1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
|
<pre>Network Working Group J. Flick
Request for Comments: 2020 Hewlett Packard
Category: Standards Track October 1996
<span class="h1">Definitions of Managed Objects for IEEE 802.12 Interfaces</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Table of Contents
<a href="#section-1">1</a>. Introduction ............................................... <a href="#page-1">1</a>
<a href="#section-2">2</a>. Object Definitions ......................................... <a href="#page-2">2</a>
<a href="#section-3">3</a>. Overview ................................................... <a href="#page-2">2</a>
<a href="#section-3.1">3.1</a>. MAC Addresses ............................................ <a href="#page-3">3</a>
<a href="#section-3.2">3.2</a>. Relation to <a href="./rfc1213">RFC 1213</a> ..................................... <a href="#page-3">3</a>
<a href="#section-3.3">3.3</a>. Relation to <a href="./rfc1573">RFC 1573</a> ..................................... <a href="#page-3">3</a>
<a href="#section-3.3.1">3.3.1</a>. Layering Model ......................................... <a href="#page-4">4</a>
<a href="#section-3.3.2">3.3.2</a>. Virtual Circuits ....................................... <a href="#page-4">4</a>
<a href="#section-3.3.3">3.3.3</a>. ifTestTable ............................................ <a href="#page-4">4</a>
<a href="#section-3.3.4">3.3.4</a>. ifRcvAddressTable ...................................... <a href="#page-4">4</a>
<a href="#section-3.3.5">3.3.5</a>. ifPhysAddress .......................................... <a href="#page-4">4</a>
<a href="#section-3.3.6">3.3.6</a>. Specific Interface MIB Objects ......................... <a href="#page-5">5</a>
<a href="#section-3.4">3.4</a>. Relation to <a href="./rfc1643">RFC 1643</a>, <a href="./rfc1650">RFC 1650</a>, and <a href="./rfc1748">RFC 1748</a> ............. <a href="#page-8">8</a>
<a href="#section-3.5">3.5</a>. Relation to <a href="./rfc1749">RFC 1749</a> ..................................... <a href="#page-8">8</a>
<a href="#section-3.6">3.6</a>. Master Mode Operation .................................... <a href="#page-9">9</a>
<a href="#section-3.7">3.7</a>. Normal and High Priority Counters ........................ <a href="#page-9">9</a>
<a href="#section-3.8">3.8</a>. IEEE 802.12 Training Frames .............................. <a href="#page-10">10</a>
<a href="#section-3.9">3.9</a>. Mapping of IEEE 802.12 Managed Objects ................... <a href="#page-12">12</a>
<a href="#section-4">4</a>. Definitions ................................................ <a href="#page-14">14</a>
<a href="#section-5">5</a>. Acknowledgements ........................................... <a href="#page-30">30</a>
<a href="#section-6">6</a>. References ................................................. <a href="#page-30">30</a>
<a href="#section-7">7</a>. Security Considerations .................................... <a href="#page-31">31</a>
<a href="#section-8">8</a>. Author's Address ........................................... <a href="#page-31">31</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP-based internets.
In particular, it defines objects for managing network interfaces
based on IEEE 802.12.
