File: rfc2819.txt

package info (click to toggle)
doc-rfc 20181229-2
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 570,944 kB
  • sloc: xml: 285,646; sh: 107; python: 90; perl: 42; makefile: 14
file content (5491 lines) | stat: -rw-r--r-- 198,676 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491






Network Working Group                                       S. Waldbusser
Request for Comments: 2819                            Lucent Technologies
STD: 59                                                          May 2000
Obsoletes: 1757
Category: Standards Track


         Remote Network Monitoring Management Information Base

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in TCP/IP-based internets.
   In particular, it defines objects for managing remote network
   monitoring devices.

   This memo obsoletes RFC 1757. This memo extends that specification by
   documenting the RMON MIB in SMIv2 format while remaining semantically
   identical to the existing SMIv1-based MIB.




















Waldbusser                  Standards Track                     [Page 1]

RFC 2819             Remote Network Monitoring MIB              May 2000


Table of Contents

   1 The SNMP Management Framework ..............................   2
   2 Overview ...................................................   3
   2.1 Remote Network Management Goals ..........................   4
   2.2 Textual Conventions ......................................   5
   2.3 Structure of MIB .........................................   5
   2.3.1 The Ethernet Statistics Group ..........................   6
   2.3.2 The History Control Group ..............................   6
   2.3.3 The Ethernet History Group .............................   6
   2.3.4 The Alarm Group ........................................   7
   2.3.5 The Host Group .........................................   7
   2.3.6 The HostTopN Group .....................................   7
   2.3.7 The Matrix Group .......................................   7
   2.3.8 The Filter Group .......................................   7
   2.3.9 The Packet Capture Group ...............................   8
   2.3.10 The Event Group .......................................   8
   3 Control of Remote Network Monitoring Devices ...............   8
   3.1  Resource  Sharing  Among Multiple Management Stations ...   9
   3.2 Row Addition Among Multiple Management Stations ..........  10
   4 Conventions ................................................  11
   5 Definitions ................................................  12
   6 Security Considerations ....................................  94
   7 Acknowledgments ............................................  95
   8 Author's Address ...........................................  95
   9 References .................................................  95
   10 Intellectual Property .....................................  97
   11 Full Copyright Statement ..................................  98

1.  The SNMP Management Framework

   The SNMP Management Framework presently consists of five major
   components:

   o  An overall architecture, described in RFC 2571 [1].

   o  Mechanisms for describing and naming objects and events for the
      purpose of management. The first version of this Structure of
      Management Information (SMI) is called SMIv1 and described in STD
      16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
      second version, called SMIv2, is described in STD 58, RFC 2578
      [5], RFC 2579 [6] and RFC 2580 [7].

   o  Message protocols for transferring management information. The
      first version of the SNMP message protocol is called SNMPv1 and
      described in STD 15, RFC 1157 [8]. A second version of the SNMP
      message protocol, which is not an Internet standards track
      protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC



Waldbusser                  Standards Track                     [Page 2]

RFC 2819             Remote Network Monitoring MIB              May 2000


      1906 [10]. The third version of the message protocol is called
      SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574
      [12].

   o  Protocol operations for accessing management information. The
      first set of protocol operations and associated PDU formats is
      described in STD 15, RFC 1157 [8]. A second set of protocol
      operations and associated PDU formats is described in RFC 1905
      [13].

   o  A set of fundamental applications described in RFC 2573 [14] and
      the view-based access control mechanism described in RFC 2575
      [15].

   A more detailed introduction to the current SNMP Management Framework
   can be found in RFC 2570 [22].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the mechanisms defined in the SMI.

   This memo specifies a MIB module that is compliant to the SMIv2. A
   MIB conforming to the SMIv1 can be produced through the appropriate
   translations. The resulting translated MIB must be semantically
   equivalent, except where objects or events are omitted because no
   translation is possible (use of Counter64). Some machine readable
   information in SMIv2 will be converted into textual descriptions in
   SMIv1 during the translation process.  However, this loss of machine
   readable information is not considered to change the semantics of the
   MIB.

2.  Overview

   Remote network monitoring devices, often called monitors or probes,
   are instruments that exist for the purpose of managing a network.
   Often these remote probes are stand-alone devices and devote
   significant internal resources for the sole purpose of managing a
   network.  An organization may employ many of these devices, one per
   network segment, to manage its internet.  In addition, these devices
   may be used for a network management service provider to access a
   client network, often geographically remote.

   The objects defined in this document are intended as an interface
   between an RMON agent and an RMON management application and are not
   intended for direct manipulation by humans.  While some users may
   tolerate the direct display of some of these objects, few will





Waldbusser                  Standards Track                     [Page 3]

RFC 2819             Remote Network Monitoring MIB              May 2000


   tolerate the complexity of manually manipulating objects to
   accomplish row creation.  These functions should be handled by the
   management application.

   While most of the objects in this document are suitable for the
   management of any type of network, there are some which are specific
   to managing Ethernet networks.  These are the objects in the
   etherStatsTable, the etherHistoryTable, and some attributes of the
   filterPktStatus and capturBufferPacketStatus objects.  The design of
   this MIB allows similar objects to be defined for other network
   types.  It is intended that future versions of this document and
   additional documents will define extensions for other network types.

   There are a number of companion documents to the RMON MIB. The Token
   Ring RMON MIB [19] provides objects specific to managing Token Ring
   networks. The RMON-2 MIB [20] extends RMON by providing RMON analysis
   up to the application layer. The SMON MIB [21] extends RMON by
   providing RMON analysis for switched networks.

2.1.  Remote Network Management Goals

   o  Offline Operation
        There are sometimes conditions when a management station will
        not be in constant contact with its remote monitoring devices.
        This is sometimes by design in an attempt to lower
        communications costs (especially when communicating over a WAN
        or dialup link), or by accident as network failures affect the
        communications between the management station and the probe.

        For this reason, this MIB allows a probe to be configured to
        perform diagnostics and to collect statistics continuously, even
        when communication with the management station may not be
        possible or efficient.  The probe may then attempt to notify the
        management station when an exceptional condition occurs.  Thus,
        even in circumstances where communication between management
        station and probe is not continuous, fault, performance, and
        configuration information may be continuously accumulated and
        communicated to the management station conveniently and
        efficiently.

   o  Proactive Monitoring
        Given the resources available on the monitor, it is potentially
        helpful for it continuously to run diagnostics and to log
        network performance.  The monitor is always available at the
        onset of any failure.  It can notify the management station of
        the failure and can store historical statistical information





Waldbusser                  Standards Track                     [Page 4]

RFC 2819             Remote Network Monitoring MIB              May 2000


        about the failure.  This historical information can be played
        back by the management station in an attempt to perform further
        diagnosis into the cause of the problem.

   o  Problem Detection and Reporting
        The monitor can be configured to recognize conditions, most
        notably error conditions, and continuously to check for them.
        When one of these conditions occurs, the event may be logged,
        and management stations may be notified in a number of ways.

   o  Value Added Data
        Because a remote monitoring device represents a network resource
        dedicated exclusively to network management functions, and
        because it is located directly on the monitored portion of the
        network, the remote network monitoring device has the
        opportunity to add significant value to the data it collects.
        For instance, by highlighting those hosts on the network that
        generate the most traffic or errors, the probe can give the
        management station precisely the information it needs to solve a
        class of problems.

   o  Multiple Managers
        An organization may have multiple management stations for
        different units of the organization, for different functions
        (e.g. engineering and operations), and in an attempt to provide
        disaster recovery.  Because environments with multiple
        management stations are common, the remote network monitoring
        device has to deal with more than own management station,
        potentially using its resources concurrently.

2.2.  Textual Conventions

   Two new data types are introduced as a textual convention in this MIB
   document, OwnerString and EntryStatus.

2.3.  Structure of MIB

   The objects are arranged into the following groups:

         - ethernet statistics

         - history control

         - ethernet history

         - alarm

         - host



Waldbusser                  Standards Track                     [Page 5]

RFC 2819             Remote Network Monitoring MIB              May 2000


         - hostTopN

         - matrix

         - filter

         - packet capture

         - event

   These groups are the basic unit of conformance.  If a remote
   monitoring device implements a group, then it must implement all
   objects in that group.  For example, a managed agent that implements
   the host group must implement the hostControlTable, the hostTable and
   the hostTimeTable. While this section provides an overview of
   grouping and conformance information for this MIB, the authoritative
   reference for such information is contained in the MODULE-COMPLIANCE
   and OBJECT-GROUP macros later in this MIB.

   All groups in this MIB are optional.  Implementations of this MIB
   must also implement the system group of MIB-II [16] and the IF-MIB
   [17].  MIB-II may also mandate the implementation of additional
   groups.

   These groups are defined to provide a means of assigning object
   identifiers, and to provide a method for implementors of managed
   agents to know which objects they must implement.

2.3.1.  The Ethernet Statistics Group

   The ethernet statistics group contains statistics measured by the
   probe for each monitored Ethernet interface on this device.  This
   group consists of the etherStatsTable.

2.3.2.  The History Control Group

   The history control group controls the periodic statistical sampling
   of data from various types of networks.  This group consists of the
   historyControlTable.

2.3.3.  The Ethernet History Group

   The ethernet history group records periodic statistical samples from
   an ethernet network and stores them for later retrieval.  This group
   consists of the etherHistoryTable.






Waldbusser                  Standards Track                     [Page 6]

RFC 2819             Remote Network Monitoring MIB              May 2000


2.3.4.  The Alarm Group

   The alarm group periodically takes statistical samples from variables
   in the probe and compares them to previously configured thresholds.
   If the monitored variable crosses a threshold, an event is generated.

   A hysteresis mechanism is implemented to limit the generation of
   alarms.  This group consists of the alarmTable and requires the
   implementation of the event group.

2.3.5.  The Host Group

   The host group contains statistics associated with each host
   discovered on the network.  This group discovers hosts on the network
   by keeping a list of source and destination MAC Addresses seen in
   good packets promiscuously received from the network.  This group
   consists of the hostControlTable, the hostTable, and the
   hostTimeTable.

2.3.6.  The HostTopN Group

   The hostTopN group is used to prepare reports that describe the hosts
   that top a list ordered by one of their statistics.  The available
   statistics are samples of one of their base statistics over an
   interval specified by the management station.  Thus, these statistics
   are rate based.  The management station also selects how many such
   hosts are reported.  This group consists of the hostTopNControlTable
   and the hostTopNTable, and requires the implementation of the host
   group.

2.3.7.  The Matrix Group

   The matrix group stores statistics for conversations between sets of
   two addresses.  As the device detects a new conversation, it creates
   a new entry in its tables.  This group consists of the
   matrixControlTable, the matrixSDTable and the matrixDSTable.

2.3.8.  The Filter Group

   The filter group allows packets to be matched by a filter equation.
   These matched packets form a data stream that may be captured or may
   generate events.  This group consists of the filterTable and the
   channelTable.








Waldbusser                  Standards Track                     [Page 7]

RFC 2819             Remote Network Monitoring MIB              May 2000


2.3.9.  The Packet Capture Group

   The Packet Capture group allows packets to be captured after they
   flow through a channel.  This group consists of the
   bufferControlTable and the captureBufferTable, and requires the
   implementation of the filter group.

2.3.10.  The Event Group

   The event group controls the generation and notification of events
   from this device.  This group consists of the eventTable and the
   logTable.

3.  Control of Remote Network Monitoring Devices

   Due to the complex nature of the available functions in these
   devices, the functions often need user configuration.  In many cases,
   the function requires parameters to be set up for a data collection
   operation.  The operation can proceed only after these parameters are
   fully set up.

   Many functional groups in this MIB have one or more tables in which
   to set up control parameters, and one or more data tables in which to
   place the results of the operation.  The control tables are typically
   read-write in nature, while the data tables are typically read-only.
   Because the parameters in the control table often describe resulting
   data in the data table, many of the parameters can be modified only
   when the control entry is invalid.  Thus, the method for modifying
   these parameters is to invalidate the control entry, causing its
   deletion and the deletion of any associated data entries, and then
   create a new control entry with the proper parameters.  Deleting the
   control entry also gives a convenient method for reclaiming the
   resources used by the associated data.

   Some objects in this MIB provide a mechanism to execute an action on
   the remote monitoring device.  These objects may execute an action as
   a result of a change in the state of the object.  For those objects
   in this MIB, a request to set an object to the same value as it
   currently holds would thus cause no action to occur.

   To facilitate control by multiple managers, resources have to be
   shared among the managers.  These resources are typically the memory
   and computation resources that a function requires.








Waldbusser                  Standards Track                     [Page 8]

RFC 2819             Remote Network Monitoring MIB              May 2000


3.1.  Resource Sharing Among Multiple Management Stations

   When multiple management stations wish to use functions that compete
   for a finite amount of resources on a device, a method to facilitate
   this sharing of resources is required.  Potential conflicts include:

      o  Two management stations wish to simultaneously use resources
         that together would exceed the capability of the device.
      o  A management station uses a significant amount of resources for
         a long period of time.
      o  A management station uses resources and then crashes,
         forgetting to free the resources so others may use them.

   A mechanism is provided for each management station initiated
   function in this MIB to avoid these conflicts and to help resolve
   them when they occur.  Each function has a label identifying the
   initiator (owner) of the function.  This label is set by the
   initiator to provide for the following possibilities:

      o  A management station may recognize resources it owns and no
         longer needs.
      o  A network operator can find the management station that owns
         the resource and negotiate for it to be freed.
      o  A network operator may decide to unilaterally free resources
         another network operator has reserved.
      o  Upon initialization, a management station may recognize
         resources it had reserved in the past.  With this information
         it may free the resources if it no longer needs them.

   Management stations and probes should support any format of the owner
   string dictated by the local policy of the organization.  It is
   suggested that this name contain one or more of the following: IP
   address, management station name, network manager's name, location,
   or phone number.  This information will help users to share the
   resources more effectively.

   There is often default functionality that the device or the
   administrator of the probe (often the network administrator) wishes
   to set up.  The resources associated with this functionality are then
   owned by the device itself or by the network administrator, and are
   intended to be long-lived.  In this case, the device or the
   administrator will set the relevant owner object to a string starting
   with 'monitor'.  Indiscriminate modification of the monitor-owned
   configuration by network management stations is discouraged.  In
   fact, a network management station should only modify these objects
   under the direction of the administrator of the probe.





Waldbusser                  Standards Track                     [Page 9]

RFC 2819             Remote Network Monitoring MIB              May 2000


   Resources on a probe are scarce and are typically allocated when
   control rows are created by an application.  Since many applications
   may be using a probe simultaneously, indiscriminate allocation of
   resources to particular applications is very likely to cause resource
   shortages in the probe.

   When a network management station wishes to utilize a function in a
   monitor, it is encouraged to first scan the control table of that
   function to find an instance with similar parameters to share.  This
   is especially true for those instances owned by the monitor, which
   can be assumed to change infrequently.  If a management station
   decides to share an instance owned by another management station, it
   should understand that the management station that owns the instance
   may indiscriminately modify or delete it.

   It should be noted that a management application should have the most
   trust in a monitor-owned row because it should be changed very
   infrequently.  A row owned by the management application is less
   long-lived because a network administrator is more likely to re-
   assign resources from a row that is in use by one user than from a
   monitor-owned row that is potentially in use by many users.  A row
   owned by another application would be even less long-lived because
   the other application may delete or modify that row completely at its
   discretion.

3.2.  Row Addition Among Multiple Management Stations

   The addition of new rows is achieved using the method described in
   RFC 1905 [13].  In this MIB, rows are often added to a table in order
   to configure a function.  This configuration usually involves
   parameters that control the operation of the function.  The agent
   must check these parameters to make sure they are appropriate given
   restrictions defined in this MIB as well as any implementation
   specific restrictions such as lack of resources.  The agent
   implementor may be confused as to when to check these parameters and
   when to signal to the management station that the parameters are
   invalid.  There are two opportunities:

      o  When the management station sets each parameter object.

      o  When the management station sets the entry status object to
         valid.

   If the latter is chosen, it would be unclear to the management
   station which of the several parameters was invalid and caused the
   badValue error to be emitted.  Thus, wherever possible, the
   implementor should choose the former as it will provide more
   information to the management station.



Waldbusser                  Standards Track                    [Page 10]

RFC 2819             Remote Network Monitoring MIB              May 2000


   A problem can arise when multiple management stations attempt to set
   configuration information simultaneously using SNMP.  When this
   involves the addition of a new conceptual row in the same control
   table, the managers may collide, attempting to create the same entry.
   To guard against these collisions, each such control entry contains a
   status object with special semantics that help to arbitrate among the
   managers.  If an attempt is made with the row addition mechanism to
   create such a status object and that object already exists, an error
   is returned.  When more than one manager simultaneously attempts to
   create the same conceptual row, only the first can succeed.  The
   others will receive an error.

