chassis:
      entPhysicalDescr.1 ==          'Acme Chassis Model 110'
      entPhysicalVendorType.1 ==     acmeProducts.chassisTypes.2
      entPhysicalContainedIn.1 ==    0
      entPhysicalClass.1 ==          chassis(3)
      entPhysicalParentRelPos.1 ==   0
      entPhysicalName.1 ==           '110-B'
      entPhysicalHardwareRev.1 ==    'A(1.02.00)'
      entPhysicalSoftwareRev.1 ==    ''
      entPhysicalFirmwareRev.1 ==    ''
      entPhysicalSerialNum.1 ==      'C100079294'
      entPhysicalMfgName.1 ==        'Acme'
      entPhysicalModelName.1 ==      '110'
      entPhysicalAlias.1 ==          'bldg09:floor1:rptr18:0067eea0229f'
      entPhysicalAssetID.1 ==        '0007386327'
      entPhysicalIsFRU.1 ==          true(1)

   2 Chassis Ethernet Backplanes:
      entPhysicalDescr.2 ==          'Acme Ethernet Backplane Type A'
      entPhysicalVendorType.2 ==     acmeProducts.backplaneTypes.1
      entPhysicalContainedIn.2 ==    1
      entPhysicalClass.2 ==          backplane(4)
      entPhysicalParentRelPos.2 ==   1
      entPhysicalName.2 ==           'B1'
      entPhysicalHardwareRev.2 ==    'A(2.04.01)'
      entPhysicalSoftwareRev.2 ==    ''
      entPhysicalFirmwareRev.2 ==    ''
      entPhysicalSerialNum.2 ==      ''
      entPhysicalMfgName.2 ==        'Acme'
      entPhysicalModelName.2 ==      'BK-A'
      entPhysicalAlias.2 ==          ''
      entPhysicalAssetID.2 ==        ''
      entPhysicalIsFRU.2 ==          false(2)

      entPhysicalDescr.3 ==          'Acme Ethernet Backplane Type A'
      entPhysicalVendorType.3  ==    acmeProducts.backplaneTypes.1
      entPhysicalContainedIn.3 ==    1
      entPhysicalClass.3 ==          backplane(4)
      entPhysicalParentRelPos.3 ==   2
      entPhysicalName.3 ==           'B2'
      entPhysicalHardwareRev.3 ==    'A(2.04.01)'
      entPhysicalSoftwareRev.3 ==    ''
      entPhysicalFirmwareRev.3 ==    ''
      entPhysicalSerialNum.3 ==      ''



McCloghrie & Bierman        Standards Track                    [Page 45]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalMfgName.3 ==        'Acme'
      entPhysicalModelName.3 ==      'BK-A'
      entPhysicalAlias.3 ==          ''
      entPhysicalAssetID.3 ==        ''
      entPhysicalIsFRU.3 ==          false(2)

   3 slots within the chassis:
      entPhysicalDescr.4 ==          'Acme Hub Slot Type RB'
      entPhysicalVendorType.4  ==    acmeProducts.slotTypes.5
      entPhysicalContainedIn.4 ==    1
      entPhysicalClass.4 ==          container(5)
      entPhysicalParentRelPos.4 ==   1
      entPhysicalName.4 ==           'Slot 1'
      entPhysicalHardwareRev.4 ==    'B(1.00.03)'
      entPhysicalSoftwareRev.4 ==    ''
      entPhysicalFirmwareRev.4 ==    ''
      entPhysicalSerialNum.4 ==      ''
      entPhysicalMfgName.4 ==        'Acme'
      entPhysicalModelName.4 ==      'RB'
      entPhysicalAlias.4 ==          ''
      entPhysicalAssetID.4 ==        ''
      entPhysicalIsFRU.4 ==          false(2)

      entPhysicalDescr.5 ==          'Acme Hub Slot Type RB'
      entPhysicalVendorType.5  ==    acmeProducts.slotTypes.5
      entPhysicalContainedIn.5 ==    1
      entPhysicalClass.5 ==          container(5)
      entPhysicalParentRelPos.5 ==   2
      entPhysicalName.5 ==           'Slot 2'
      entPhysicalHardwareRev.5 ==    'B(1.00.03)'
      entPhysicalSoftwareRev.5 ==    ''
      entPhysicalFirmwareRev.5 ==    ''
      entPhysicalSerialNum.5 ==      ''
      entPhysicalMfgName.5 ==        'Acme'
      entPhysicalModelName.5 ==      'RB'
      entPhysicalAlias.5 ==          ''
      entPhysicalAssetID.5 ==        ''
      entPhysicalIsFRU.5 ==          false(2)

      entPhysicalDescr.6 ==          'Acme Hub Slot Type RB'
      entPhysicalVendorType.6  ==    acmeProducts.slotTypes.5
      entPhysicalContainedIn.6 ==    1
      entPhysicalClass.6 ==          container(5)
      entPhysicalParentRelPos.6 ==   3
      entPhysicalName.6 ==           'Slot 3'
      entPhysicalHardwareRev.6 ==    'B(1.00.03)'
      entPhysicalSoftwareRev.6 ==    ''
      entPhysicalFirmwareRev.6 ==    ''