<span class="grey">Flick Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Object Definitions</span>
Management information is viewed as a collection of managed objects,
residing in a virtual information store, termed the Management
Information Base (MIB). Collections of related objects are defined
in MIB modules. MIB modules are written using a subset of Abstract
Syntax Notation One (ASN.1) [<a href="#ref-1" title=" International Organization for Standardization. International Standard 8824 (December">1</a>] termed the Structure of Management
Information (SMI) [<a href="#ref-2" title=""Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)"">2</a>]. In particular, each object type is named by
an OBJECT IDENTIFIER, an administratively assigned name. The object
type together with an object instance serves to uniquely identify a
specific instantiation of the object. For human convenience, we
often use a textual string, termed the descriptor, to refer to the
object type.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Overview</span>
Instances of these object types represent attributes of an interface
to an IEEE 802.12 communications medium. At present, IEEE 802.12
media are identified by one value of the ifType object in the
Internet-standard MIB:
ieee80212(55)
For this interface, the value of the ifSpecific variable in the MIB-
II [<a href="#ref-5" title=""Management Information Base for Network Management of TCP/IP-based internets - MIB-II"">5</a>] has the OBJECT IDENTIFIER value:
dot12MIB OBJECT IDENTIFIER ::= { transmission 45 }
The values for the ifType object are defined by the IANAifType
textual convention. The Internet Assigned Numbers Authority (IANA)
is responsible for the assignment of all Internet numbers, including
new ifType values. Therefore, IANA is responsible for maintaining
the definition of this textual convention. The current definition of
the IANAifType textual convention is available from IANA's World Wide
Web server at:
<a href="http://www.iana.org/iana/">http://www.iana.org/iana/</a>
The definitions presented here are based on the IEEE Standard
802.12-1995, [<a href="#ref-6" title=""Demand Priority Access Method, Physical Layer and Repeater Specifications for 100 Mb/s Operation"">6</a>] Clause 13 "Layer management functions and services",
and Annex C "GDMO Specifications for Demand Priority Managed
Objects". Implementors of these MIB objects should note that the
IEEE document explicitly describes (in the form of Pascal pseudocode)
when, where, and how various MAC attributes are measured. The IEEE
document also describes the effects of MAC actions that may be
invoked by manipulating instances of the MIB objects defined here.
<span class="grey">Flick Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
To the extent that some of the attributes defined in [<a href="#ref-6" title=""Demand Priority Access Method, Physical Layer and Repeater Specifications for 100 Mb/s Operation"">6</a>] are
represented by previously defined objects in the Internet-standard
MIB [<a href="#ref-5" title=""Management Information Base for Network Management of TCP/IP-based internets - MIB-II"">5</a>] or in the Evolution of the Interfaces Group of MIB-II [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>],
such attributes are not redundantly represented by objects defined in
this memo. Among the attributes represented by objects defined in
other memos are the number of octets transmitted or received on a
particular interface, the MAC address of an interface, and multicast
information associated with an interface.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. MAC Addresses</span>
All representations of MAC addresses in this MIB module, and in other
related MIB modules (like <a href="./rfc1573">RFC 1573</a>), are in "canonical" order defined
by 802.1a, i.e., as if it were transmitted least significant bit
first. This is true even if the interface is operating in token ring
framing mode, which requires MAC addresses to be transmitted most
significant bit first.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Relation to <a href="./rfc1213">RFC 1213</a></span>
This section applies only when this MIB is used in conjunction with
the "old" (i.e., pre-RFC 1573) interface group.
The relationship between an IEEE 802.12 interface and an interface in
the context of the Internet-standard MIB is one-to-one. As such, the
value of an ifIndex object instance can be directly used to identify
corresponding instances of the objects defined herein.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Relation to <a href="./rfc1573">RFC 1573</a></span>
<a href="./rfc1573">RFC 1573</a>, the Interface MIB Evolution, requires that any MIB which is
an adjunct of the Interface MIB, clarify specific areas within the
Interface MIB. These areas are intentionally left vague in <a href="./rfc1573">RFC 1573</a>
to avoid over constraining the MIB, thereby precluding management of
certain media-types.
An agent which implements this MIB module must support the
ifGeneralGroup, ifStackGroup, ifHCPacketGroup, and ifRcvAddressGroup
of <a href="./rfc1573">RFC 1573</a>.
<a href="./rfc1573#section-3.3">Section 3.3 of RFC 1573</a> enumerates several areas which a media-
specific MIB must clarify. In addition, there are some objects in
<a href="./rfc1573">RFC 1573</a> for which additional clarification of how to apply them to
an IEEE 802.12 interface would be helpful. Each of these areas is
addressed in a following subsection. The implementor is referred to
<a href="./rfc1573">RFC 1573</a> in order to understand the general intent of these areas.