   When a manager wishes to create a new control entry, it needs to
   choose an index for that row.  It may choose this index in a variety
   of ways, hopefully minimizing the chances that the index is in use by
   another manager.  If the index is in use, the mechanism mentioned
   previously will guard against collisions.  Examples of schemes to
   choose index values include random selection or scanning the control
   table looking for the first unused index.  Because index values may
   be any valid value in the range and they are chosen by the manager,
   the agent must allow a row to be created with any unused index value
   if it has the resources to create a new row.

   Some tables in this MIB reference other tables within this MIB.  When
   creating or deleting entries in these tables, it is generally
   allowable for dangling references to exist.  There is no defined
   order for creating or deleting entries in these tables.

4.  Conventions

   The following conventions are used throughout the RMON MIB and its
   companion documents.

   Good Packets

   Good packets are error-free packets that have a valid frame length.
   For example, on Ethernet, good packets are error-free packets that
   are between 64 octets long and 1518 octets long.  They follow the
   form defined in IEEE 802.3 section 3.2.all.

   Bad Packets

   Bad packets are packets that have proper framing and are therefore
   recognized as packets, but contain errors within the packet or have
   an invalid length.  For example, on Ethernet, bad packets have a
   valid preamble and SFD, but have a bad CRC, or are either shorter
   than 64 octets or longer than 1518 octets.




Waldbusser                  Standards Track                    [Page 11]

RFC 2819             Remote Network Monitoring MIB              May 2000


5.  Definitions

 RMON-MIB DEFINITIONS ::= BEGIN

     IMPORTS
         MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY,
         NOTIFICATION-TYPE, mib-2, Counter32,
         Integer32, TimeTicks                   FROM SNMPv2-SMI

         TEXTUAL-CONVENTION, DisplayString      FROM SNMPv2-TC

         MODULE-COMPLIANCE, OBJECT-GROUP,
         NOTIFICATION-GROUP                     FROM SNMPv2-CONF;


 --  Remote Network Monitoring MIB

 rmonMibModule MODULE-IDENTITY
     LAST-UPDATED "200005110000Z"  -- 11 May, 2000
     ORGANIZATION "IETF RMON MIB Working Group"
     CONTACT-INFO
         "Steve Waldbusser
         Phone: +1-650-948-6500
         Fax:   +1-650-745-0671
         Email: waldbusser@nextbeacon.com"
     DESCRIPTION
         "Remote network monitoring devices, often called
         monitors or probes, are instruments that exist for
         the purpose of managing a network. This MIB defines
         objects for managing remote network monitoring devices."

     REVISION "200005110000Z"    -- 11 May, 2000
     DESCRIPTION
         "Reformatted into SMIv2 format.

         This version published as RFC 2819."

     REVISION "199502010000Z" -- 1 Feb, 1995
     DESCRIPTION
         "Bug fixes, clarifications and minor changes based on
         implementation experience, published as RFC1757 [18].

         Two changes were made to object definitions:

         1) A new status bit has been defined for the
         captureBufferPacketStatus object, indicating that the
         packet order within the capture buffer may not be identical to
         the packet order as received off the wire.  This bit may only



Waldbusser                  Standards Track                    [Page 12]

RFC 2819             Remote Network Monitoring MIB              May 2000


         be used for packets transmitted by the probe.  Older NMS
         applications can safely ignore this status bit, which might be
         used by newer agents.

         2) The packetMatch trap has been removed.  This trap was never
         actually 'approved' and was not added to this document along
         with the risingAlarm and fallingAlarm traps. The packetMatch
         trap could not be throttled, which could cause disruption of
         normal network traffic under some circumstances. An NMS should
         configure a risingAlarm threshold on the appropriate
         channelMatches instance if a trap is desired for a packetMatch
         event. Note that logging of packetMatch events is still
         supported--only trap generation for such events has been
         removed.

         In addition, several clarifications to individual object
         definitions have been added to assist agent and NMS
         implementors:

         - global definition of 'good packets' and 'bad packets'

         - more detailed text governing conceptual row creation and
           modification

         - instructions for probes relating to interface changes and
           disruptions

         - clarification of some ethernet counter definitions

         - recommended formula for calculating network utilization

         - clarification of channel and captureBuffer behavior for some
           unusual conditions

         - examples of proper instance naming for each table"

     REVISION "199111010000Z"    -- 1 Nov, 1991
     DESCRIPTION
         "The original version of this MIB, published as RFC1271."
     ::= { rmonConformance 8 }

     rmon    OBJECT IDENTIFIER ::= { mib-2 16 }


     -- textual conventions

 OwnerString ::= TEXTUAL-CONVENTION
     STATUS current



Waldbusser                  Standards Track                    [Page 13]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "This data type is used to model an administratively
         assigned name of the owner of a resource. Implementations
         must accept values composed of well-formed NVT ASCII
         sequences. In addition, implementations should accept
         values composed of well-formed UTF-8 sequences.

         It is suggested that this name contain one or more of
         the following: IP address, management station name,
         network manager's name, location, or phone number.
         In some cases the agent itself will be the owner of
         an entry.  In these cases, this string shall be set
         to a string starting with 'monitor'.

         SNMP access control is articulated entirely in terms
         of the contents of MIB views; access to a particular
         SNMP object instance depends only upon its presence
         or absence in a particular MIB view and never upon
         its value or the value of related object instances.
         Thus, objects of this type afford resolution of
         resource contention only among cooperating
         managers; they realize no access control function
         with respect to uncooperative parties."
     SYNTAX OCTET STRING (SIZE (0..127))

 EntryStatus ::= TEXTUAL-CONVENTION
     STATUS current
     DESCRIPTION
         "The status of a table entry.

         Setting this object to the value invalid(4) has the
         effect of invalidating the corresponding entry.
         That is, it effectively disassociates the mapping
         identified with said entry.
         It is an implementation-specific matter as to whether
         the agent removes an invalidated entry from the table.
         Accordingly, management stations must be prepared to
         receive tabular information from agents that corresponds
         to entries currently not in use.  Proper
         interpretation of such entries requires examination
         of the relevant EntryStatus object.

         An existing instance of this object cannot be set to
         createRequest(2).  This object may only be set to
         createRequest(2) when this instance is created.  When
         this object is created, the agent may wish to create
         supplemental object instances with default values
         to complete a conceptual row in this table.  Because the



Waldbusser                  Standards Track                    [Page 14]

RFC 2819             Remote Network Monitoring MIB              May 2000


         creation of these default objects is entirely at the option
         of the agent, the manager must not assume that any will be
         created, but may make use of any that are created.
         Immediately after completing the create operation, the agent
         must set this object to underCreation(3).

         When in the underCreation(3) state, an entry is allowed to
         exist in a possibly incomplete, possibly inconsistent state,
         usually to allow it to be modified in multiple PDUs.  When in
         this state, an entry is not fully active.
         Entries shall exist in the underCreation(3) state until
         the management station is finished configuring the entry
         and sets this object to valid(1) or aborts, setting this
         object to invalid(4).  If the agent determines that an
         entry has been in the underCreation(3) state for an
         abnormally long time, it may decide that the management
         station has crashed.  If the agent makes this decision,
         it may set this object to invalid(4) to reclaim the
         entry.  A prudent agent will understand that the
         management station may need to wait for human input
         and will allow for that possibility in its
         determination of this abnormally long period.

         An entry in the valid(1) state is fully configured and
         consistent and fully represents the configuration or
         operation such a row is intended to represent.  For
         example, it could be a statistical function that is
         configured and active, or a filter that is available
         in the list of filters processed by the packet capture
         process.

         A manager is restricted to changing the state of an entry in
         the following ways:

              To:       valid  createRequest  underCreation  invalid
         From:
         valid             OK             NO             OK       OK
         createRequest    N/A            N/A            N/A      N/A
         underCreation     OK             NO             OK       OK
         invalid           NO             NO             NO       OK
         nonExistent       NO             OK             NO       OK

         In the table above, it is not applicable to move the state
         from the createRequest state to any other state because the
         manager will never find the variable in that state.  The
         nonExistent state is not a value of the enumeration, rather
         it means that the entryStatus variable does not exist at all.




Waldbusser                  Standards Track                    [Page 15]

RFC 2819             Remote Network Monitoring MIB              May 2000


         An agent may allow an entryStatus variable to change state in
         additional ways, so long as the semantics of the states are
         followed.  This allowance is made to ease the implementation of
         the agent and is made despite the fact that managers should
         never exercise these additional state transitions."
     SYNTAX INTEGER {
                valid(1),
                createRequest(2),
                underCreation(3),
                invalid(4)
            }

     statistics        OBJECT IDENTIFIER ::= { rmon 1 }
     history           OBJECT IDENTIFIER ::= { rmon 2 }
     alarm             OBJECT IDENTIFIER ::= { rmon 3 }
     hosts             OBJECT IDENTIFIER ::= { rmon 4 }
     hostTopN          OBJECT IDENTIFIER ::= { rmon 5 }
     matrix            OBJECT IDENTIFIER ::= { rmon 6 }
     filter            OBJECT IDENTIFIER ::= { rmon 7 }
     capture           OBJECT IDENTIFIER ::= { rmon 8 }
     event             OBJECT IDENTIFIER ::= { rmon 9 }
     rmonConformance   OBJECT IDENTIFIER ::= { rmon 20 }

 -- The Ethernet Statistics Group
 --
 -- Implementation of the Ethernet Statistics group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The ethernet statistics group contains statistics measured by the
 -- probe for each monitored interface on this device.  These
 -- statistics take the form of free running counters that start from
 -- zero when a valid entry is created.
 --
 -- This group currently has statistics defined only for
 -- Ethernet interfaces.  Each etherStatsEntry contains statistics
 -- for one Ethernet interface.  The probe must create one
 -- etherStats entry for each monitored Ethernet interface
 -- on the device.

 etherStatsTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF EtherStatsEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of Ethernet statistics entries."
     ::= { statistics 1 }




Waldbusser                  Standards Track                    [Page 16]

RFC 2819             Remote Network Monitoring MIB              May 2000


 etherStatsEntry OBJECT-TYPE
     SYNTAX     EtherStatsEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A collection of statistics kept for a particular
         Ethernet interface.  As an example, an instance of the
         etherStatsPkts object might be named etherStatsPkts.1"
     INDEX { etherStatsIndex }
     ::= { etherStatsTable 1 }

 EtherStatsEntry ::= SEQUENCE {
     etherStatsIndex                    Integer32,
     etherStatsDataSource               OBJECT IDENTIFIER,
     etherStatsDropEvents               Counter32,
     etherStatsOctets                   Counter32,
     etherStatsPkts                     Counter32,
     etherStatsBroadcastPkts            Counter32,
     etherStatsMulticastPkts            Counter32,
     etherStatsCRCAlignErrors           Counter32,
     etherStatsUndersizePkts            Counter32,
     etherStatsOversizePkts             Counter32,
     etherStatsFragments                Counter32,
     etherStatsJabbers                  Counter32,
     etherStatsCollisions               Counter32,
     etherStatsPkts64Octets             Counter32,
     etherStatsPkts65to127Octets        Counter32,
     etherStatsPkts128to255Octets       Counter32,
     etherStatsPkts256to511Octets       Counter32,
     etherStatsPkts512to1023Octets      Counter32,
     etherStatsPkts1024to1518Octets     Counter32,
     etherStatsOwner                    OwnerString,
     etherStatsStatus                   EntryStatus
 }

 etherStatsIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of this object uniquely identifies this
         etherStats entry."
     ::= { etherStatsEntry 1 }

 etherStatsDataSource OBJECT-TYPE
     SYNTAX     OBJECT IDENTIFIER
     MAX-ACCESS read-create
     STATUS     current



Waldbusser                  Standards Track                    [Page 17]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "This object identifies the source of the data that
         this etherStats entry is configured to analyze.  This
         source can be any ethernet interface on this device.
         In order to identify a particular interface, this object
         shall identify the instance of the ifIndex object,
         defined in RFC 2233 [17], for the desired interface.
         For example, if an entry were to receive data from
         interface #1, this object would be set to ifIndex.1.

         The statistics in this group reflect all packets
         on the local network segment attached to the identified
         interface.

         An agent may or may not be able to tell if fundamental
         changes to the media of the interface have occurred and
         necessitate an invalidation of this entry.  For example, a
         hot-pluggable ethernet card could be pulled out and replaced
         by a token-ring card.  In such a case, if the agent has such
         knowledge of the change, it is recommended that it
         invalidate this entry.

         This object may not be modified if the associated
         etherStatsStatus object is equal to valid(1)."
     ::= { etherStatsEntry 2 }

 etherStatsDropEvents OBJECT-TYPE
     SYNTAX     Counter32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of events in which packets
         were dropped by the probe due to lack of resources.
         Note that this number is not necessarily the number of
         packets dropped; it is just the number of times this
         condition has been detected."
     ::= { etherStatsEntry 3 }

 etherStatsOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of octets of data (including
         those in bad packets) received on the
         network (excluding framing bits but including
         FCS octets).



Waldbusser                  Standards Track                    [Page 18]

RFC 2819             Remote Network Monitoring MIB              May 2000


         This object can be used as a reasonable estimate of
         10-Megabit ethernet utilization.  If greater precision is
         desired, the etherStatsPkts and etherStatsOctets objects
         should be sampled before and after a common interval.  The
         differences in the sampled values are Pkts and Octets,
         respectively, and the number of seconds in the interval is
         Interval.  These values are used to calculate the Utilization
         as follows:

                          Pkts * (9.6 + 6.4) + (Octets * .8)
          Utilization = -------------------------------------
                                  Interval * 10,000

         The result of this equation is the value Utilization which
         is the percent utilization of the ethernet segment on a
         scale of 0 to 100 percent."
     ::= { etherStatsEntry 4 }

 etherStatsPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad packets,
         broadcast packets, and multicast packets) received."
     ::= { etherStatsEntry 5 }

 etherStatsBroadcastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of good packets received that were
         directed to the broadcast address.  Note that this
         does not include multicast packets."
     ::= { etherStatsEntry 6 }

 etherStatsMulticastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of good packets received that were
         directed to a multicast address.  Note that this number
         does not include packets directed to the broadcast



Waldbusser                  Standards Track                    [Page 19]

RFC 2819             Remote Network Monitoring MIB              May 2000


         address."
     ::= { etherStatsEntry 7 }

 etherStatsCRCAlignErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets received that
         had a length (excluding framing bits, but
         including FCS octets) of between 64 and 1518
         octets, inclusive, but had either a bad
         Frame Check Sequence (FCS) with an integral
         number of octets (FCS Error) or a bad FCS with
         a non-integral number of octets (Alignment Error)."
     ::= { etherStatsEntry 8 }

 etherStatsUndersizePkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets received that were
         less than 64 octets long (excluding framing bits,
         but including FCS octets) and were otherwise well
         formed."
     ::= { etherStatsEntry 9 }

 etherStatsOversizePkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets received that were
         longer than 1518 octets (excluding framing bits,
         but including FCS octets) and were otherwise
         well formed."
     ::= { etherStatsEntry 10 }

 etherStatsFragments OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION



Waldbusser                  Standards Track                    [Page 20]

RFC 2819             Remote Network Monitoring MIB              May 2000


         "The total number of packets received that were less than
         64 octets in length (excluding framing bits but including
         FCS octets) and had either a bad Frame Check Sequence
         (FCS) with an integral number of octets (FCS Error) or a
         bad FCS with a non-integral number of octets (Alignment
         Error).

         Note that it is entirely normal for etherStatsFragments to
         increment.  This is because it counts both runts (which are
         normal occurrences due to collisions) and noise hits."
     ::= { etherStatsEntry 11 }

 etherStatsJabbers OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets received that were
         longer than 1518 octets (excluding framing bits,
         but including FCS octets), and had either a bad
         Frame Check Sequence (FCS) with an integral number
         of octets (FCS Error) or a bad FCS with a non-integral
         number of octets (Alignment Error).

         Note that this definition of jabber is different
         than the definition in IEEE-802.3 section 8.2.1.5
         (10BASE5) and section 10.3.1.4 (10BASE2).  These
         documents define jabber as the condition where any
         packet exceeds 20 ms.  The allowed range to detect
         jabber is between 20 ms and 150 ms."
     ::= { etherStatsEntry 12 }

 etherStatsCollisions OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Collisions"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The best estimate of the total number of collisions
         on this Ethernet segment.