McCloghrie & Bierman        Standards Track                    [Page 46]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalSerialNum.6 ==      ''
      entPhysicalMfgName.6 ==        'Acme'
      entPhysicalModelName.6 ==      'RB'
      entPhysicalAlias.6 ==          ''
      entPhysicalAssetID.6 ==        ''
      entPhysicalIsFRU.6 ==          false(2)

   Slot 1 contains a plug-in module with 4 10-BaseT ports:
      entPhysicalDescr.7  ==         'Acme 10Base-T Module 114'
      entPhysicalVendorType.7 ==     acmeProducts.moduleTypes.32
      entPhysicalContainedIn.7  ==   4
      entPhysicalClass.7 ==          module(9)
      entPhysicalParentRelPos.7 ==   1
      entPhysicalName.7 ==           'M1'
      entPhysicalHardwareRev.7 ==    'A(1.02.01)'
      entPhysicalSoftwareRev.7 ==    '1.7.2'
      entPhysicalFirmwareRev.7 ==    'A(1.5)'
      entPhysicalSerialNum.7 ==      'C100096244'
      entPhysicalMfgName.7 ==        'Acme'
      entPhysicalModelName.7 =       '114'
      entPhysicalAlias.7 ==          'bldg09:floor1:eng'
      entPhysicalAssetID.7 ==        '0007962951'
      entPhysicalIsFRU.7 ==          true(1)

      entPhysicalDescr.8 ==          'Acme 10Base-T Port RB'
      entPhysicalVendorType.8 ==     acmeProducts.portTypes.10
      entPhysicalContainedIn.8  ==   7
      entPhysicalClass.8 ==          port(10)
      entPhysicalParentRelPos.8 ==   1
      entPhysicalName.8 ==           'Ethernet-A'
      entPhysicalHardwareRev.8 ==    'A(1.04F)'
      entPhysicalSoftwareRev.8 ==    ''
      entPhysicalFirmwareRev.8 ==    '1.4'
      entPhysicalSerialNum.8 ==      ''
      entPhysicalMfgName.8 ==        'Acme'
      entPhysicalModelName.8 ==      'RB'
      entPhysicalAlias.8 ==          ''
      entPhysicalAssetID.8 ==        ''
      entPhysicalIsFRU.8 ==          false(2)

      entPhysicalDescr.9  ==         'Acme 10Base-T Port RB'
      entPhysicalVendorType.9 ==     acmeProducts.portTypes.10
      entPhysicalContainedIn.9 ==    7
      entPhysicalClass.9 ==          port(10)
      entPhysicalParentRelPos.9 ==   2
      entPhysicalName.9 ==           'Ethernet-B'
      entPhysicalHardwareRev.9 ==    'A(1.04F)'
      entPhysicalSoftwareRev.9 ==    ''



McCloghrie & Bierman        Standards Track                    [Page 47]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalFirmwareRev.9 ==    '1.4'
      entPhysicalSerialNum.9 ==      ''
      entPhysicalMfgName.9 ==        'Acme'
      entPhysicalModelName.9 =       'RB'
      entPhysicalAlias.9 ==          ''
      entPhysicalAssetID.9 ==        ''
      entPhysicalIsFRU.9 ==          false(2)

      entPhysicalDescr.10 ==         'Acme 10Base-T Port RB'
      entPhysicalVendorType.10 ==    acmeProducts.portTypes.10
      entPhysicalContainedIn.10 ==   7
      entPhysicalClass.10 ==         port(10)
      entPhysicalParentRelPos.10 ==  3
      entPhysicalName.10 ==          'Ethernet-C'
      entPhysicalHardwareRev.10 ==   'B(1.02.07)'
      entPhysicalSoftwareRev.10 ==   ''
      entPhysicalFirmwareRev.10 ==   '1.4'
      entPhysicalSerialNum.10 ==     ''
      entPhysicalMfgName.10 ==       'Acme'
      entPhysicalModelName.10 ==     'RB'
      entPhysicalAlias.10 ==         ''
      entPhysicalAssetID.10 ==       ''
      entPhysicalIsFRU.10 ==         false(2)