<span class="grey">Flick Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Layering Model</span>
For the typical usage of this MIB module, there will be no sub-layers
"above" or "below" the 802.12 Interface. However, this MIB module
does not preclude such layering.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Virtual Circuits</span>
This medium does not support virtual circuits and this area is not
applicable to this MIB.
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. ifTestTable</span>
This MIB does not define any tests for media instrumented by this
MIB. Implementation of the ifTestTable is not required. An
implementation may optionally implement the ifTestTable to execute
vendor specific tests.
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. ifRcvAddressTable</span>
This table contains all IEEE addresses, unicast, multicast, and
broadcast, for which this interface will receive packets and forward
them up to a higher layer entity for consumption. In addition, when
the interface is using 802.5 framing mode, the ifRcvAddressTable will
contain the functional address mask.
In the event that the interface is part of a MAC bridge, this table
does not include unicast addresses which are accepted for possible
forwarding out some other port. This table is explicitly not
intended to provide a bridge address filtering mechanism.
<span class="h4"><a class="selflink" id="section-3.3.5" href="#section-3.3.5">3.3.5</a>. ifPhysAddress</span>
This object contains the IEEE 802.12 address which is placed in the
source-address field of any frames that originate at this interface.
Usually this will be kept in ROM on the interface hardware. Some
systems may set this address via software.
In a system where there are several such addresses the designer has a
tougher choice. The address chosen should be the one most likely to
be of use to network management (e.g. the address placed in ARP
responses for systems which are primarily IP systems).
If the designer truly can not choose, use of the factory-provided ROM
address is suggested.
If the address can not be determined, an octet string of zero length
should be returned.
<span class="grey">Flick Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
The address is stored in binary in this object. The address is
stored in "canonical" bit order, that is, the Group Bit is positioned
as the low-order bit of the first octet. Thus, the first byte of a
multicast address would have the bit 0x01 set. This is true even
when the interface is using token ring framing mode, which transmits
addresses high-order bit first.
<span class="h4"><a class="selflink" id="section-3.3.6" href="#section-3.3.6">3.3.6</a>. Specific Interface MIB Objects</span>
The following table provides specific implementation guidelines for
the interface group objects in the conformance groups listed above.
Object Use for an 802.12 Interface
ifIndex Each 802.12 interface is represented by an
ifEntry. Interface tables in this MIB
module are indexed by ifIndex.
ifDescr Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifType The IANA reserved value for 802.12 - 55.
ifMtu The value of ifMtu on an 802.12 interface
will depend on the type of framing that is
in use on that interface. Changing the
dot12DesiredFramingType may have the effect
of changing ifMtu after the next time that
the interface trains. When
dot12CurrentFramingType is equal to
frameType88023, ifMtu will be equal to
1500. When dot12CurrentFramingType is
equal to frameType88025, ifMtu will be
4464.
ifSpeed The speed of the interface in bits per
second. For current 802.12
implementations, this will be equal to
100,000,000 (100 million).
ifPhysAddress See <a href="#section-3.3.5">Section 3.3.5</a>.
<span class="grey">Flick Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
ifAdminStatus Write access is not required. Support for
'testing' is not required. Setting this
object to 'up' will cause dot12Commands to
be set to 'open'. Setting this object to
'down' will cause dot12Commands to be set
to 'close'. Setting dot12Commands to
'open' will set this object to 'up'.