         The value returned will depend on the location of the
         RMON probe. Section 8.2.1.3 (10BASE-5) and section
         10.3.1.3 (10BASE-2) of IEEE standard 802.3 states that a
         station must detect a collision, in the receive mode, if
         three or more stations are transmitting simultaneously.  A
         repeater port must detect a collision when two or more



Waldbusser                  Standards Track                    [Page 21]

RFC 2819             Remote Network Monitoring MIB              May 2000


         stations are transmitting simultaneously.  Thus a probe
         placed on a repeater port could record more collisions
         than a probe connected to a station on the same segment
         would.

         Probe location plays a much smaller role when considering
         10BASE-T.  14.2.1.4 (10BASE-T) of IEEE standard 802.3
         defines a collision as the simultaneous presence of signals
         on the DO and RD circuits (transmitting and receiving
         at the same time).  A 10BASE-T station can only detect
         collisions when it is transmitting.  Thus probes placed on
         a station and a repeater, should report the same number of
         collisions.

         Note also that an RMON probe inside a repeater should
         ideally report collisions between the repeater and one or
         more other hosts (transmit collisions as defined by IEEE
         802.3k) plus receiver collisions observed on any coax
         segments to which the repeater is connected."
     ::= { etherStatsEntry 13 }

 etherStatsPkts64Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were 64 octets in length
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 14 }

 etherStatsPkts65to127Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were between
         65 and 127 octets in length inclusive
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 15 }

 etherStatsPkts128to255Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 22]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were between
         128 and 255 octets in length inclusive
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 16 }

 etherStatsPkts256to511Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were between
         256 and 511 octets in length inclusive
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 17 }

 etherStatsPkts512to1023Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were between
         512 and 1023 octets in length inclusive
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 18 }

 etherStatsPkts1024to1518Octets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets (including bad
         packets) received that were between
         1024 and 1518 octets in length inclusive
         (excluding framing bits but including FCS octets)."
     ::= { etherStatsEntry 19 }

 etherStatsOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current



Waldbusser                  Standards Track                    [Page 23]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { etherStatsEntry 20 }

 etherStatsStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this etherStats entry."
     ::= { etherStatsEntry 21 }

 -- The History Control Group

 -- Implementation of the History Control group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The history control group controls the periodic statistical
 -- sampling of data from various types of networks.  The
 -- historyControlTable stores configuration entries that each
 -- define an interface, polling period, and other parameters.
 -- Once samples are taken, their data is stored in an entry
 -- in a media-specific table.  Each such entry defines one
 -- sample, and is associated with the historyControlEntry that
 -- caused the sample to be taken.  Each counter in the
 -- etherHistoryEntry counts the same event as its similarly-named
 -- counterpart in the etherStatsEntry, except that each value here
 -- is a cumulative sum during a sampling period.
 --
 -- If the probe keeps track of the time of day, it should start
 -- the first sample of the history at a time such that
 -- when the next hour of the day begins, a sample is
 -- started at that instant.  This tends to make more
 -- user-friendly reports, and enables comparison of reports
 -- from different probes that have relatively accurate time
 -- of day.
 --
 -- The probe is encouraged to add two history control entries
 -- per monitored interface upon initialization that describe a short
 -- term and a long term polling period.  Suggested parameters are 30
 -- seconds for the short term polling period and 30 minutes for
 -- the long term period.

 historyControlTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HistoryControlEntry
     MAX-ACCESS not-accessible



Waldbusser                  Standards Track                    [Page 24]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "A list of history control entries."
     ::= { history 1 }

 historyControlEntry OBJECT-TYPE
     SYNTAX     HistoryControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of parameters that set up a periodic sampling of
         statistics.  As an example, an instance of the
         historyControlInterval object might be named
         historyControlInterval.2"
     INDEX { historyControlIndex }
     ::= { historyControlTable 1 }

 HistoryControlEntry ::= SEQUENCE {
     historyControlIndex             Integer32,
     historyControlDataSource        OBJECT IDENTIFIER,
     historyControlBucketsRequested  Integer32,
     historyControlBucketsGranted    Integer32,
     historyControlInterval          Integer32,
     historyControlOwner             OwnerString,
     historyControlStatus            EntryStatus
 }

 historyControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in the
         historyControl table.  Each such entry defines a
         set of samples at a particular interval for an
         interface on the device."
     ::= { historyControlEntry 1 }

 historyControlDataSource OBJECT-TYPE
     SYNTAX     OBJECT IDENTIFIER
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "This object identifies the source of the data for
         which historical data was collected and
         placed in a media-specific table on behalf of this
         historyControlEntry.  This source can be any
         interface on this device.  In order to identify



Waldbusser                  Standards Track                    [Page 25]

RFC 2819             Remote Network Monitoring MIB              May 2000


         a particular interface, this object shall identify
         the instance of the ifIndex object, defined
         in  RFC 2233 [17], for the desired interface.
         For example, if an entry were to receive data from
         interface #1, this object would be set to ifIndex.1.

         The statistics in this group reflect all packets
         on the local network segment attached to the identified
         interface.

         An agent may or may not be able to tell if fundamental
         changes to the media of the interface have occurred and
         necessitate an invalidation of this entry.  For example, a
         hot-pluggable ethernet card could be pulled out and replaced
         by a token-ring card.  In such a case, if the agent has such
         knowledge of the change, it is recommended that it
         invalidate this entry.

         This object may not be modified if the associated
         historyControlStatus object is equal to valid(1)."
     ::= { historyControlEntry 2 }

 historyControlBucketsRequested OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The requested number of discrete time intervals
         over which data is to be saved in the part of the
         media-specific table associated with this
         historyControlEntry.

         When this object is created or modified, the probe
         should set historyControlBucketsGranted as closely to
         this object as is possible for the particular probe
         implementation and available resources."
     DEFVAL { 50 }
     ::= { historyControlEntry 3 }

 historyControlBucketsGranted OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of discrete sampling intervals
         over which data shall be saved in the part of
         the media-specific table associated with this
         historyControlEntry.



Waldbusser                  Standards Track                    [Page 26]

RFC 2819             Remote Network Monitoring MIB              May 2000


         When the associated historyControlBucketsRequested
         object is created or modified, the probe
         should set this object as closely to the requested
         value as is possible for the particular
         probe implementation and available resources.  The
         probe must not lower this value except as a result
         of a modification to the associated
         historyControlBucketsRequested object.

         There will be times when the actual number of
         buckets associated with this entry is less than
         the value of this object.  In this case, at the
         end of each sampling interval, a new bucket will
         be added to the media-specific table.

         When the number of buckets reaches the value of
         this object and a new bucket is to be added to the
         media-specific table, the oldest bucket associated
         with this historyControlEntry shall be deleted by
         the agent so that the new bucket can be added.

         When the value of this object changes to a value less
         than the current value, entries are deleted
         from the media-specific table associated with this
         historyControlEntry.  Enough of the oldest of these
         entries shall be deleted by the agent so that their
         number remains less than or equal to the new value of
         this object.

         When the value of this object changes to a value greater
         than the current value, the number of associated media-
         specific entries may be allowed to grow."
     ::= { historyControlEntry 4 }

 historyControlInterval OBJECT-TYPE
     SYNTAX     Integer32 (1..3600)
     UNITS      "Seconds"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The interval in seconds over which the data is
         sampled for each bucket in the part of the
         media-specific table associated with this
         historyControlEntry.  This interval can
         be set to any number of seconds between 1 and
         3600 (1 hour).

         Because the counters in a bucket may overflow at their



Waldbusser                  Standards Track                    [Page 27]

RFC 2819             Remote Network Monitoring MIB              May 2000


         maximum value with no indication, a prudent manager will
         take into account the possibility of overflow in any of
         the associated counters.  It is important to consider the
         minimum time in which any counter could overflow on a
         particular media type and set the historyControlInterval
         object to a value less than this interval.  This is
         typically most important for the 'octets' counter in any
         media-specific table.  For example, on an Ethernet
         network, the etherHistoryOctets counter could overflow
         in about one hour at the Ethernet's maximum
         utilization.

         This object may not be modified if the associated
         historyControlStatus object is equal to valid(1)."
     DEFVAL { 1800 }
     ::= { historyControlEntry 5 }

 historyControlOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { historyControlEntry 6 }

 historyControlStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this historyControl entry.

         Each instance of the media-specific table associated
         with this historyControlEntry will be deleted by the agent
         if this historyControlEntry is not equal to valid(1)."
     ::= { historyControlEntry 7 }

 -- The Ethernet History Group

 -- Implementation of the Ethernet History group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Ethernet History group records periodic statistical samples
 -- from a network and stores them for later retrieval.
 -- Once samples are taken, their data is stored in an entry
 -- in a media-specific table.  Each such entry defines one



Waldbusser                  Standards Track                    [Page 28]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- sample, and is associated with the historyControlEntry that
 -- caused the sample to be taken.  This group defines the
 -- etherHistoryTable, for Ethernet networks.
 --

 etherHistoryTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF EtherHistoryEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of Ethernet history entries."
     ::= { history 2 }

 etherHistoryEntry OBJECT-TYPE
     SYNTAX     EtherHistoryEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "An historical sample of Ethernet statistics on a particular
         Ethernet interface.  This sample is associated with the
         historyControlEntry which set up the parameters for
         a regular collection of these samples.  As an example, an
         instance of the etherHistoryPkts object might be named
         etherHistoryPkts.2.89"
     INDEX { etherHistoryIndex , etherHistorySampleIndex }
     ::= { etherHistoryTable 1 }

 EtherHistoryEntry ::= SEQUENCE {
     etherHistoryIndex                 Integer32,
     etherHistorySampleIndex           Integer32,
     etherHistoryIntervalStart         TimeTicks,
     etherHistoryDropEvents            Counter32,
     etherHistoryOctets                Counter32,
     etherHistoryPkts                  Counter32,
     etherHistoryBroadcastPkts         Counter32,
     etherHistoryMulticastPkts         Counter32,
     etherHistoryCRCAlignErrors        Counter32,
     etherHistoryUndersizePkts         Counter32,
     etherHistoryOversizePkts          Counter32,
     etherHistoryFragments             Counter32,
     etherHistoryJabbers               Counter32,
     etherHistoryCollisions            Counter32,
     etherHistoryUtilization           Integer32
 }

 etherHistoryIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 29]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The history of which this entry is a part.  The
         history identified by a particular value of this
         index is the same history as identified
         by the same value of historyControlIndex."
     ::= { etherHistoryEntry 1 }

 etherHistorySampleIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..2147483647)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies the particular
         sample this entry represents among all samples
         associated with the same historyControlEntry.
         This index starts at 1 and increases by one
         as each new sample is taken."
     ::= { etherHistoryEntry 2 }

 etherHistoryIntervalStart OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime at the start of the interval
         over which this sample was measured.  If the probe
         keeps track of the time of day, it should start
         the first sample of the history at a time such that
         when the next hour of the day begins, a sample is
         started at that instant.  Note that following this
         rule may require the probe to delay collecting the
         first sample of the history, as each sample must be
         of the same interval.  Also note that the sample which
         is currently being collected is not accessible in this
         table until the end of its interval."
     ::= { etherHistoryEntry 3 }

 etherHistoryDropEvents OBJECT-TYPE
     SYNTAX     Counter32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of events in which packets
         were dropped by the probe due to lack of resources
         during this sampling interval.  Note that this number
         is not necessarily the number of packets dropped, it
         is just the number of times this condition has been



Waldbusser                  Standards Track                    [Page 30]

RFC 2819             Remote Network Monitoring MIB              May 2000


         detected."
     ::= { etherHistoryEntry 4 }

 etherHistoryOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of octets of data (including
         those in bad packets) received on the
         network (excluding framing bits but including
         FCS octets)."
     ::= { etherHistoryEntry 5 }

 etherHistoryPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets (including bad packets)
         received during this sampling interval."
     ::= { etherHistoryEntry 6 }

 etherHistoryBroadcastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets received during this
         sampling interval that were directed to the
         broadcast address."
     ::= { etherHistoryEntry 7 }

 etherHistoryMulticastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets received during this
         sampling interval that were directed to a
         multicast address.  Note that this number does not
         include packets addressed to the broadcast address."
     ::= { etherHistoryEntry 8 }




Waldbusser                  Standards Track                    [Page 31]

RFC 2819             Remote Network Monitoring MIB              May 2000


 etherHistoryCRCAlignErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets received during this
         sampling interval that had a length (excluding
         framing bits but including FCS octets) between
         64 and 1518 octets, inclusive, but had either a bad Frame
         Check Sequence (FCS) with an integral number of octets
         (FCS Error) or a bad FCS with a non-integral number
         of octets (Alignment Error)."
     ::= { etherHistoryEntry 9 }

 etherHistoryUndersizePkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets received during this
         sampling interval that were less than 64 octets
         long (excluding framing bits but including FCS
         octets) and were otherwise well formed."
     ::= { etherHistoryEntry 10 }

 etherHistoryOversizePkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets received during this
         sampling interval that were longer than 1518
         octets (excluding framing bits but including
         FCS octets) but were otherwise well formed."
     ::= { etherHistoryEntry 11 }

 etherHistoryFragments OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The total number of packets received during this
         sampling interval that were less than 64 octets in
         length (excluding framing bits but including FCS



Waldbusser                  Standards Track                    [Page 32]

RFC 2819             Remote Network Monitoring MIB              May 2000


         octets) had either a bad Frame Check Sequence (FCS)
         with an integral number of octets (FCS Error) or a bad
         FCS with a non-integral number of octets (Alignment
         Error).

         Note that it is entirely normal for etherHistoryFragments to
         increment.  This is because it counts both runts (which are
         normal occurrences due to collisions) and noise hits."
     ::= { etherHistoryEntry 12 }

 etherHistoryJabbers OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets received during this
         sampling interval that were longer than 1518 octets
         (excluding framing bits but including FCS octets),
         and  had either a bad Frame Check Sequence (FCS)
         with an integral number of octets (FCS Error) or
         a bad FCS with a non-integral number of octets
         (Alignment Error).

         Note that this definition of jabber is different
         than the definition in IEEE-802.3 section 8.2.1.5
         (10BASE5) and section 10.3.1.4 (10BASE2).  These
         documents define jabber as the condition where any
         packet exceeds 20 ms.  The allowed range to detect
         jabber is between 20 ms and 150 ms."
     ::= { etherHistoryEntry 13 }

 etherHistoryCollisions OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Collisions"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The best estimate of the total number of collisions
         on this Ethernet segment during this sampling
         interval.

         The value returned will depend on the location of the
         RMON probe. Section 8.2.1.3 (10BASE-5) and section
         10.3.1.3 (10BASE-2) of IEEE standard 802.3 states that a
         station must detect a collision, in the receive mode, if
         three or more stations are transmitting simultaneously.  A
         repeater port must detect a collision when two or more



Waldbusser                  Standards Track                    [Page 33]

RFC 2819             Remote Network Monitoring MIB              May 2000


         stations are transmitting simultaneously.  Thus a probe
         placed on a repeater port could record more collisions
         than a probe connected to a station on the same segment
         would.

         Probe location plays a much smaller role when considering
         10BASE-T.  14.2.1.4 (10BASE-T) of IEEE standard 802.3
         defines a collision as the simultaneous presence of signals
         on the DO and RD circuits (transmitting and receiving
         at the same time).  A 10BASE-T station can only detect
         collisions when it is transmitting.  Thus probes placed on
         a station and a repeater, should report the same number of
         collisions.