      entPhysicalDescr.11 ==         'Acme 10Base-T Port RB'
      entPhysicalVendorType.11  ==   acmeProducts.portTypes.10
      entPhysicalContainedIn.11 ==   7
      entPhysicalClass.11 ==         port(10)
      entPhysicalParentRelPos.11 ==  4
      entPhysicalName.11 ==          'Ethernet-D'
      entPhysicalHardwareRev.11 ==   'B(1.02.07)'
      entPhysicalSoftwareRev.11 ==   ''
      entPhysicalFirmwareRev.11 ==   '1.4'
      entPhysicalSerialNum.11 ==     ''
      entPhysicalMfgName.11 ==       'Acme'
      entPhysicalModelName.11 ==     'RB'
      entPhysicalAlias.11 ==         ''
      entPhysicalAssetID.11 ==       ''
      entPhysicalIsFRU.11 ==         false(2)

   Slot 2 contains another ethernet module with 2 ports.
      entPhysicalDescr.12 ==         'Acme 10Base-T Module Model 4'
      entPhysicalVendorType.12 ==    acmeProducts.moduleTypes.30
      entPhysicalContainedIn.12 =    5
      entPhysicalClass.12 ==         module(9)
      entPhysicalParentRelPos.12 ==  1
      entPhysicalName.12 ==          'M2'
      entPhysicalHardwareRev.12 ==   'A(1.01.07)'



McCloghrie & Bierman        Standards Track                    [Page 48]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalSoftwareRev.12 ==   '1.8.4'
      entPhysicalFirmwareRev.12 ==   'A(1.8)'
      entPhysicalSerialNum.12 ==     'C100102384'
      entPhysicalMfgName.12 ==       'Acme'
      entPhysicalModelName.12 ==     '4'
      entPhysicalAlias.12 ==         'bldg09:floor1:devtest'
      entPhysicalAssetID.12 ==       '0007968462'
      entPhysicalIsFRU.12 ==         true(1)

      entPhysicalDescr.13 ==         'Acme 802.3 AUI Port'
      entPhysicalVendorType.13  ==   acmeProducts.portTypes.11
      entPhysicalContainedIn.13 ==   12
      entPhysicalClass.13 ==         port(10)
      entPhysicalParentRelPos.13 ==  1
      entPhysicalName.13 ==          'AUI'
      entPhysicalHardwareRev.13 ==   'A(1.06F)'
      entPhysicalSoftwareRev.13 ==   ''
      entPhysicalFirmwareRev.13 ==   '1.5'
      entPhysicalSerialNum.13 ==     ''
      entPhysicalMfgName.13 ==       'Acme'
      entPhysicalModelName.13 ==     ''
      entPhysicalAlias.13 ==         ''
      entPhysicalAssetID.13 ==       ''
      entPhysicalIsFRU.13 ==         false(2)

      entPhysicalDescr.14 ==         'Acme 10Base-T Port RD'
      entPhysicalVendorType.14  ==   acmeProducts.portTypes.14
      entPhysicalContainedIn.14 ==   12
      entPhysicalClass.14 ==         port(10)
      entPhysicalParentRelPos.14 ==  2
      entPhysicalName.14 ==          'E2'
      entPhysicalHardwareRev.14 ==   'B(1.01.02)'
      entPhysicalSoftwareRev.14 ==   ''
      entPhysicalFirmwareRev.14 ==   '2.1'
      entPhysicalSerialNum.14 ==     ''
      entPhysicalMfgName.14 ==       'Acme'
      entPhysicalModelName.14 ==     ''
      entPhysicalAlias.14 ==         ''
      entPhysicalAssetID.14 ==       ''
      entPhysicalIsFRU.14 ==         false(2)

Logical entities -- entLogicalTable; with SNMPv3 support
   Repeater 1--comprised of any ports attached to backplane 1
      entLogicalDescr.1 ==           'Acme repeater v3.1'
      entLogicalType.1  ==           snmpDot3RptrMgt
      entLogicalCommunity.1          'public-repeater1'
      entLogicalTAddress.1 ==        124.125.126.127:161
      entLogicalTDomain.1 ==         snmpUDPDomain



McCloghrie & Bierman        Standards Track                    [Page 49]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entLogicalContextEngineID.1 == '80000777017c7d7e7f'H
      entLogicalContextName.1 ==     'repeater1'