Setting dot12Commands to 'close' will set
this object to 'down'. Setting
dot12Commands to 'reset' will have no
effect on this object.
ifOperStatus When dot12Status is equal to 'opened', this
object will be equal to 'up'. When
dot12Status is equal to 'closed', 'opening',
'openFailure' or 'linkFailure', this object
will be equal to 'down'. Support for
'testing' is not required, but may be used
to indicate that a vendor specific test is
in progress. The value 'dormant' has no
meaning for an IEEE 802.12 interface.
ifLastChange Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifInOctets The number of octets in valid MAC frames
received on this interface, including the
MAC header and FCS.
ifInUcastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifInDiscards Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifInErrors The sum for this interface of
dot12InIPMErrors,
dot12InOversizeFrameErrors,
dot12InDataErrors, and any additional
internal errors that may occur in an
implementation.
ifInUnknownProtos Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifOutOctets The number of octets transmitted in MAC
frames on this interface, including the MAC
header and FCS.
ifOutUcastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifOutDiscards Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
<span class="grey">Flick Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
ifOutErrors The number of implementation-specific
internal transmit errors on this interface.
ifName Locally-significant textual name for the
interface (e.g. vg0).
ifInMulticastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>]. When dot12CurrentFramingType
is frameType88025, this count includes
packets addressed to functional addresses.
ifInBroadcastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifOutMulticastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>]. When dot12CurrentFramingType
is frameType88025, this count includes
packets addressed to functional addresses.
ifOutBroadcastPkts Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>].
ifHCInOctets 64-bit version of ifInOctets.
ifHCOutOctets 64-bit version of ifOutOctets
ifHC*Pkts Not required for 100 MBit interfaces.
Future IEEE 802.12 interfaces which operate
at higher speeds may require implementation
of these counters, but such interfaces are
beyond the scope of this memo.
ifLinkUpDownTrapEnable Refer to [<a href="#ref-7" title=""Evolution of the Interfaces Group of MIB-II"">7</a>]. Default is 'enabled'.
ifHighSpeed The speed of the interface in millions of
bits per second. For current 802.12
implementations, this will be equal to 100.
ifPromiscuousMode Reflects whether the interface has
successfully trained and is currently
operating in promiscuous mode.
dot12DesiredPromiscStatus is used to select
the promiscuous mode to be requested in the
next training attempt. Setting
ifPromiscuousMode will update
dot12DesiredPromiscStatus and cause the
interface to attempt to retrain using the
new promiscuous mode. After the interface
has retrained, ifPromiscuousMode will
reflect the mode that is in use, not the
mode that was requested.
<span class="grey">Flick Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
ifConnectorPresent This will normally be 'true'.
ifStackHigherLayer Refer to <a href="#section-3.3.1">section 3.3.1</a>
ifStackLowerLayer
ifStackStatus
ifRcvAddressAddress Refer to <a href="#section-3.3.4">section 3.3.4</a>.
ifRcvAddressStatus
ifRcvAddressType
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Relation to <a href="./rfc1643">RFC 1643</a>, <a href="./rfc1650">RFC 1650</a>, and <a href="./rfc1748">RFC 1748</a></span>
An IEEE 802.12 interface can be configured to operate in either
ethernet or token ring framing mode. An IEEE 802.12 interface uses
the frame format for the configured framing mode, but does not use
the media access protocol for ethernet or token ring. Instead, IEEE
802.12 defines its own media access protocol, the Demand Priority
Access Method (DPAM).
There are existing standards-track MIB modules for instrumenting
ethernet-like interfaces and token ring interfaces. At the time of
this writing, they are: STD 50, <a href="./rfc1643">RFC 1643</a>, "Definitions of Managed
Objects for Ethernet-like Interface Types" [<a href="#ref-8" title=""Definitions of Managed Objects for the Ethernet-like Interface Types"">8</a>]; <a href="./rfc1650">RFC 1650</a>,
"Definitions of Managed Objects for Ethernet-like Interface Types
using SMIv2" [<a href="#ref-9" title=""Definitions of Managed Objects for the Ethernet-like Interface Types using SMIv2"">9</a>]; and <a href="./rfc1748">RFC 1748</a>, "IEEE 802.5 MIB using SMIv2" [<a href="#ref-10" title=""IEEE 802.5 MIB using SMIv2"">10</a>].