         Note also that an RMON probe inside a repeater should
         ideally report collisions between the repeater and one or
         more other hosts (transmit collisions as defined by IEEE
         802.3k) plus receiver collisions observed on any coax
         segments to which the repeater is connected."
     ::= { etherHistoryEntry 14 }

 etherHistoryUtilization OBJECT-TYPE
     SYNTAX     Integer32 (0..10000)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The best estimate of the mean physical layer
         network utilization on this interface during this
         sampling interval, in hundredths of a percent."
     ::= { etherHistoryEntry 15 }

 -- The Alarm Group

 -- Implementation of the Alarm group is optional. The Alarm Group
 -- requires the implementation of the Event group.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Alarm group periodically takes statistical samples from
 -- variables in the probe and compares them to thresholds that have
 -- been configured.  The alarm table stores configuration
 -- entries that each define a variable, polling period, and
 -- threshold parameters.  If a sample is found to cross the
 -- threshold values, an event is generated.  Only variables that
 -- resolve to an ASN.1 primitive type of INTEGER (INTEGER, Integer32,
 -- Counter32, Counter64, Gauge32, or TimeTicks) may be monitored in
 -- this way.
 --



Waldbusser                  Standards Track                    [Page 34]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- This function has a hysteresis mechanism to limit the generation
 -- of events.  This mechanism generates one event as a threshold
 -- is crossed in the appropriate direction.  No more events are
 -- generated for that threshold until the opposite threshold is
 -- crossed.
 --
 -- In the case of a sampling a deltaValue, a probe may implement
 -- this mechanism with more precision if it takes a delta sample
 -- twice per period, each time comparing the sum of the latest two
 -- samples to the threshold.  This allows the detection of threshold
 -- crossings that span the sampling boundary.  Note that this does
 -- not require any special configuration of the threshold value.
 -- It is suggested that probes implement this more precise algorithm.

 alarmTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF AlarmEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of alarm entries."
     ::= { alarm 1 }

 alarmEntry OBJECT-TYPE
     SYNTAX     AlarmEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of parameters that set up a periodic checking
         for alarm conditions.  For example, an instance of the
         alarmValue object might be named alarmValue.8"
     INDEX { alarmIndex }
     ::= { alarmTable 1 }

 AlarmEntry ::= SEQUENCE {
     alarmIndex                    Integer32,
     alarmInterval                 Integer32,
     alarmVariable                 OBJECT IDENTIFIER,
     alarmSampleType               INTEGER,
     alarmValue                    Integer32,
     alarmStartupAlarm             INTEGER,
     alarmRisingThreshold          Integer32,
     alarmFallingThreshold         Integer32,
     alarmRisingEventIndex         Integer32,
     alarmFallingEventIndex        Integer32,
     alarmOwner                    OwnerString,
     alarmStatus                   EntryStatus
 }




Waldbusser                  Standards Track                    [Page 35]

RFC 2819             Remote Network Monitoring MIB              May 2000


 alarmIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in the
         alarm table.  Each such entry defines a
         diagnostic sample at a particular interval
         for an object on the device."
     ::= { alarmEntry 1 }

 alarmInterval OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Seconds"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The interval in seconds over which the data is
         sampled and compared with the rising and falling
         thresholds.  When setting this variable, care
         should be taken in the case of deltaValue
         sampling - the interval should be set short enough
         that the sampled variable is very unlikely to
         increase or decrease by more than 2^31 - 1 during
         a single sampling interval.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 2 }

 alarmVariable OBJECT-TYPE
     SYNTAX     OBJECT IDENTIFIER
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The object identifier of the particular variable to be
         sampled.  Only variables that resolve to an ASN.1 primitive
         type of INTEGER (INTEGER, Integer32, Counter32, Counter64,
         Gauge, or TimeTicks) may be sampled.

         Because SNMP access control is articulated entirely
         in terms of the contents of MIB views, no access
         control mechanism exists that can restrict the value of
         this object to identify only those objects that exist
         in a particular MIB view.  Because there is thus no
         acceptable means of restricting the read access that
         could be obtained through the alarm mechanism, the
         probe must only grant write access to this object in



Waldbusser                  Standards Track                    [Page 36]

RFC 2819             Remote Network Monitoring MIB              May 2000


         those views that have read access to all objects on
         the probe.

         During a set operation, if the supplied variable name is
         not available in the selected MIB view, a badValue error
         must be returned.  If at any time the variable name of
         an established alarmEntry is no longer available in the
         selected MIB view, the probe must change the status of
         this alarmEntry to invalid(4).

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 3 }

 alarmSampleType OBJECT-TYPE
     SYNTAX     INTEGER {
                  absoluteValue(1),
                  deltaValue(2)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The method of sampling the selected variable and
         calculating the value to be compared against the
         thresholds.  If the value of this object is
         absoluteValue(1), the value of the selected variable
         will be compared directly with the thresholds at the
         end of the sampling interval.  If the value of this
         object is deltaValue(2), the value of the selected
         variable at the last sample will be subtracted from
         the current value, and the difference compared with
         the thresholds.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 4 }

 alarmValue OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of the statistic during the last sampling
         period.  For example, if the sample type is deltaValue,
         this value will be the difference between the samples
         at the beginning and end of the period.  If the sample
         type is absoluteValue, this value will be the sampled
         value at the end of the period.



Waldbusser                  Standards Track                    [Page 37]

RFC 2819             Remote Network Monitoring MIB              May 2000


         This is the value that is compared with the rising and
         falling thresholds.

         The value during the current sampling period is not
         made available until the period is completed and will
         remain available until the next period completes."
     ::= { alarmEntry 5 }

 alarmStartupAlarm OBJECT-TYPE
     SYNTAX     INTEGER {
                  risingAlarm(1),
                  fallingAlarm(2),
                  risingOrFallingAlarm(3)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The alarm that may be sent when this entry is first
         set to valid.  If the first sample after this entry
         becomes valid is greater than or equal to the
         risingThreshold and alarmStartupAlarm is equal to
         risingAlarm(1) or risingOrFallingAlarm(3), then a single
         rising alarm will be generated.  If the first sample
         after this entry becomes valid is less than or equal
         to the fallingThreshold and alarmStartupAlarm is equal
         to fallingAlarm(2) or risingOrFallingAlarm(3), then a
         single falling alarm will be generated.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 6 }

 alarmRisingThreshold OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "A threshold for the sampled statistic.  When the current
         sampled value is greater than or equal to this threshold,
         and the value at the last sampling interval was less than
         this threshold, a single event will be generated.
         A single event will also be generated if the first
         sample after this entry becomes valid is greater than or
         equal to this threshold and the associated
         alarmStartupAlarm is equal to risingAlarm(1) or
         risingOrFallingAlarm(3).

         After a rising event is generated, another such event



Waldbusser                  Standards Track                    [Page 38]

RFC 2819             Remote Network Monitoring MIB              May 2000


         will not be generated until the sampled value
         falls below this threshold and reaches the
         alarmFallingThreshold.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 7 }

 alarmFallingThreshold OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "A threshold for the sampled statistic.  When the current
         sampled value is less than or equal to this threshold,
         and the value at the last sampling interval was greater than
         this threshold, a single event will be generated.
         A single event will also be generated if the first
         sample after this entry becomes valid is less than or
         equal to this threshold and the associated
         alarmStartupAlarm is equal to fallingAlarm(2) or
         risingOrFallingAlarm(3).

         After a falling event is generated, another such event
         will not be generated until the sampled value
         rises above this threshold and reaches the
         alarmRisingThreshold.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 8 }

 alarmRisingEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (0..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The index of the eventEntry that is
         used when a rising threshold is crossed.  The
         eventEntry identified by a particular value of
         this index is the same as identified by the same value
         of the eventIndex object.  If there is no
         corresponding entry in the eventTable, then
         no association exists.  In particular, if this value
         is zero, no associated event will be generated, as
         zero is not a valid event index.

         This object may not be modified if the associated



Waldbusser                  Standards Track                    [Page 39]

RFC 2819             Remote Network Monitoring MIB              May 2000


         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 9 }

 alarmFallingEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (0..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The index of the eventEntry that is
         used when a falling threshold is crossed.  The
         eventEntry identified by a particular value of
         this index is the same as identified by the same value
         of the eventIndex object.  If there is no
         corresponding entry in the eventTable, then
         no association exists.  In particular, if this value
         is zero, no associated event will be generated, as
         zero is not a valid event index.

         This object may not be modified if the associated
         alarmStatus object is equal to valid(1)."
     ::= { alarmEntry 10 }

 alarmOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { alarmEntry 11 }

 alarmStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this alarm entry."
     ::= { alarmEntry 12 }

 -- The Host Group

 -- Implementation of the Host group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The host group discovers new hosts on the network by
 -- keeping a list of source and destination MAC Addresses seen
 -- in good packets.  For each of these addresses, the host group



Waldbusser                  Standards Track                    [Page 40]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- keeps a set of statistics.  The hostControlTable controls
 -- which interfaces this function is performed on, and contains
 -- some information about the process.  On behalf of each
 -- hostControlEntry, data is collected on an interface and placed
 -- in both the hostTable and the hostTimeTable.  If the
 -- monitoring device finds itself short of resources, it may
 -- delete entries as needed.  It is suggested that the device
 -- delete the least recently used entries first.

 -- The hostTable contains entries for each address discovered on
 -- a particular interface.  Each entry contains statistical
 -- data about that host.  This table is indexed by the
 -- MAC address of the host, through which a random access
 -- may be achieved.

 -- The hostTimeTable contains data in the same format as the
 -- hostTable, and must contain the same set of hosts, but is
 -- indexed using hostTimeCreationOrder rather than hostAddress.
 -- The hostTimeCreationOrder is an integer which reflects
 -- the relative order in which a particular entry was discovered
 -- and thus inserted into the table.  As this order, and thus
 -- the index, is among those entries currently in the table,
 -- the index for a particular entry may change if an
 -- (earlier) entry is deleted.  Thus the association between
 -- hostTimeCreationOrder and hostTimeEntry may be broken at
 -- any time.

 -- The hostTimeTable has two important uses.  The first is the
 -- fast download of this potentially large table.  Because the
 -- index of this table runs from 1 to the size of the table,
 -- inclusive, its values are predictable.  This allows very
 -- efficient packing of variables into SNMP PDU's and allows
 -- a table transfer to have multiple packets outstanding.
 -- These benefits increase transfer rates tremendously.

 -- The second use of the hostTimeTable is the efficient discovery
 -- by the management station of new entries added to the table.
 -- After the management station has downloaded the entire table,
 -- it knows that new entries will be added immediately after the
 -- end of the current table.  It can thus detect new entries there
 -- and retrieve them easily.

 -- Because the association between hostTimeCreationOrder and
 -- hostTimeEntry may be broken at any time, the management
 -- station must monitor the related hostControlLastDeleteTime
 -- object.  When the management station thus detects a deletion,
 -- it must assume that any such associations have been broken,
 -- and invalidate any it has stored locally.  This includes



Waldbusser                  Standards Track                    [Page 41]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- restarting any download of the hostTimeTable that may have been
 -- in progress, as well as rediscovering the end of the
 -- hostTimeTable so that it may detect new entries.  If the
 -- management station does not detect the broken association,
 -- it may continue to refer to a particular host by its
 -- creationOrder while unwittingly retrieving the data associated
 -- with another host entirely.  If this happens while downloading
 -- the host table, the management station may fail to download
 -- all of the entries in the table.


 hostControlTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HostControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of host table control entries."
     ::= { hosts 1 }

 hostControlEntry OBJECT-TYPE
     SYNTAX     HostControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of parameters that set up the discovery of hosts
         on a particular interface and the collection of statistics
         about these hosts.  For example, an instance of the
         hostControlTableSize object might be named
         hostControlTableSize.1"
     INDEX { hostControlIndex }
     ::= { hostControlTable 1 }

 HostControlEntry ::= SEQUENCE {

     hostControlIndex            Integer32,
     hostControlDataSource       OBJECT IDENTIFIER,
     hostControlTableSize        Integer32,
     hostControlLastDeleteTime   TimeTicks,
     hostControlOwner            OwnerString,
     hostControlStatus           EntryStatus
 }

 hostControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in the



Waldbusser                  Standards Track                    [Page 42]

RFC 2819             Remote Network Monitoring MIB              May 2000


         hostControl table.  Each such entry defines
         a function that discovers hosts on a particular interface
         and places statistics about them in the hostTable and
         the hostTimeTable on behalf of this hostControlEntry."
     ::= { hostControlEntry 1 }

 hostControlDataSource OBJECT-TYPE
     SYNTAX     OBJECT IDENTIFIER
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "This object identifies the source of the data for
         this instance of the host function.  This source
         can be any interface on this device.  In order
         to identify a particular interface, this object shall
         identify the instance of the ifIndex object, defined
         in RFC 2233 [17], for the desired interface.
         For example, if an entry were to receive data from
         interface #1, this object would be set to ifIndex.1.

         The statistics in this group reflect all packets
         on the local network segment attached to the identified
         interface.

         An agent may or may not be able to tell if fundamental
         changes to the media of the interface have occurred and
         necessitate an invalidation of this entry.  For example, a
         hot-pluggable ethernet card could be pulled out and replaced
         by a token-ring card.  In such a case, if the agent has such
         knowledge of the change, it is recommended that it
         invalidate this entry.

         This object may not be modified if the associated
         hostControlStatus object is equal to valid(1)."
     ::= { hostControlEntry 2 }

 hostControlTableSize OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of hostEntries in the hostTable and the
         hostTimeTable associated with this hostControlEntry."
     ::= { hostControlEntry 3 }

 hostControlLastDeleteTime OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 43]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The value of sysUpTime when the last entry
         was deleted from the portion of the hostTable
         associated with this hostControlEntry.  If no
         deletions have occurred, this value shall be zero."
     ::= { hostControlEntry 4 }

 hostControlOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { hostControlEntry 5 }

 hostControlStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this hostControl entry.

         If this object is not equal to valid(1), all associated
         entries in the hostTable, hostTimeTable, and the
         hostTopNTable shall be deleted by the agent."
     ::= { hostControlEntry 6 }

 hostTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HostEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of host entries."
     ::= { hosts 2 }

 hostEntry OBJECT-TYPE
     SYNTAX     HostEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A collection of statistics for a particular host that has
         been discovered on an interface of this device.  For example,
         an instance of the hostOutBroadcastPkts object might be
         named hostOutBroadcastPkts.1.6.8.0.32.27.3.176"
     INDEX { hostIndex, hostAddress }
     ::= { hostTable 1 }



Waldbusser                  Standards Track                    [Page 44]

RFC 2819             Remote Network Monitoring MIB              May 2000


 HostEntry ::= SEQUENCE {
     hostAddress             OCTET STRING,
     hostCreationOrder       Integer32,
     hostIndex               Integer32,
     hostInPkts              Counter32,
     hostOutPkts             Counter32,
     hostInOctets            Counter32,
     hostOutOctets           Counter32,
     hostOutErrors           Counter32,
     hostOutBroadcastPkts    Counter32,
     hostOutMulticastPkts    Counter32
 }

 hostAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The physical address of this host."
     ::= { hostEntry 1 }

 hostCreationOrder OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that defines the relative ordering of
         the creation time of hosts captured for a
         particular hostControlEntry.  This index shall
         be between 1 and N, where N is the value of
         the associated hostControlTableSize.  The ordering
         of the indexes is based on the order of each entry's
         insertion into the table, in which entries added earlier
         have a lower index value than entries added later.

         It is important to note that the order for a
         particular entry may change as an (earlier) entry
         is deleted from the table.  Because this order may
         change, management stations should make use of the
         hostControlLastDeleteTime variable in the
         hostControlEntry associated with the relevant
         portion of the hostTable.  By observing
         this variable, the management station may detect
         the circumstances where a previous association
         between a value of hostCreationOrder
         and a hostEntry may no longer hold."
     ::= { hostEntry 2 }




Waldbusser                  Standards Track                    [Page 45]

RFC 2819             Remote Network Monitoring MIB              May 2000


 hostIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The set of collected host statistics of which
         this entry is a part.  The set of hosts
         identified by a particular value of this
         index is associated with the hostControlEntry
         as identified by the same value of hostControlIndex."
     ::= { hostEntry 3 }

 hostInPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted to this
         address since it was added to the hostTable."
     ::= { hostEntry 4 }

 hostOutPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets, including bad packets, transmitted
         by this address since it was added to the hostTable."
     ::= { hostEntry 5 }

 hostInOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of octets transmitted to this address since
         it was added to the hostTable (excluding framing
         bits but including FCS octets), except for those
         octets in bad packets."
     ::= { hostEntry 6 }

 hostOutOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 46]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The number of octets transmitted by this address since
         it was added to the hostTable (excluding framing
         bits but including FCS octets), including those
         octets in bad packets."
     ::= { hostEntry 7 }

 hostOutErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of bad packets transmitted by this address
         since this host was added to the hostTable."
     ::= { hostEntry 8 }

 hostOutBroadcastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted by this
         address that were directed to the broadcast address
         since this host was added to the hostTable."
     ::= { hostEntry 9 }

 hostOutMulticastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted by this
         address that were directed to a multicast address
         since this host was added to the hostTable.
         Note that this number does not include packets
         directed to the broadcast address."
     ::= { hostEntry 10 }

 -- host Time Table

 hostTimeTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HostTimeEntry
     MAX-ACCESS not-accessible
     STATUS     current



Waldbusser                  Standards Track                    [Page 47]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "A list of time-ordered host table entries."
     ::= { hosts 3 }

 hostTimeEntry OBJECT-TYPE
     SYNTAX     HostTimeEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A collection of statistics for a particular host that has
         been discovered on an interface of this device.  This
         collection includes the relative ordering of the creation
         time of this object.  For example, an instance of the
         hostTimeOutBroadcastPkts object might be named
         hostTimeOutBroadcastPkts.1.687"
     INDEX { hostTimeIndex, hostTimeCreationOrder }
     ::= { hostTimeTable 1 }

 HostTimeEntry ::= SEQUENCE {
     hostTimeAddress              OCTET STRING,
     hostTimeCreationOrder        Integer32,
     hostTimeIndex                Integer32,
     hostTimeInPkts               Counter32,
     hostTimeOutPkts              Counter32,
     hostTimeInOctets             Counter32,
     hostTimeOutOctets            Counter32,
     hostTimeOutErrors            Counter32,
     hostTimeOutBroadcastPkts     Counter32,
     hostTimeOutMulticastPkts     Counter32
 }

 hostTimeAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The physical address of this host."
     ::= { hostTimeEntry 1 }

 hostTimeCreationOrder OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in
         the hostTime table among those entries associated
         with the same hostControlEntry.  This index shall
         be between 1 and N, where N is the value of



Waldbusser                  Standards Track                    [Page 48]

RFC 2819             Remote Network Monitoring MIB              May 2000


         the associated hostControlTableSize.  The ordering
         of the indexes is based on the order of each entry's
         insertion into the table, in which entries added earlier
         have a lower index value than entries added later.
         Thus the management station has the ability to
         learn of new entries added to this table without
         downloading the entire table.