   Repeater 2--comprised of any ports attached to backplane 2:
      entLogicalDescr.2 ==           'Acme repeater v3.1'
      entLogicalType.2  ==           snmpDot3RptrMgt
      entLogicalCommunity.2 ==       'public-repeater2'
      entLogicalTAddress.2 ==        124.125.126.127:161
      entLogicalTDomain.2 ==         snmpUDPDomain
      entLogicalContextEngineID.2 == '80000777017c7d7e7f'H
      entLogicalContextName.2 ==     'repeater2'

Logical to Physical Mappings -- entLPMappingTable:

  repeater1 uses backplane 1, slot 1-ports 1 & 2, slot 2-port 1
  [ed. -- Note that a mapping to the module is not included,
   since in this example represents a port-switchable hub.
   Even though all ports on the module could belong to the
   same repeater as a matter of configuration, the LP port
   mappings should not be replaced dynamically with a single
   mapping for the module (e.g., entLPPhysicalIndex.1.7).
   If all ports on the module shared a single backplane connection,
   then a single mapping for the module would be more appropriate. ]

     entLPPhysicalIndex.1.2 ==       2
     entLPPhysicalIndex.1.8 ==       8
     entLPPhysicalIndex.1.9 ==       9
     entLPPhysicalIndex.1.13 ==      13

  repeater2 uses backplane 2, slot 1-ports 3 & 4, slot 2-port 2
      entLPPhysicalIndex.2.3 ==      3
      entLPPhysicalIndex.2.10 ==     10
      entLPPhysicalIndex.2.11 ==     11
      entLPPhysicalIndex.2.14 ==     14

Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:
  Repeater Port Identifier values are shared by both repeaters:
      entAliasMappingIdentifier.8.0 ==      rptrPortGroupIndex.1.1
      entAliasMappingIdentifier.9.0 ==      rptrPortGroupIndex.1.2
      entAliasMappingIdentifier.10.0 ==     rptrPortGroupIndex.1.3
      entAliasMappingIdentifier.11.0 ==     rptrPortGroupIndex.1.4
      entAliasMappingIdentifier.13.0 ==     rptrPortGroupIndex.2.1
      entAliasMappingIdentifier.14.0 ==     rptrPortGroupIndex.2.2

Physical Containment Tree -- entPhysicalContainsTable
  chassis has two backplanes and three containers:
      entPhysicalChildIndex.1.2 ==   2
      entPhysicalChildIndex.1.3 ==   3



McCloghrie & Bierman        Standards Track                    [Page 50]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalChildIndex.1.4 ==   4
      entPhysicalChildIndex.1.5 ==   5
      entPhysicalChildIndex.1.6 ==   6

  container 1 has a module:
      entPhysicalChildIndex.4.7 ==   7

  container 2 has a module
      entPhysicalChildIndex.5.12 ==  12
  [ed. - in this example, container 3 is empty.]

  module 1 has 4 ports:
      entPhysicalChildIndex.7.8 ==   8
      entPhysicalChildIndex.7.9 ==   9
      entPhysicalChildIndex.7.10 ==  10
      entPhysicalChildIndex.7.11 ==  11

  module 2 has 2 ports:
      entPhysicalChildIndex.12.13 == 13
      entPhysicalChildIndex.12.14 == 14

5.  Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.

6.  Acknowledgements

   This memo has been produced by the IETF's Entity MIB working group.

7.  References



McCloghrie & Bierman        Standards Track                    [Page 51]

RFC 2737                 Entity MIB (Version 2)            December 1999


   [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
             of Management Information for TCP/IP-based Internets", STD
             16, RFC 1155, May 1990.

   [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
             Network Management Protocol", STD 15, RFC 1157, May 1990.

   [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
             16, RFC 1212, March 1991.

   [RFC1215] Rose, M., "A Convention for Defining Traps for use with the
             SNMP", RFC 1215, March 1991.

   [RFC1493] Decker, E., Langille, P., Rijsinghani, A. and K.
             McCloghrie, "Definitions of Managed Objects for Bridges",
             RFC 1493, July 1993.

   [RFC1516] McMaster, D. and K. McCloghrie, "Definitions of Managed
             Objects for IEEE 802.3 Repeater Devices", RFC 1516,
             September 1993.

   [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
             "Introduction to Community-based SNMPv2", RFC 1901, January
             1996.

   [RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
             "Protocol Operations for Version 2 of the Simple Network
             Management Protocol (SNMPv2)", RFC 1905, January 1996.

   [RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
             "Transport Mappings for Version 2 of the Simple Network
             Management Protocol (SNMPv2)", RFC 1906, January 1996.

   [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
             3", BCP 9, RFC 2026, October 1996.

   [RFC2037] McCloghrie, K. and A. Bierman, "Entity MIB using SMIv2",
             RFC 2037, October 1996.