These MIB modules are designed to instrument the media access
protocol for these respective technologies. Since IEEE 802.12
interfaces do not implement either of these media access protocols,
an agent should not implement <a href="./rfc1643">RFC 1643</a>, <a href="./rfc1650">RFC 1650</a>, or <a href="./rfc1748">RFC 1748</a> for
IEEE 802.12 interfaces.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Relation to <a href="./rfc1749">RFC 1749</a></span>
When an IEEE 802.12 interface is operating in token ring framing
mode, and the end node supports token ring source routing, the agent
should implement <a href="./rfc1749">RFC 1749</a>, the IEEE 802.5 Station Source Routing MIB
[<a href="#ref-11" title=""IEEE 802.5 Station Source Routing MIB using SMIv2"">11</a>] for those interfaces.
<span class="grey">Flick Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Master Mode Operation</span>
In an IEEE 802.12 network, "master" devices act as network
controllers to decide when to grant requesting end-nodes permission
to transmit. These master devices may be repeaters, or other active
controller devices such as switches.
Devices which do not act as network controllers, such as end-nodes or
passive switches, are considered to be operating in "slave" mode.
The dot12ControlMode object indicates if the interface is operating
in master mode or slave mode.
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Normal and High Priority Counters</span>
The IEEE 802.12 interface MIB does not provide normal priority
transmit counters. Standardization of normal priority transmit
counters could not be justified -- ifOutUcastPkts,
ifOutMulticastPkts, ifOutBroadcastPkts, ifOutOctets,
dot12OutHighPriorityFrames, and dot12OutHighPriorityOctets should
suffice. More precisely, the number of normal priority frames
transmitted can be calculated as:
outNormPriorityFrames = ifOutUcastPkts +
ifOutMulticastPkts +
ifOutBroadcastPkts -
dot12OutHighPriorityFrames
The number of normal priority octets transmitted can be calculated
as:
outNormPriorityOctets = ifOutOctets -
dot12OutHighPriorityOctets
On the other hand, normal priority receive counters are provided.
The main reason for this is that the normal priority and high
priority counters include errored frames, whereas the ifIn*Pkts and
ifInOctets do not include errored frames. dot12InNormPriorityFrames
could be calculated, but the calculation is tedious:
inNormPriorityFrames = ifInUcastPkts +
ifInMulticastPkts +
ifInBroadcastPkts +
dot12InNullAddressedFrames +
ifInErrors +
ifInDiscards +
ifInUnknownProtos -
dot12InHighPriorityFrames
<span class="grey">Flick Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
dot12InNormPriorityOctets includes octets in unreadable frames, which
is not available elsewhere. The number of octets in unreadable
frames can be calculated as:
octetsInUnreadableFrames = dot12InNormPriorityOctets +
dot12InHighPriorityOctets -
ifInOctets
Also, the total traffic at this interface can be calculated as:
traffic = dot12InNormPriorityOctets +
dot12InHighPriorityOctets +
ifOutOctets
In other words, the normal priority receive counters were deemed
useful, whereas the normal priority transmit counters can be easily
calculated from other available counters.
<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>. IEEE 802.12 Training Frames</span>
Training frames are special MAC frames that are used only during link
initialization. Training frames are initially constructed by the
device at the lower end of a link, which is the slave mode device for
the link. The training frame format is as follows:
+----+----+------------+--------------+----------+-----+
| DA | SA | Req Config | Allow Config | Data | FCS |
+----+----+------------+--------------+----------+-----+
DA = destination address (six octets)
SA = source address (six octets)
Req Config = requested configuration (2 octets)
Allow Config = allowed configuration (2 octets)
Data = data (594 to 675 octets)
FCS = frame check sequence (4 octets)
Training frames are always sent with a null destination address. To
pass training, an end node must use its source address in the source
address field of the training frame. A repeater may use a non-null
source address if it has one, or it may use a null source address.
<span class="grey">Flick Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
The requested configuration field allows the slave mode device to
inform the master mode device about itself and to request
configuration options. The training response frame from the master
mode device contains the slave mode device's requested configuration
from the training request frame. The currently defined format of the
requested configuration field as defined in the IEEE Standard
802.12-1995 standard is shown below. Please refer to the most
current version of the IEEE document for a more up to date
description of this field. In particular, the reserved bits may be
used in later versions of the standard.