         It is important to note that the index for a
         particular entry may change as an (earlier) entry
         is deleted from the table.  Because this order may
         change, management stations should make use of the
         hostControlLastDeleteTime variable in the
         hostControlEntry associated with the relevant
         portion of the hostTimeTable.  By observing
         this variable, the management station may detect
         the circumstances where a download of the table
         may have missed entries, and where a previous
         association between a value of hostTimeCreationOrder
         and a hostTimeEntry may no longer hold."
     ::= { hostTimeEntry 2 }

 hostTimeIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The set of collected host statistics of which
         this entry is a part.  The set of hosts
         identified by a particular value of this
         index is associated with the hostControlEntry
         as identified by the same value of hostControlIndex."
     ::= { hostTimeEntry 3 }

 hostTimeInPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted to this
         address since it was added to the hostTimeTable."
     ::= { hostTimeEntry 4 }

 hostTimeOutPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 49]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The number of packets, including bad packets, transmitted
         by this address since it was added to the hostTimeTable."
     ::= { hostTimeEntry 5 }

 hostTimeInOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of octets transmitted to this address since
         it was added to the hostTimeTable (excluding framing
         bits but including FCS octets), except for those
         octets in bad packets."
     ::= { hostTimeEntry 6 }

 hostTimeOutOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of octets transmitted by this address since
         it was added to the hostTimeTable (excluding framing
         bits but including FCS octets), including those
         octets in bad packets."
     ::= { hostTimeEntry 7 }

 hostTimeOutErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of bad packets transmitted by this address
         since this host was added to the hostTimeTable."
     ::= { hostTimeEntry 8 }

 hostTimeOutBroadcastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted by this
         address that were directed to the broadcast address



Waldbusser                  Standards Track                    [Page 50]

RFC 2819             Remote Network Monitoring MIB              May 2000


         since this host was added to the hostTimeTable."
     ::= { hostTimeEntry 9 }

 hostTimeOutMulticastPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of good packets transmitted by this
         address that were directed to a multicast address
         since this host was added to the hostTimeTable.
         Note that this number does not include packets directed
         to the broadcast address."
     ::= { hostTimeEntry 10 }

 -- The Host Top "N" Group

 -- Implementation of the Host Top N group is optional. The Host Top N
 -- group requires the implementation of the host group.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Host Top N group is used to prepare reports that describe
 -- the hosts that top a list ordered by one of their statistics.
 -- The available statistics are samples of one of their
 -- base statistics, over an interval specified by the management
 -- station.  Thus, these statistics are rate based.  The management
 -- station also selects how many such hosts are reported.

 -- The hostTopNControlTable is used to initiate the generation of
 -- such a report.  The management station may select the parameters
 -- of such a report, such as which interface, which statistic,
 -- how many hosts, and the start and stop times of the sampling.
 -- When the report is prepared, entries are created in the
 -- hostTopNTable associated with the relevant hostTopNControlEntry.
 -- These entries are static for each report after it has been
 -- prepared.

 hostTopNControlTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HostTopNControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of top N host control entries."
     ::= { hostTopN 1 }

 hostTopNControlEntry OBJECT-TYPE



Waldbusser                  Standards Track                    [Page 51]

RFC 2819             Remote Network Monitoring MIB              May 2000


     SYNTAX     HostTopNControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of parameters that control the creation of a report
         of the top N hosts according to several metrics.  For
         example, an instance of the hostTopNDuration object might
         be named hostTopNDuration.3"
     INDEX { hostTopNControlIndex }
     ::= { hostTopNControlTable 1 }

 HostTopNControlEntry ::= SEQUENCE {
     hostTopNControlIndex    Integer32,
     hostTopNHostIndex       Integer32,
     hostTopNRateBase        INTEGER,
     hostTopNTimeRemaining   Integer32,
     hostTopNDuration        Integer32,
     hostTopNRequestedSize   Integer32,
     hostTopNGrantedSize     Integer32,
     hostTopNStartTime       TimeTicks,
     hostTopNOwner           OwnerString,
     hostTopNStatus          EntryStatus
 }

 hostTopNControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry
         in the hostTopNControl table.  Each such
         entry defines one top N report prepared for
         one interface."
     ::= { hostTopNControlEntry 1 }

 hostTopNHostIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The host table for which a top N report will be prepared
         on behalf of this entry.  The host table identified by a
         particular value of this index is associated with the same
         host table as identified by the same value of
         hostIndex.

         This object may not be modified if the associated
         hostTopNStatus object is equal to valid(1)."



Waldbusser                  Standards Track                    [Page 52]

RFC 2819             Remote Network Monitoring MIB              May 2000


     ::= { hostTopNControlEntry 2 }

 hostTopNRateBase OBJECT-TYPE
     SYNTAX     INTEGER {
                  hostTopNInPkts(1),
                  hostTopNOutPkts(2),
                  hostTopNInOctets(3),
                  hostTopNOutOctets(4),
                  hostTopNOutErrors(5),
                  hostTopNOutBroadcastPkts(6),
                  hostTopNOutMulticastPkts(7)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The variable for each host that the hostTopNRate
         variable is based upon.

         This object may not be modified if the associated
         hostTopNStatus object is equal to valid(1)."
     ::= { hostTopNControlEntry 3 }

 hostTopNTimeRemaining OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Seconds"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The number of seconds left in the report currently being
         collected.  When this object is modified by the management
         station, a new collection is started, possibly aborting
         a currently running report.  The new value is used
         as the requested duration of this report, which is
         loaded into the associated hostTopNDuration object.

         When this object is set to a non-zero value, any
         associated hostTopNEntries shall be made
         inaccessible by the monitor.  While the value of this
         object is non-zero, it decrements by one per second until
         it reaches zero.  During this time, all associated
         hostTopNEntries shall remain inaccessible.  At the time
         that this object decrements to zero, the report is made
         accessible in the hostTopNTable.  Thus, the hostTopN
         table needs to be created only at the end of the collection
         interval."
     DEFVAL { 0 }
     ::= { hostTopNControlEntry 4 }




Waldbusser                  Standards Track                    [Page 53]

RFC 2819             Remote Network Monitoring MIB              May 2000


 hostTopNDuration OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Seconds"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of seconds that this report has collected
         during the last sampling interval, or if this
         report is currently being collected, the number
         of seconds that this report is being collected
         during this sampling interval.

         When the associated hostTopNTimeRemaining object is set,
         this object shall be set by the probe to the same value
         and shall not be modified until the next time
         the hostTopNTimeRemaining is set.

         This value shall be zero if no reports have been
         requested for this hostTopNControlEntry."
     DEFVAL { 0 }
     ::= { hostTopNControlEntry 5 }

 hostTopNRequestedSize OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The maximum number of hosts requested for the top N
         table.

         When this object is created or modified, the probe
         should set hostTopNGrantedSize as closely to this
         object as is possible for the particular probe
         implementation and available resources."
     DEFVAL { 10 }
     ::= { hostTopNControlEntry 6 }

 hostTopNGrantedSize OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The maximum number of hosts in the top N table.

         When the associated hostTopNRequestedSize object is
         created or modified, the probe should set this
         object as closely to the requested value as is possible
         for the particular implementation and available



Waldbusser                  Standards Track                    [Page 54]

RFC 2819             Remote Network Monitoring MIB              May 2000


         resources. The probe must not lower this value except
         as a result of a set to the associated
         hostTopNRequestedSize object.

         Hosts with the highest value of hostTopNRate shall be
         placed in this table in decreasing order of this rate
         until there is no more room or until there are no more
         hosts."
     ::= { hostTopNControlEntry 7 }

 hostTopNStartTime OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime when this top N report was
         last started.  In other words, this is the time that
         the associated hostTopNTimeRemaining object was
         modified to start the requested report."
     ::= { hostTopNControlEntry 8 }

 hostTopNOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { hostTopNControlEntry 9 }

 hostTopNStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this hostTopNControl entry.

         If this object is not equal to valid(1), all associated
         hostTopNEntries shall be deleted by the agent."
     ::= { hostTopNControlEntry 10 }

 hostTopNTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF HostTopNEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of top N host entries."
     ::= { hostTopN 2 }



Waldbusser                  Standards Track                    [Page 55]

RFC 2819             Remote Network Monitoring MIB              May 2000


 hostTopNEntry OBJECT-TYPE
     SYNTAX     HostTopNEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of statistics for a host that is part of a top N
         report.  For example, an instance of the hostTopNRate
         object might be named hostTopNRate.3.10"
     INDEX { hostTopNReport, hostTopNIndex }
     ::= { hostTopNTable 1 }

 HostTopNEntry ::= SEQUENCE {
     hostTopNReport                Integer32,
     hostTopNIndex                 Integer32,
     hostTopNAddress               OCTET STRING,
     hostTopNRate                  Integer32
 }

 hostTopNReport OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "This object identifies the top N report of which
         this entry is a part.  The set of hosts
         identified by a particular value of this
         object is part of the same report as identified
         by the same value of the hostTopNControlIndex object."
     ::= { hostTopNEntry 1 }

 hostTopNIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in
         the hostTopN table among those in the same report.
         This index is between 1 and N, where N is the
         number of entries in this table.  Increasing values
         of hostTopNIndex shall be assigned to entries with
         decreasing values of hostTopNRate until index N
         is assigned to the entry with the lowest value of
         hostTopNRate or there are no more hostTopNEntries."
     ::= { hostTopNEntry 2 }

 hostTopNAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only



Waldbusser                  Standards Track                    [Page 56]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The physical address of this host."
     ::= { hostTopNEntry 3 }

 hostTopNRate OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The amount of change in the selected variable
         during this sampling interval.  The selected
         variable is this host's instance of the object
         selected by hostTopNRateBase."
     ::= { hostTopNEntry 4 }

 -- The Matrix Group

 -- Implementation of the Matrix group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Matrix group consists of the matrixControlTable, matrixSDTable
 -- and the matrixDSTable.  These tables store statistics for a
 -- particular conversation between two addresses.  As the device
 -- detects a new conversation, including those to a non-unicast
 -- address, it creates a new entry in both of the matrix tables.
 -- It must only create new entries based on information
 -- received in good packets.  If the monitoring device finds
 -- itself short of resources, it may delete entries as needed.
 -- It is suggested that the device delete the least recently used
 -- entries first.

 matrixControlTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF MatrixControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of information entries for the
         traffic matrix on each interface."
     ::= { matrix 1 }

 matrixControlEntry OBJECT-TYPE
     SYNTAX     MatrixControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "Information about a traffic matrix on a particular



Waldbusser                  Standards Track                    [Page 57]

RFC 2819             Remote Network Monitoring MIB              May 2000


         interface.  For example, an instance of the
         matrixControlLastDeleteTime object might be named
         matrixControlLastDeleteTime.1"
     INDEX { matrixControlIndex }
     ::= { matrixControlTable 1 }

 MatrixControlEntry ::= SEQUENCE {
     matrixControlIndex           Integer32,
     matrixControlDataSource      OBJECT IDENTIFIER,
     matrixControlTableSize       Integer32,
     matrixControlLastDeleteTime  TimeTicks,
     matrixControlOwner           OwnerString,
     matrixControlStatus          EntryStatus
 }

 matrixControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in the
         matrixControl table.  Each such entry defines
         a function that discovers conversations on a particular
         interface and places statistics about them in the
         matrixSDTable and the matrixDSTable on behalf of this
         matrixControlEntry."
     ::= { matrixControlEntry 1 }

 matrixControlDataSource OBJECT-TYPE
     SYNTAX     OBJECT IDENTIFIER
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "This object identifies the source of
         the data from which this entry creates a traffic matrix.
         This source can be any interface on this device.  In
         order to identify a particular interface, this object
         shall identify the instance of the ifIndex object,
         defined in RFC 2233 [17], for the desired
         interface.  For example, if an entry were to receive data
         from interface #1, this object would be set to ifIndex.1.

         The statistics in this group reflect all packets
         on the local network segment attached to the identified
         interface.

         An agent may or may not be able to tell if fundamental
         changes to the media of the interface have occurred and



Waldbusser                  Standards Track                    [Page 58]

RFC 2819             Remote Network Monitoring MIB              May 2000


         necessitate an invalidation of this entry.  For example, a
         hot-pluggable ethernet card could be pulled out and replaced
         by a token-ring card.  In such a case, if the agent has such
         knowledge of the change, it is recommended that it
         invalidate this entry.

         This object may not be modified if the associated
         matrixControlStatus object is equal to valid(1)."
     ::= { matrixControlEntry 2 }

 matrixControlTableSize OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of matrixSDEntries in the matrixSDTable
         for this interface.  This must also be the value of
         the number of entries in the matrixDSTable for this
         interface."
     ::= { matrixControlEntry 3 }

 matrixControlLastDeleteTime OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime when the last entry
         was deleted from the portion of the matrixSDTable
         or matrixDSTable associated with this matrixControlEntry.
         If no deletions have occurred, this value shall be
         zero."
     ::= { matrixControlEntry 4 }

 matrixControlOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { matrixControlEntry 5 }

 matrixControlStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this matrixControl entry.



Waldbusser                  Standards Track                    [Page 59]

RFC 2819             Remote Network Monitoring MIB              May 2000


         If this object is not equal to valid(1), all associated
         entries in the matrixSDTable and the matrixDSTable
         shall be deleted by the agent."
     ::= { matrixControlEntry 6 }

 matrixSDTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF MatrixSDEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of traffic matrix entries indexed by
         source and destination MAC address."
     ::= { matrix 2 }

 matrixSDEntry OBJECT-TYPE
     SYNTAX     MatrixSDEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A collection of statistics for communications between
         two addresses on a particular interface.  For example,
         an instance of the matrixSDPkts object might be named
         matrixSDPkts.1.6.8.0.32.27.3.176.6.8.0.32.10.8.113"
     INDEX { matrixSDIndex,
             matrixSDSourceAddress, matrixSDDestAddress }
     ::= { matrixSDTable 1 }

 MatrixSDEntry ::= SEQUENCE {
     matrixSDSourceAddress       OCTET STRING,
     matrixSDDestAddress         OCTET STRING,
     matrixSDIndex               Integer32,
     matrixSDPkts                Counter32,
     matrixSDOctets              Counter32,
     matrixSDErrors              Counter32
 }

 matrixSDSourceAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The source physical address."
     ::= { matrixSDEntry 1 }

 matrixSDDestAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current



Waldbusser                  Standards Track                    [Page 60]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "The destination physical address."
     ::= { matrixSDEntry 2 }

 matrixSDIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The set of collected matrix statistics of which
         this entry is a part.  The set of matrix statistics
         identified by a particular value of this index
         is associated with the same matrixControlEntry
         as identified by the same value of matrixControlIndex."
     ::= { matrixSDEntry 3 }

 matrixSDPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets transmitted from the source
         address to the destination address (this number includes
         bad packets)."
     ::= { matrixSDEntry 4 }

 matrixSDOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of octets (excluding framing bits but
         including FCS octets) contained in all packets
         transmitted from the source address to the
         destination address."
     ::= { matrixSDEntry 5 }

 matrixSDErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of bad packets transmitted from
         the source address to the destination address."
     ::= { matrixSDEntry 6 }



Waldbusser                  Standards Track                    [Page 61]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- Traffic matrix tables from destination to source

 matrixDSTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF MatrixDSEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of traffic matrix entries indexed by
         destination and source MAC address."
     ::= { matrix 3 }

 matrixDSEntry OBJECT-TYPE
     SYNTAX     MatrixDSEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A collection of statistics for communications between
         two addresses on a particular interface.  For example,
         an instance of the matrixSDPkts object might be named
         matrixSDPkts.1.6.8.0.32.10.8.113.6.8.0.32.27.3.176"
     INDEX { matrixDSIndex,
             matrixDSDestAddress, matrixDSSourceAddress }
     ::= { matrixDSTable 1 }

 MatrixDSEntry ::= SEQUENCE {
     matrixDSSourceAddress       OCTET STRING,
     matrixDSDestAddress         OCTET STRING,
     matrixDSIndex               Integer32,
     matrixDSPkts                Counter32,
     matrixDSOctets              Counter32,
     matrixDSErrors              Counter32
 }

 matrixDSSourceAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The source physical address."
     ::= { matrixDSEntry 1 }

 matrixDSDestAddress OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The destination physical address."
     ::= { matrixDSEntry 2 }



Waldbusser                  Standards Track                    [Page 62]

RFC 2819             Remote Network Monitoring MIB              May 2000


 matrixDSIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The set of collected matrix statistics of which
         this entry is a part.  The set of matrix statistics
         identified by a particular value of this index
         is associated with the same matrixControlEntry
         as identified by the same value of matrixControlIndex."
     ::= { matrixDSEntry 3 }

 matrixDSPkts OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets transmitted from the source
         address to the destination address (this number includes
         bad packets)."
     ::= { matrixDSEntry 4 }

 matrixDSOctets OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of octets (excluding framing bits
         but including FCS octets) contained in all packets
         transmitted from the source address to the
         destination address."
     ::= { matrixDSEntry 5 }

 matrixDSErrors OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of bad packets transmitted from
         the source address to the destination address."
     ::= { matrixDSEntry 6 }

 -- The Filter Group

 -- Implementation of the Filter group is optional.