   [RFC2108] de Graaf, K., Romascanu, D., McMaster, D. and K.
             McCloghrie, "Definitions of Managed Objects for IEEE 802.3
             Repeater Devices using SMIv2", RFC 2108, February 1997.

   [RFC2233] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
             Using SMIv2", RFC 2233, November 1997.






McCloghrie & Bierman        Standards Track                    [Page 52]

RFC 2737                 Entity MIB (Version 2)            December 1999


   [RFC2570] Case, J., Mundy, R., Partain, D. and B. Stewart,
             "Introduction to Version 3 of the Internet-standard Network
             Management Framework", RFC 2570, April 1999.

   [RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture
             for Describing SNMP Management Frameworks", RFC 2571, April
             1999.

   [RFC2572] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
             Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", RFC 2572, April 1999.

   [RFC2573] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications",
             RFC 2573, April 1999.

   [RFC2574] Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", RFC 2574, April 1999.

   [RFC2575] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
             Access Control Model (VACM) for the Simple Network
             Management Protocol (SNMP)", RFC 2575, April 1999.

   [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M.  and S. Waldbusser, "Structure of Management
             Information Version 2 (SMIv2)", STD 58, RFC 2578, April
             1999.

   [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M.  and S. Waldbusser, "Textual Conventions for
             SMIv2", STD 58, RFC 2579, April 1999.

   [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M.  and S. Waldbusser, "Conformance Statements for
             SMIv2", STD 58, RFC 2580, April 1999.

8.  Security Considerations

   There are a number of management objects defined in this MIB that
   have a MAX-ACCESS clause of read-write and/or read-create.  Such
   objects may be considered sensitive or vulnerable in some network
   environments.  The support for SET operations in a non-secure
   environment without proper protection can have a negative effect on
   network operations.

   There are a number of managed objects in this MIB that may contain
   sensitive information. These are:




McCloghrie & Bierman        Standards Track                    [Page 53]

RFC 2737                 Entity MIB (Version 2)            December 1999


      entPhysicalDescr
      entPhysicalVendorType
      entPhysicalHardwareRev
      entPhysicalFirmwareRev
      entPhysicalSoftwareRev
      entPhysicalSerialNum
      entPhysicalMfgName
      entPhysicalModelName

   These objects expose information about the physical entities within a
   managed system, which may be used to identify the vendor, model, and
   version information of each system component.

      entPhysicalAssetID

   This object can allow asset identifiers for various system components
   to be exposed, in the event this MIB object is actually configured by
   an NMS application.

      entLogicalDescr
      entLogicalType

   These objects expose the type of logical entities present in the
   managed system.

      entLogicalCommunity

   This object exposes community names associated with particular
   logical entites within the system.

      entLogicalTAddress
      entLogicalTDomain

   These objects expose network addresses that can be used to
   communicate with an SNMP agent on behalf of particular logical
   entities within the system.

      entLogicalContextEngineID
      entLogicalContextName

   These objects identify the authoritative SNMP engine that contains
   information on behalf of particular logical entities within the
   system.

   It is thus important to control even GET access to these objects and
   possibly to even encrypt the values of these object when sending them
   over the network via SNMP.  Not all versions of SNMP provide features
   for such a secure environment.



McCloghrie & Bierman        Standards Track                    [Page 54]

RFC 2737                 Entity MIB (Version 2)            December 1999


   SNMPv1 by itself is not a secure environment.  Even if the network
   itself is secure (for example by using IPSec), even then, there is no
   control as to who on the secure network is allowed to access and
   GET/SET (read/change/create/delete) the objects in this MIB.

   It is recommended that the implementers consider the security
   features as provided by the SNMPv3 framework.  Specifically, the use
   of the User-based Security Model RFC 2574 [RFC2574] and the View-
   based Access Control Model RFC 2575 [RFC2575] is recommended.

   It is then a customer/user responsibility to ensure that the SNMP
   entity giving access to an instance of this MIB, is properly
   configured to give access to the objects only to those principals
   (users) that have legitimate rights to indeed GET or SET
   (change/create/delete) them.

12.  Authors' Addresses

   Keith McCloghrie
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134 USA
   Phone: +1 408-526-5260
   EMail: kzm@cisco.com


   Andy Bierman
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134 USA
   Phone: +1 408-527-3711
   EMail: abierman@cisco.com



















McCloghrie & Bierman        Standards Track                    [Page 55]

RFC 2737                 Entity MIB (Version 2)            December 1999


9.  Full Copyright Statement

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















McCloghrie & Bierman        Standards Track                    [Page 56]