Waldbusser                  Standards Track                    [Page 63]

RFC 2819             Remote Network Monitoring MIB              May 2000


 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Filter group allows packets to be captured with an
 -- arbitrary filter expression.  A logical data and
 -- event stream or "channel" is formed by the packets
 -- that match the filter expression.
 --
 -- This filter mechanism allows the creation of an arbitrary
 -- logical expression with which to filter packets.  Each
 -- filter associated with a channel is OR'ed with the others.
 -- Within a filter, any bits checked in the data and status are
 -- AND'ed with respect to other bits in the same filter.  The
 -- NotMask also allows for checking for inequality.  Finally,
 -- the channelAcceptType object allows for inversion of the
 -- whole equation.
 --
 -- If a management station wishes to receive a trap to alert it
 -- that new packets have been captured and are available for
 -- download, it is recommended that it set up an alarm entry that
 -- monitors the value of the relevant channelMatches instance.
 --
 -- The channel can be turned on or off, and can also
 -- generate events when packets pass through it.

 filterTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF FilterEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of packet filter entries."
     ::= { filter 1 }

 filterEntry OBJECT-TYPE
     SYNTAX     FilterEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of parameters for a packet filter applied on a
         particular interface.  As an example, an instance of the
         filterPktData object might be named filterPktData.12"
     INDEX { filterIndex }
     ::= { filterTable 1 }

 FilterEntry ::= SEQUENCE {
     filterIndex                 Integer32,
     filterChannelIndex          Integer32,
     filterPktDataOffset         Integer32,



Waldbusser                  Standards Track                    [Page 64]

RFC 2819             Remote Network Monitoring MIB              May 2000


     filterPktData               OCTET STRING,
     filterPktDataMask           OCTET STRING,
     filterPktDataNotMask        OCTET STRING,
     filterPktStatus             Integer32,
     filterPktStatusMask         Integer32,
     filterPktStatusNotMask      Integer32,
     filterOwner                 OwnerString,
     filterStatus                EntryStatus
 }

 filterIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry
         in the filter table.  Each such entry defines
         one filter that is to be applied to every packet
         received on an interface."
     ::= { filterEntry 1 }

 filterChannelIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "This object identifies the channel of which this filter
         is a part.  The filters identified by a particular value
         of this object are associated with the same channel as
         identified by the same value of the channelIndex object."
     ::= { filterEntry 2 }

 filterPktDataOffset OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The offset from the beginning of each packet where
         a match of packet data will be attempted.  This offset
         is measured from the point in the physical layer
         packet after the framing bits, if any.  For example,
         in an Ethernet frame, this point is at the beginning of
         the destination MAC address.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     DEFVAL { 0 }



Waldbusser                  Standards Track                    [Page 65]

RFC 2819             Remote Network Monitoring MIB              May 2000


     ::= { filterEntry 3 }

 filterPktData OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The data that is to be matched with the input packet.
         For each packet received, this filter and the accompanying
         filterPktDataMask and filterPktDataNotMask will be
         adjusted for the offset.  The only bits relevant to this
         match algorithm are those that have the corresponding
         filterPktDataMask bit equal to one.  The following three
         rules are then applied to every packet:

         (1) If the packet is too short and does not have data
             corresponding to part of the filterPktData, the packet
             will fail this data match.

         (2) For each relevant bit from the packet with the
             corresponding filterPktDataNotMask bit set to zero, if
             the bit from the packet is not equal to the corresponding
             bit from the filterPktData, then the packet will fail
             this data match.

         (3) If for every relevant bit from the packet with the
             corresponding filterPktDataNotMask bit set to one, the
             bit from the packet is equal to the corresponding bit
             from the filterPktData, then the packet will fail this
             data match.

         Any packets that have not failed any of the three matches
         above have passed this data match.  In particular, a zero
         length filter will match any packet.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 4 }

 filterPktDataMask OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The mask that is applied to the match process.
         After adjusting this mask for the offset, only those
         bits in the received packet that correspond to bits set
         in this mask are relevant for further processing by the



Waldbusser                  Standards Track                    [Page 66]

RFC 2819             Remote Network Monitoring MIB              May 2000


         match algorithm.  The offset is applied to filterPktDataMask
         in the same way it is applied to the filter.  For the
         purposes of the matching algorithm, if the associated
         filterPktData object is longer than this mask, this mask is
         conceptually extended with '1' bits until it reaches the
         length of the filterPktData object.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 5 }

 filterPktDataNotMask OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The inversion mask that is applied to the match
         process.  After adjusting this mask for the offset,
         those relevant bits in the received packet that correspond
         to bits cleared in this mask must all be equal to their
         corresponding bits in the filterPktData object for the packet
         to be accepted.  In addition, at least one of those relevant
         bits in the received packet that correspond to bits set in
         this mask must be different to its corresponding bit in the
         filterPktData object.

         For the purposes of the matching algorithm, if the associated
         filterPktData object is longer than this mask, this mask is
         conceptually extended with '0' bits until it reaches the
         length of the filterPktData object.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 6 }

 filterPktStatus OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status that is to be matched with the input packet.
         The only bits relevant to this match algorithm are those that
         have the corresponding filterPktStatusMask bit equal to one.
         The following two rules are then applied to every packet:

         (1) For each relevant bit from the packet status with the
             corresponding filterPktStatusNotMask bit set to zero, if
             the bit from the packet status is not equal to the



Waldbusser                  Standards Track                    [Page 67]

RFC 2819             Remote Network Monitoring MIB              May 2000


             corresponding bit from the filterPktStatus, then the
             packet will fail this status match.

         (2) If for every relevant bit from the packet status with the
             corresponding filterPktStatusNotMask bit set to one, the
             bit from the packet status is equal to the corresponding
             bit from the filterPktStatus, then the packet will fail
             this status match.

         Any packets that have not failed either of the two matches
         above have passed this status match.  In particular, a zero
         length status filter will match any packet's status.

         The value of the packet status is a sum.  This sum
         initially takes the value zero.  Then, for each
         error, E, that has been discovered in this packet,
         2 raised to a value representing E is added to the sum.
         The errors and the bits that represent them are dependent
         on the media type of the interface that this channel
         is receiving packets from.

         The errors defined for a packet captured off of an
         Ethernet interface are as follows:

             bit #    Error
                 0    Packet is longer than 1518 octets
                 1    Packet is shorter than 64 octets
                 2    Packet experienced a CRC or Alignment error

         For example, an Ethernet fragment would have a
         value of 6 (2^1 + 2^2).

         As this MIB is expanded to new media types, this object
         will have other media-specific errors defined.

         For the purposes of this status matching algorithm, if the
         packet status is longer than this filterPktStatus object,
         this object is conceptually extended with '0' bits until it
         reaches the size of the packet status.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 7 }

 filterPktStatusMask OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current



Waldbusser                  Standards Track                    [Page 68]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "The mask that is applied to the status match process.
         Only those bits in the received packet that correspond to
         bits set in this mask are relevant for further processing
         by the status match algorithm.  For the purposes
         of the matching algorithm, if the associated filterPktStatus
         object is longer than this mask, this mask is conceptually
         extended with '1' bits until it reaches the size of the
         filterPktStatus.  In addition, if a packet status is longer
         than this mask, this mask is conceptually extended with '0'
         bits until it reaches the size of the packet status.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 8 }

 filterPktStatusNotMask OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The inversion mask that is applied to the status match
         process.  Those relevant bits in the received packet status
         that correspond to bits cleared in this mask must all be
         equal to their corresponding bits in the filterPktStatus
         object for the packet to be accepted.  In addition, at least
         one of those relevant bits in the received packet status
         that correspond to bits set in this mask must be different
         to its corresponding bit in the filterPktStatus object for
         the packet to be accepted.

         For the purposes of the matching algorithm, if the associated
         filterPktStatus object or a packet status is longer than this
         mask, this mask is conceptually extended with '0' bits until
         it reaches the longer of the lengths of the filterPktStatus
         object and the packet status.

         This object may not be modified if the associated
         filterStatus object is equal to valid(1)."
     ::= { filterEntry 9 }

 filterOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."



Waldbusser                  Standards Track                    [Page 69]

RFC 2819             Remote Network Monitoring MIB              May 2000


     ::= { filterEntry 10 }

 filterStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this filter entry."
     ::= { filterEntry 11 }

 channelTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF ChannelEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of packet channel entries."
     ::= { filter 2 }

 channelEntry OBJECT-TYPE
     SYNTAX     ChannelEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of parameters for a packet channel applied on a
         particular interface.  As an example, an instance of the
         channelMatches object might be named channelMatches.3"
     INDEX { channelIndex }
     ::= { channelTable 1 }

 ChannelEntry ::= SEQUENCE {
     channelIndex                 Integer32,
     channelIfIndex               Integer32,
     channelAcceptType            INTEGER,
     channelDataControl           INTEGER,
     channelTurnOnEventIndex      Integer32,
     channelTurnOffEventIndex     Integer32,
     channelEventIndex            Integer32,
     channelEventStatus           INTEGER,
     channelMatches               Counter32,
     channelDescription           DisplayString,
     channelOwner                 OwnerString,
     channelStatus                EntryStatus
 }

 channelIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current



Waldbusser                  Standards Track                    [Page 70]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "An index that uniquely identifies an entry in the channel
         table.  Each such entry defines one channel, a logical
         data and event stream.

         It is suggested that before creating a channel, an
         application should scan all instances of the
         filterChannelIndex object to make sure that there are no
         pre-existing filters that would be inadvertently be linked
         to the channel."
     ::= { channelEntry 1 }

 channelIfIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The value of this object uniquely identifies the
         interface on this remote network monitoring device to which
         the associated filters are applied to allow data into this
         channel.  The interface identified by a particular value
         of this object is the same interface as identified by the
         same value of the ifIndex object, defined in RFC 2233 [17].

         The filters in this group are applied to all packets on
         the local network segment attached to the identified
         interface.

         An agent may or may not be able to tell if fundamental
         changes to the media of the interface have occurred and
         necessitate an invalidation of this entry.  For example, a
         hot-pluggable ethernet card could be pulled out and replaced
         by a token-ring card.  In such a case, if the agent has such
         knowledge of the change, it is recommended that it
         invalidate this entry.

         This object may not be modified if the associated
         channelStatus object is equal to valid(1)."
     ::= { channelEntry 2 }

 channelAcceptType OBJECT-TYPE
     SYNTAX     INTEGER {
                  acceptMatched(1),
                  acceptFailed(2)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION



Waldbusser                  Standards Track                    [Page 71]

RFC 2819             Remote Network Monitoring MIB              May 2000


         "This object controls the action of the filters
         associated with this channel.  If this object is equal
         to acceptMatched(1), packets will be accepted to this
         channel if they are accepted by both the packet data and
         packet status matches of an associated filter.  If
         this object is equal to acceptFailed(2), packets will
         be accepted to this channel only if they fail either
         the packet data match or the packet status match of
         each of the associated filters.

         In particular, a channel with no associated filters will
         match no packets if set to acceptMatched(1) case and will
         match all packets in the acceptFailed(2) case.

         This object may not be modified if the associated
         channelStatus object is equal to valid(1)."
     ::= { channelEntry 3 }

 channelDataControl OBJECT-TYPE
     SYNTAX     INTEGER {
                  on(1),
                  off(2)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "This object controls the flow of data through this channel.
         If this object is on(1), data, status and events flow
         through this channel.  If this object is off(2), data,
         status and events will not flow through this channel."
     DEFVAL { off }
     ::= { channelEntry 4 }

 channelTurnOnEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (0..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The value of this object identifies the event
         that is configured to turn the associated
         channelDataControl from off to on when the event is
         generated.  The event identified by a particular value
         of this object is the same event as identified by the
         same value of the eventIndex object.  If there is no
         corresponding entry in the eventTable, then no
         association exists.  In fact, if no event is intended
         for this channel, channelTurnOnEventIndex must be
         set to zero, a non-existent event index.



Waldbusser                  Standards Track                    [Page 72]

RFC 2819             Remote Network Monitoring MIB              May 2000


         This object may not be modified if the associated
         channelStatus object is equal to valid(1)."
     ::= { channelEntry 5 }

 channelTurnOffEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (0..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The value of this object identifies the event
         that is configured to turn the associated
         channelDataControl from on to off when the event is
         generated.  The event identified by a particular value
         of this object is the same event as identified by the
         same value of the eventIndex object.  If there is no
         corresponding entry in the eventTable, then no
         association exists.  In fact, if no event is intended
         for this channel, channelTurnOffEventIndex must be
         set to zero, a non-existent event index.

         This object may not be modified if the associated
         channelStatus object is equal to valid(1)."
     ::= { channelEntry 6 }

 channelEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (0..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The value of this object identifies the event
         that is configured to be generated when the
         associated channelDataControl is on and a packet
         is matched.  The event identified by a particular value
         of this object is the same event as identified by the
         same value of the eventIndex object.  If there is no
         corresponding entry in the eventTable, then no
         association exists.  In fact, if no event is intended
         for this channel, channelEventIndex must be
         set to zero, a non-existent event index.

         This object may not be modified if the associated
         channelStatus object is equal to valid(1)."
     ::= { channelEntry 7 }

 channelEventStatus OBJECT-TYPE
     SYNTAX     INTEGER {
                  eventReady(1),
                  eventFired(2),



Waldbusser                  Standards Track                    [Page 73]

RFC 2819             Remote Network Monitoring MIB              May 2000


                  eventAlwaysReady(3)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The event status of this channel.

         If this channel is configured to generate events
         when packets are matched, a means of controlling
         the flow of those events is often needed.  When
         this object is equal to eventReady(1), a single
         event may be generated, after which this object
         will be set by the probe to eventFired(2).  While
         in the eventFired(2) state, no events will be
         generated until the object is modified to
         eventReady(1) (or eventAlwaysReady(3)).  The
         management station can thus easily respond to a
         notification of an event by re-enabling this object.

         If the management station wishes to disable this
         flow control and allow events to be generated
         at will, this object may be set to
         eventAlwaysReady(3).  Disabling the flow control
         is discouraged as it can result in high network
         traffic or other performance problems."
     DEFVAL { eventReady }
     ::= { channelEntry 8 }

 channelMatches OBJECT-TYPE
     SYNTAX     Counter32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of times this channel has matched a packet.
         Note that this object is updated even when
         channelDataControl is set to off."
     ::= { channelEntry 9 }

 channelDescription OBJECT-TYPE
     SYNTAX     DisplayString (SIZE (0..127))
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "A comment describing this channel."
     ::= { channelEntry 10 }

 channelOwner OBJECT-TYPE



Waldbusser                  Standards Track                    [Page 74]

RFC 2819             Remote Network Monitoring MIB              May 2000


     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { channelEntry 11 }

 channelStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this channel entry."
     ::= { channelEntry 12 }

 -- The Packet Capture Group

 -- Implementation of the Packet Capture group is optional. The Packet
 -- Capture Group requires implementation of the Filter Group.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Packet Capture group allows packets to be captured
 -- upon a filter match.  The bufferControlTable controls
 -- the captured packets output from a channel that is
 -- associated with it.  The captured packets are placed
 -- in entries in the captureBufferTable.  These entries are
 -- associated with the bufferControlEntry on whose behalf they
 -- were stored.

 bufferControlTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF BufferControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of buffers control entries."
     ::= { capture 1 }

 bufferControlEntry OBJECT-TYPE
     SYNTAX     BufferControlEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of parameters that control the collection of a stream
         of packets that have matched filters.  As an example, an
         instance of the bufferControlCaptureSliceSize object might
         be named bufferControlCaptureSliceSize.3"



Waldbusser                  Standards Track                    [Page 75]

RFC 2819             Remote Network Monitoring MIB              May 2000


     INDEX { bufferControlIndex }
     ::= { bufferControlTable 1 }

 BufferControlEntry ::= SEQUENCE {
     bufferControlIndex                Integer32,
     bufferControlChannelIndex         Integer32,
     bufferControlFullStatus           INTEGER,
     bufferControlFullAction           INTEGER,
     bufferControlCaptureSliceSize     Integer32,
     bufferControlDownloadSliceSize    Integer32,
     bufferControlDownloadOffset       Integer32,
     bufferControlMaxOctetsRequested   Integer32,
     bufferControlMaxOctetsGranted     Integer32,
     bufferControlCapturedPackets      Integer32,
     bufferControlTurnOnTime           TimeTicks,
     bufferControlOwner                OwnerString,
     bufferControlStatus               EntryStatus
 }

 bufferControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry
         in the bufferControl table.  The value of this
         index shall never be zero.  Each such
         entry defines one set of packets that is
         captured and controlled by one or more filters."
     ::= { bufferControlEntry 1 }

 bufferControlChannelIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "An index that identifies the channel that is the
         source of packets for this bufferControl table.
         The channel identified by a particular value of this
         index is the same as identified by the same value of
         the channelIndex object.

         This object may not be modified if the associated
         bufferControlStatus object is equal to valid(1)."
     ::= { bufferControlEntry 2 }

 bufferControlFullStatus OBJECT-TYPE
     SYNTAX     INTEGER {



Waldbusser                  Standards Track                    [Page 76]

RFC 2819             Remote Network Monitoring MIB              May 2000


                  spaceAvailable(1),
                  full(2)
                }
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "This object shows whether the buffer has room to
         accept new packets or if it is full.

         If the status is spaceAvailable(1), the buffer is
         accepting new packets normally.  If the status is
         full(2) and the associated bufferControlFullAction
         object is wrapWhenFull, the buffer is accepting new
         packets by deleting enough of the oldest packets
         to make room for new ones as they arrive.  Otherwise,
         if the status is full(2) and the
         bufferControlFullAction object is lockWhenFull,
         then the buffer has stopped collecting packets.

         When this object is set to full(2) the probe must
         not later set it to spaceAvailable(1) except in the
         case of a significant gain in resources such as
         an increase of bufferControlOctetsGranted.  In
         particular, the wrap-mode action of deleting old
         packets to make room for newly arrived packets
         must not affect the value of this object."
     ::= { bufferControlEntry 3 }

 bufferControlFullAction OBJECT-TYPE
     SYNTAX     INTEGER {
                  lockWhenFull(1),
                  wrapWhenFull(2)    -- FIFO
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "Controls the action of the buffer when it
         reaches the full status.  When in the lockWhenFull(1)
         state and a packet is added to the buffer that
         fills the buffer, the bufferControlFullStatus will
         be set to full(2) and this buffer will stop capturing
         packets."
     ::= { bufferControlEntry 4 }

 bufferControlCaptureSliceSize OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-create



Waldbusser                  Standards Track                    [Page 77]

RFC 2819             Remote Network Monitoring MIB              May 2000


     STATUS     current
     DESCRIPTION
         "The maximum number of octets of each packet
         that will be saved in this capture buffer.
         For example, if a 1500 octet packet is received by
         the probe and this object is set to 500, then only
         500 octets of the packet will be stored in the
         associated capture buffer.  If this variable is set
         to 0, the capture buffer will save as many octets
         as is possible.

         This object may not be modified if the associated
         bufferControlStatus object is equal to valid(1)."
     DEFVAL { 100 }
     ::= { bufferControlEntry 5 }

 bufferControlDownloadSliceSize OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The maximum number of octets of each packet
         in this capture buffer that will be returned in
         an SNMP retrieval of that packet.  For example,
         if 500 octets of a packet have been stored in the
         associated capture buffer, the associated
         bufferControlDownloadOffset is 0, and this
         object is set to 100, then the captureBufferPacket
         object that contains the packet will contain only
         the first 100 octets of the packet.

         A prudent manager will take into account possible
         interoperability or fragmentation problems that may
         occur if the download slice size is set too large.
         In particular, conformant SNMP implementations are not
         required to accept messages whose length exceeds 484
         octets, although they are encouraged to support larger
         datagrams whenever feasible."
     DEFVAL { 100 }
     ::= { bufferControlEntry 6 }

 bufferControlDownloadOffset OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION



Waldbusser                  Standards Track                    [Page 78]

RFC 2819             Remote Network Monitoring MIB              May 2000


         "The offset of the first octet of each packet
         in this capture buffer that will be returned in
         an SNMP retrieval of that packet.  For example,
         if 500 octets of a packet have been stored in the
         associated capture buffer and this object is set to
         100, then the captureBufferPacket object that
         contains the packet will contain bytes starting
         100 octets into the packet."
     DEFVAL { 0 }
     ::= { bufferControlEntry 7 }

 bufferControlMaxOctetsRequested OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The requested maximum number of octets to be
         saved in this captureBuffer, including any
         implementation-specific overhead. If this variable
         is set to -1, the capture buffer will save as many
         octets as is possible.

         When this object is created or modified, the probe
         should set bufferControlMaxOctetsGranted as closely
         to this object as is possible for the particular probe
         implementation and available resources.  However, if
         the object has the special value of -1, the probe
         must set bufferControlMaxOctetsGranted to -1."
     DEFVAL { -1 }
     ::= { bufferControlEntry 8 }

 bufferControlMaxOctetsGranted OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The maximum number of octets that can be
         saved in this captureBuffer, including overhead.
         If this variable is -1, the capture buffer will save
         as many octets as possible.

         When the bufferControlMaxOctetsRequested object is
         created or modified, the probe should set this object
         as closely to the requested value as is possible for the
         particular probe implementation and available resources.
         However, if the request object has the special value



Waldbusser                  Standards Track                    [Page 79]

RFC 2819             Remote Network Monitoring MIB              May 2000


         of -1, the probe must set this object to -1.

         The probe must not lower this value except as a result of
         a modification to the associated
         bufferControlMaxOctetsRequested object.

         When this maximum number of octets is reached
         and a new packet is to be added to this
         capture buffer and the corresponding
         bufferControlFullAction is set to wrapWhenFull(2),
         enough of the oldest packets associated with this
         capture buffer shall be deleted by the agent so
         that the new packet can be added.  If the corresponding
         bufferControlFullAction is set to lockWhenFull(1),
         the new packet shall be discarded.  In either case,
         the probe must set bufferControlFullStatus to
         full(2).

         When the value of this object changes to a value less
         than the current value, entries are deleted from
         the captureBufferTable associated with this
         bufferControlEntry.  Enough of the
         oldest of these captureBufferEntries shall be
         deleted by the agent so that the number of octets
         used remains less than or equal to the new value of
         this object.

         When the value of this object changes to a value greater
         than the current value, the number of associated
         captureBufferEntries may be allowed to grow."
     ::= { bufferControlEntry 9 }

 bufferControlCapturedPackets OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Packets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of packets currently in this captureBuffer."
     ::= { bufferControlEntry 10 }

 bufferControlTurnOnTime OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime when this capture buffer was
         first turned on."



Waldbusser                  Standards Track                    [Page 80]

RFC 2819             Remote Network Monitoring MIB              May 2000


     ::= { bufferControlEntry 11 }

 bufferControlOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it."
     ::= { bufferControlEntry 12 }

 bufferControlStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this buffer Control Entry."
     ::= { bufferControlEntry 13 }

 captureBufferTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF CaptureBufferEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of packets captured off of a channel."
     ::= { capture 2 }

 captureBufferEntry OBJECT-TYPE
     SYNTAX     CaptureBufferEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A packet captured off of an attached network.  As an
         example, an instance of the captureBufferPacketData
         object might be named captureBufferPacketData.3.1783"
     INDEX { captureBufferControlIndex, captureBufferIndex }
     ::= { captureBufferTable 1 }

 CaptureBufferEntry ::= SEQUENCE {
     captureBufferControlIndex   Integer32,
     captureBufferIndex          Integer32,
     captureBufferPacketID       Integer32,
     captureBufferPacketData     OCTET STRING,
     captureBufferPacketLength   Integer32,
     captureBufferPacketTime     Integer32,
     captureBufferPacketStatus   Integer32
 }




Waldbusser                  Standards Track                    [Page 81]

RFC 2819             Remote Network Monitoring MIB              May 2000


 captureBufferControlIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The index of the bufferControlEntry with which
         this packet is associated."
     ::= { captureBufferEntry 1 }

 captureBufferIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..2147483647)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry
         in the captureBuffer table associated with a
         particular bufferControlEntry.  This index will
         start at 1 and increase by one for each new packet
         added with the same captureBufferControlIndex.

         Should this value reach 2147483647, the next packet
         added with the same captureBufferControlIndex shall
         cause this value to wrap around to 1."
     ::= { captureBufferEntry 2 }

 captureBufferPacketID OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that describes the order of packets
         that are received on a particular interface.
         The packetID of a packet captured on an
         interface is defined to be greater than the
         packetID's of all packets captured previously on
         the same interface.  As the captureBufferPacketID
         object has a maximum positive value of 2^31 - 1,
         any captureBufferPacketID object shall have the
         value of the associated packet's packetID mod 2^31."
     ::= { captureBufferEntry 3 }

 captureBufferPacketData OBJECT-TYPE
     SYNTAX     OCTET STRING
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The data inside the packet, starting at the beginning
         of the packet plus any offset specified in the



Waldbusser                  Standards Track                    [Page 82]

RFC 2819             Remote Network Monitoring MIB              May 2000


         associated bufferControlDownloadOffset, including any
         link level headers.  The length of the data in this object
         is the minimum of the length of the captured packet minus
         the offset, the length of the associated
         bufferControlCaptureSliceSize minus the offset, and the
         associated bufferControlDownloadSliceSize.  If this minimum
         is less than zero, this object shall have a length of zero."
     ::= { captureBufferEntry 4 }

 captureBufferPacketLength OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Octets"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The actual length (off the wire) of the packet stored
         in this entry, including FCS octets."
     ::= { captureBufferEntry 5 }

 captureBufferPacketTime OBJECT-TYPE
     SYNTAX     Integer32
     UNITS      "Milliseconds"
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The number of milliseconds that had passed since
         this capture buffer was first turned on when this
         packet was captured."
     ::= { captureBufferEntry 6 }

 captureBufferPacketStatus OBJECT-TYPE
     SYNTAX     Integer32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "A value which indicates the error status of this packet.

         The value of this object is defined in the same way as
         filterPktStatus.  The value is a sum.  This sum
         initially takes the value zero.  Then, for each
         error, E, that has been discovered in this packet,
         2 raised to a value representing E is added to the sum.

         The errors defined for a packet captured off of an
         Ethernet interface are as follows:

             bit #    Error
                 0    Packet is longer than 1518 octets



Waldbusser                  Standards Track                    [Page 83]

RFC 2819             Remote Network Monitoring MIB              May 2000


                 1    Packet is shorter than 64 octets
                 2    Packet experienced a CRC or Alignment error
                 3    First packet in this capture buffer after
                      it was detected that some packets were
                      not processed correctly.
                 4    Packet's order in buffer is only approximate
                      (May only be set for packets sent from
                      the probe)

         For example, an Ethernet fragment would have a
         value of 6 (2^1 + 2^2).

         As this MIB is expanded to new media types, this object
         will have other media-specific errors defined."
     ::= { captureBufferEntry 7 }

 -- The Event Group

 -- Implementation of the Event group is optional.
 -- Consult the MODULE-COMPLIANCE macro for the authoritative
 -- conformance information for this MIB.
 --
 -- The Event group controls the generation and notification
 -- of events from this device.  Each entry in the eventTable
 -- describes the parameters of the event that can be triggered.
 -- Each event entry is fired by an associated condition located
 -- elsewhere in the MIB.  An event entry may also be associated
 -- with a function elsewhere in the MIB that will be executed
 -- when the event is generated.  For example, a channel may
 -- be turned on or off by the firing of an event.
 --
 -- Each eventEntry may optionally specify that a log entry
 -- be created on its behalf whenever the event occurs.
 -- Each entry may also specify that notification should
 -- occur by way of SNMP trap messages.  In this case, the
 -- community for the trap message is given in the associated
 -- eventCommunity object.  The enterprise and specific trap
 -- fields of the trap are determined by the condition that
 -- triggered the event.  Two traps are defined: risingAlarm and
 -- fallingAlarm.  If the eventTable is triggered by a condition
 -- specified elsewhere, the enterprise and specific trap fields
 -- must be specified for traps generated for that condition.

 eventTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF EventEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION



Waldbusser                  Standards Track                    [Page 84]

RFC 2819             Remote Network Monitoring MIB              May 2000


         "A list of events to be generated."
     ::= { event 1 }

 eventEntry OBJECT-TYPE
     SYNTAX     EventEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of parameters that describe an event to be generated
         when certain conditions are met.  As an example, an instance
         of the eventLastTimeSent object might be named
         eventLastTimeSent.6"
     INDEX { eventIndex }
     ::= { eventTable 1 }

 EventEntry ::= SEQUENCE {
     eventIndex          Integer32,
     eventDescription    DisplayString,
     eventType           INTEGER,
     eventCommunity      OCTET STRING,
     eventLastTimeSent   TimeTicks,
     eventOwner          OwnerString,
     eventStatus         EntryStatus
 }

 eventIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry in the
         event table.  Each such entry defines one event that
         is to be generated when the appropriate conditions
         occur."
     ::= { eventEntry 1 }

 eventDescription OBJECT-TYPE
     SYNTAX     DisplayString (SIZE (0..127))
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "A comment describing this event entry."
     ::= { eventEntry 2 }

 eventType OBJECT-TYPE
     SYNTAX     INTEGER {
                  none(1),
                  log(2),



Waldbusser                  Standards Track                    [Page 85]

RFC 2819             Remote Network Monitoring MIB              May 2000


                  snmptrap(3),    -- send an SNMP trap
                  logandtrap(4)
                }
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The type of notification that the probe will make
         about this event.  In the case of log, an entry is
         made in the log table for each event.  In the case of
         snmp-trap, an SNMP trap is sent to one or more
         management stations."
     ::= { eventEntry 3 }

 eventCommunity OBJECT-TYPE
     SYNTAX     OCTET STRING (SIZE (0..127))
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "If an SNMP trap is to be sent, it will be sent to
         the SNMP community specified by this octet string."
     ::= { eventEntry 4 }

 eventLastTimeSent OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime at the time this event
         entry last generated an event.  If this entry has
         not generated any events, this value will be
         zero."
     ::= { eventEntry 5 }

 eventOwner OBJECT-TYPE
     SYNTAX     OwnerString
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The entity that configured this entry and is therefore
         using the resources assigned to it.

         If this object contains a string starting with 'monitor'
         and has associated entries in the log table, all connected
         management stations should retrieve those log entries,
         as they may have significance to all management stations
         connected to this device"
     ::= { eventEntry 6 }




Waldbusser                  Standards Track                    [Page 86]

RFC 2819             Remote Network Monitoring MIB              May 2000


 eventStatus OBJECT-TYPE
     SYNTAX     EntryStatus
     MAX-ACCESS read-create
     STATUS     current
     DESCRIPTION
         "The status of this event entry.

         If this object is not equal to valid(1), all associated
         log entries shall be deleted by the agent."
     ::= { eventEntry 7 }

 --
 logTable OBJECT-TYPE
     SYNTAX     SEQUENCE OF LogEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A list of events that have been logged."
     ::= { event 2 }

 logEntry OBJECT-TYPE
     SYNTAX     LogEntry
     MAX-ACCESS not-accessible
     STATUS     current
     DESCRIPTION
         "A set of data describing an event that has been
         logged.  For example, an instance of the logDescription
         object might be named logDescription.6.47"
     INDEX { logEventIndex, logIndex }
     ::= { logTable 1 }

 LogEntry ::= SEQUENCE {
     logEventIndex           Integer32,
     logIndex                Integer32,
     logTime                 TimeTicks,
     logDescription          DisplayString
 }

 logEventIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..65535)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The event entry that generated this log
         entry.  The log identified by a particular
         value of this index is associated with the same
         eventEntry as identified by the same value
         of eventIndex."



Waldbusser                  Standards Track                    [Page 87]

RFC 2819             Remote Network Monitoring MIB              May 2000


     ::= { logEntry 1 }

 logIndex OBJECT-TYPE
     SYNTAX     Integer32 (1..2147483647)
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An index that uniquely identifies an entry
         in the log table amongst those generated by the
         same eventEntries.  These indexes are
         assigned beginning with 1 and increase by one
         with each new log entry.  The association
         between values of logIndex and logEntries
         is fixed for the lifetime of each logEntry.
         The agent may choose to delete the oldest
         instances of logEntry as required because of
         lack of memory.  It is an implementation-specific
         matter as to when this deletion may occur."
     ::= { logEntry 2 }

 logTime OBJECT-TYPE
     SYNTAX     TimeTicks
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "The value of sysUpTime when this log entry was created."
     ::= { logEntry 3 }

 logDescription OBJECT-TYPE
     SYNTAX     DisplayString (SIZE (0..255))
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
         "An implementation dependent description of the
         event that activated this log entry."
     ::= { logEntry 4 }

 --  Remote Network Monitoring Traps

 rmonEventsV2 OBJECT-IDENTITY
     STATUS      current
     DESCRIPTION "Definition point for RMON notifications."
     ::= { rmon 0 }

 risingAlarm NOTIFICATION-TYPE
     OBJECTS  { alarmIndex, alarmVariable, alarmSampleType,
                alarmValue, alarmRisingThreshold }
     STATUS   current



Waldbusser                  Standards Track                    [Page 88]

RFC 2819             Remote Network Monitoring MIB              May 2000


     DESCRIPTION
         "The SNMP trap that is generated when an alarm
         entry crosses its rising threshold and generates
         an event that is configured for sending SNMP
         traps."
     ::= { rmonEventsV2 1 }

 fallingAlarm NOTIFICATION-TYPE
     OBJECTS { alarmIndex, alarmVariable, alarmSampleType,
               alarmValue, alarmFallingThreshold }
     STATUS    current
     DESCRIPTION
         "The SNMP trap that is generated when an alarm
         entry crosses its falling threshold and generates
         an event that is configured for sending SNMP
         traps."
     ::= { rmonEventsV2 2 }

 -- Conformance information

 rmonCompliances OBJECT IDENTIFIER ::= { rmonConformance 9 }
 rmonGroups      OBJECT IDENTIFIER ::= { rmonConformance 10 }

 -- Compliance Statements
 rmonCompliance MODULE-COMPLIANCE
     STATUS current
     DESCRIPTION
         "The requirements for conformance to the RMON MIB. At least
         one of the groups in this module must be implemented to
         conform to the RMON MIB. Implementations of this MIB
         must also implement the system group of MIB-II [16] and the
         IF-MIB [17]."
     MODULE -- this module

       GROUP rmonEtherStatsGroup
           DESCRIPTION
               "The RMON Ethernet Statistics Group is optional."

       GROUP rmonHistoryControlGroup
           DESCRIPTION
               "The RMON History Control Group is optional."

       GROUP rmonEthernetHistoryGroup
           DESCRIPTION
               "The RMON Ethernet History Group is optional."

       GROUP rmonAlarmGroup
           DESCRIPTION



Waldbusser                  Standards Track                    [Page 89]

RFC 2819             Remote Network Monitoring MIB              May 2000


               "The RMON Alarm Group is optional."

       GROUP rmonHostGroup
           DESCRIPTION
               "The RMON Host Group is mandatory when the
               rmonHostTopNGroup is implemented."

       GROUP rmonHostTopNGroup
           DESCRIPTION
               "The RMON Host Top N Group is optional."

       GROUP rmonMatrixGroup
           DESCRIPTION
               "The RMON Matrix Group is optional."

       GROUP rmonFilterGroup
           DESCRIPTION
               "The RMON Filter Group is mandatory when the
               rmonPacketCaptureGroup is implemented."

       GROUP rmonPacketCaptureGroup
           DESCRIPTION
               "The RMON Packet Capture Group is optional."

       GROUP rmonEventGroup
           DESCRIPTION
               "The RMON Event Group is mandatory when the
               rmonAlarmGroup is implemented."
     ::= { rmonCompliances 1 }

     rmonEtherStatsGroup OBJECT-GROUP
         OBJECTS {
             etherStatsIndex, etherStatsDataSource,
             etherStatsDropEvents, etherStatsOctets, etherStatsPkts,
             etherStatsBroadcastPkts, etherStatsMulticastPkts,
             etherStatsCRCAlignErrors, etherStatsUndersizePkts,
             etherStatsOversizePkts, etherStatsFragments,
             etherStatsJabbers, etherStatsCollisions,
             etherStatsPkts64Octets, etherStatsPkts65to127Octets,
             etherStatsPkts128to255Octets,
             etherStatsPkts256to511Octets,
             etherStatsPkts512to1023Octets,
             etherStatsPkts1024to1518Octets,
             etherStatsOwner, etherStatsStatus
         }
         STATUS current
         DESCRIPTION
             "The RMON Ethernet Statistics Group."



Waldbusser                  Standards Track                    [Page 90]

RFC 2819             Remote Network Monitoring MIB              May 2000


         ::= { rmonGroups 1 }

     rmonHistoryControlGroup OBJECT-GROUP
         OBJECTS {
             historyControlIndex, historyControlDataSource,
             historyControlBucketsRequested,
             historyControlBucketsGranted, historyControlInterval,
             historyControlOwner, historyControlStatus
         }
         STATUS current
         DESCRIPTION
             "The RMON History Control Group."
         ::= { rmonGroups 2 }

     rmonEthernetHistoryGroup OBJECT-GROUP
         OBJECTS {
             etherHistoryIndex, etherHistorySampleIndex,
             etherHistoryIntervalStart, etherHistoryDropEvents,
             etherHistoryOctets, etherHistoryPkts,
             etherHistoryBroadcastPkts, etherHistoryMulticastPkts,
             etherHistoryCRCAlignErrors, etherHistoryUndersizePkts,
             etherHistoryOversizePkts, etherHistoryFragments,
             etherHistoryJabbers, etherHistoryCollisions,
             etherHistoryUtilization
         }
         STATUS current
         DESCRIPTION
             "The RMON Ethernet History Group."
         ::= { rmonGroups 3 }

     rmonAlarmGroup OBJECT-GROUP
         OBJECTS {
             alarmIndex, alarmInterval, alarmVariable,
             alarmSampleType, alarmValue, alarmStartupAlarm,
             alarmRisingThreshold, alarmFallingThreshold,
             alarmRisingEventIndex, alarmFallingEventIndex,
             alarmOwner, alarmStatus
         }
         STATUS current
         DESCRIPTION
             "The RMON Alarm Group."
         ::= { rmonGroups 4 }

     rmonHostGroup OBJECT-GROUP
         OBJECTS {
             hostControlIndex, hostControlDataSource,
             hostControlTableSize, hostControlLastDeleteTime,
             hostControlOwner, hostControlStatus,



Waldbusser                  Standards Track                    [Page 91]

RFC 2819             Remote Network Monitoring MIB              May 2000


             hostAddress, hostCreationOrder, hostIndex,
             hostInPkts, hostOutPkts, hostInOctets,
             hostOutOctets, hostOutErrors, hostOutBroadcastPkts,
             hostOutMulticastPkts, hostTimeAddress,
             hostTimeCreationOrder, hostTimeIndex,
             hostTimeInPkts, hostTimeOutPkts, hostTimeInOctets,
             hostTimeOutOctets, hostTimeOutErrors,
             hostTimeOutBroadcastPkts, hostTimeOutMulticastPkts
         }
         STATUS current
         DESCRIPTION
             "The RMON Host Group."
         ::= { rmonGroups 5 }

     rmonHostTopNGroup OBJECT-GROUP
         OBJECTS {
             hostTopNControlIndex, hostTopNHostIndex,
             hostTopNRateBase, hostTopNTimeRemaining,
             hostTopNDuration, hostTopNRequestedSize,
             hostTopNGrantedSize, hostTopNStartTime,
             hostTopNOwner, hostTopNStatus,
             hostTopNReport, hostTopNIndex,
             hostTopNAddress, hostTopNRate
         }
         STATUS current
         DESCRIPTION
             "The RMON Host Top 'N' Group."
         ::= { rmonGroups 6 }

     rmonMatrixGroup OBJECT-GROUP
         OBJECTS {
             matrixControlIndex, matrixControlDataSource,
             matrixControlTableSize, matrixControlLastDeleteTime,
             matrixControlOwner, matrixControlStatus,
             matrixSDSourceAddress, matrixSDDestAddress,
             matrixSDIndex, matrixSDPkts,
             matrixSDOctets, matrixSDErrors,
             matrixDSSourceAddress, matrixDSDestAddress,
             matrixDSIndex, matrixDSPkts,
             matrixDSOctets, matrixDSErrors
         }
         STATUS current
         DESCRIPTION
             "The RMON Matrix Group."
         ::= { rmonGroups 7 }

     rmonFilterGroup OBJECT-GROUP
         OBJECTS {



Waldbusser                  Standards Track                    [Page 92]

RFC 2819             Remote Network Monitoring MIB              May 2000


             filterIndex, filterChannelIndex, filterPktDataOffset,
             filterPktData, filterPktDataMask,
             filterPktDataNotMask, filterPktStatus,
             filterPktStatusMask, filterPktStatusNotMask,
             filterOwner, filterStatus,
             channelIndex, channelIfIndex, channelAcceptType,
             channelDataControl, channelTurnOnEventIndex,
             channelTurnOffEventIndex, channelEventIndex,
             channelEventStatus, channelMatches,
             channelDescription, channelOwner, channelStatus
         }
         STATUS current
         DESCRIPTION
             "The RMON Filter Group."
         ::= { rmonGroups 8 }

     rmonPacketCaptureGroup OBJECT-GROUP
         OBJECTS {
             bufferControlIndex, bufferControlChannelIndex,
             bufferControlFullStatus, bufferControlFullAction,
             bufferControlCaptureSliceSize,
             bufferControlDownloadSliceSize,
             bufferControlDownloadOffset,
             bufferControlMaxOctetsRequested,
             bufferControlMaxOctetsGranted,
             bufferControlCapturedPackets,
             bufferControlTurnOnTime,
             bufferControlOwner, bufferControlStatus,
             captureBufferControlIndex, captureBufferIndex,
             captureBufferPacketID, captureBufferPacketData,
             captureBufferPacketLength, captureBufferPacketTime,
             captureBufferPacketStatus
         }
         STATUS current
         DESCRIPTION
             "The RMON Packet Capture Group."
         ::= { rmonGroups 9 }

     rmonEventGroup OBJECT-GROUP
         OBJECTS {
             eventIndex, eventDescription, eventType,
             eventCommunity, eventLastTimeSent,
             eventOwner, eventStatus,
             logEventIndex, logIndex, logTime,
             logDescription
         }
         STATUS current
         DESCRIPTION



Waldbusser                  Standards Track                    [Page 93]

RFC 2819             Remote Network Monitoring MIB              May 2000


             "The RMON Event Group."
         ::= { rmonGroups 10 }

     rmonNotificationGroup NOTIFICATION-GROUP
         NOTIFICATIONS { risingAlarm, fallingAlarm }
         STATUS        current
         DESCRIPTION
             "The RMON Notification Group."
         ::= { rmonGroups 11 }
 END

6.  Security Considerations

   In order to implement this MIB, a probe must capture all packets on
   the locally-attached network, including packets between third
   parties.  These packets are analyzed to collect network addresses,
   protocol usage information, and conversation statistics. Data of this
   nature may be considered sensitive in some environments. In such
   environments the administrator may wish to restrict SNMP access to
   the probe.

   This MIB also includes functions for returning the contents of
   captured packets, potentially including sensitive user data or
   passwords. It is recommended that SNMP access to these functions be
   restricted.

   There are a number of management objects defined in this MIB that
   have a MAX-ACCESS clause of read-write and/or read-create.  Such
   objects may be considered sensitive or vulnerable in some network
   environments.  The support for SET operations in a non-secure
   environment without proper protection can have a negative effect on
   network operations.

   SNMPv1 by itself is not a secure environment.  Even if the network
   itself is secure (for example by using IPSec), even then, there is no
   control as to who on the secure network is allowed to access and
   GET/SET (read/change/create/delete) the objects in this MIB.

   It is recommended that the implementors consider the security
   features as provided by the SNMPv3 framework.  Specifically, the use
   of the User-based Security Model RFC 2574 [12] and the View-based
   Access Control Model RFC 2575 [15] is recommended.

   It is then a customer/user responsibility to ensure that the SNMP
   entity giving access to an instance of this MIB, is properly
   configured to give access to the objects only to those principals
   (users) that have legitimate rights to indeed GET or SET
   (change/create/delete) them.



Waldbusser                  Standards Track                    [Page 94]

RFC 2819             Remote Network Monitoring MIB              May 2000


7.  Acknowledgments

   This document was produced by the IETF Remote Network Monitoring
   Working Group.

8.  Author's Address

   Steve Waldbusser

   Phone: +1-650-948-6500
   Fax:   +1-650-745-0671
   Email: waldbusser@nextbeacon.com

9.  References

   [1]  Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for
        Describing SNMP Management Frameworks", RFC 2571, April 1999.

   [2]  Rose, M. and K. McCloghrie, "Structure and Identification of
        Management Information for TCP/IP-based Internets", STD 16, RFC
        1155, May 1990.

   [3]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
        RFC 1212, March 1991.

   [4]  Rose, M., "A Convention for Defining Traps for use with the
        SNMP", RFC 1215, March 1991.

   [5]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Structure of Management Information
        Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

   [6]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
        RFC 2579, April 1999.

   [7]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
        58, RFC 2580, April 1999.

   [8]  Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
        Network Management Protocol", STD 15, RFC 1157, May 1990.

   [9]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Introduction to Community-based SNMPv2", RFC 1901, January
        1996.





Waldbusser                  Standards Track                    [Page 95]

RFC 2819             Remote Network Monitoring MIB              May 2000


   [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
        Mappings for Version 2 of the Simple Network Management Protocol
        (SNMPv2)", RFC 1906, January 1996.

   [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
        Processing and Dispatching for the Simple Network Management
        Protocol (SNMP)", RFC 2572, April 1999.

   [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
        for version 3 of the Simple Network Management Protocol
        (SNMPv3)", RFC 2574, April 1999.

   [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
        Operations for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1905, January 1996.

   [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
        2573, April 1999.

   [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
        Control Model (VACM) for the Simple Network Management Protocol
        (SNMP)", RFC 2575, April 1999.

   [16] McCloghrie, K. and M. Rose, Editors, "Management Information
        Base for Network Management of TCP/IP-based internets: MIB-II",
        STD 17, RFC 1213, March 1991.

   [17] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
        using SMIv2", RFC 2233, November 1997.

   [18] Waldbusser, S., "Remote Network Monitoring MIB", RFC 1757,
        February 1995.

   [19] Waldbusser, S., "Token Ring Extensions to the Remote Network
        Monitoring MIB", RFC 1513, September 1993.

   [20] Waldbusser, S., "Remote Network Monitoring Management
        Information Base Version 2 using SMIv2", RFC 2021, January 1997.

   [21] Waterman, R., Lahaye, B., Romascanu, D. and S.  Waldbusser,
        "Remote Network Monitoring MIB Extensions for Switched Networks
        Version 1.0", RFC 2613, June 1999.

   [22] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction
        to Version 3 of the Internet-standard Network Management
        Framework", RFC 2570, April 1999.





Waldbusser                  Standards Track                    [Page 96]

RFC 2819             Remote Network Monitoring MIB              May 2000


10.  Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.






























Waldbusser                  Standards Track                    [Page 97]

RFC 2819             Remote Network Monitoring MIB              May 2000


11.  Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Waldbusser                  Standards Track                    [Page 98]