First Octet: Second Octet:
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|v|v|v|r|r|r|r|r| |r|r|r|F|F|P|P|R|
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
vvv: The version of the 802.12 training protocol with which
the training initiator is compliant. The current version
is 100.
r: Reserved bits (set to zero)
FF: 00 = frameType88023
01 = frameType88025
10 = reserved
11 = frameTypeEither
PP: 00 = singleAddressMode
01 = promiscuousMode
10 = reserved
11 = reserved
R: 0 = the training initiator is an end node
1 = the training initiator is a repeater
The allowed configuration field allows the master mode device to
respond with the allowed configuration. The slave mode device sets
the contents of this field to all zero bits. The master mode device
sets the allowed configuration field as follows:
First Octet: Second Octet:
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|v|v|v|D|C|N|r|r| |r|r|r|F|F|P|P|R|
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
vvv: The version of the 802.12 training protocol with which
the training responder is compliant. The current version
is 100.
<span class="grey">Flick Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
D: 0 = No duplicate address has been detected.
1 = Duplicate address has been detected
C: 0 = The requested configuration is compatible with the
network.
1 = The requested configuration is not compatible with
the network. In this case, the FF, PP, and R bits
indicate the configuration that would be allowed.
N: 0 = Access will be allowed, providing the configuration
is compatible (C = 0).
1 = Access is not granted because of security
restrictions
r: Reserved bits (set to zero)
FF: 00 = frameType88023 will be used
01 = frameType88025 will be used
10 = reserved
11 = reserved
PP: 00 = singleAddressMode
01 = promiscuousMode
10 = reserved
11 = reserved
R: 0 = Requested access as an end node is allowed
1 = Requested access as a repeater is allowed
Again, note that the most recent version of the IEEE 802.12 standard
should be consulted for the most up to date definition of the
requested configuration and allowed configuration fields.
The data field contains between 594 and 675 octets and is filled in
by the training initiator. The first 55 octets may be used for
vendor specific protocol information. The remaining octets are all
zeros. The length of the training frame combined with the
requirement that 24 consecutive training frames be received without
error to complete training ensures that marginal links will not
complete training.
<span class="h3"><a class="selflink" id="section-3.9" href="#section-3.9">3.9</a>. Mapping of IEEE 802.12 Managed Objects</span>
The following table lists all the managed objects defined for
oEndNode in the IEEE 802.12 Standard, and the corresponding SNMP
objects.
IEEE 802.12 Managed Object Corresponding SNMP Object
oEndNode
.aBroadcastFramesReceived IF-MIB - ifInBroadcastPkts
.aBroadcastFramesTransmitted IF-MIB - ifOutBroadcastPkts
.aDataErrorFramesReceived dot12InDataErrors
.aDesiredFramingType dot12DesiredFramingType
<span class="grey">Flick Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
.aDesiredPromiscuousStatus dot12DesiredPromiscStatus
.aFramesTransmitted IF-MIB - ifOutUCastPkts +
ifOutMulticastPkts +
ifOutBroadcastPkts
.aFramingCapability dot12FramingCapability
.aFunctionalAddresses IF-MIB - ifRcvAddressTable
.aHighPriorityFramesReceived dot12InHighPriorityFrames
.aHighPriorityFramesTransmitted dot12OutHighPriorityFrames
.aHighPriorityOctetsReceived dot12InHighPriorityOctets or
dot12InHCHighPriorityOctets
.aHighPriorityOctetsTransmitted dot12OutHighPriorityOctets or
dot12OutHCHighPriorityOctets
.aIPMFramesReceived dot12InIPMErrors
.aLastTrainingConfig dot12LastTrainingConfig
.aMACID IF-MIB - ifIndex
.aMACStatus dot12Status
.aMACVersion dot12TrainingVersion
.aMediaType <not yet mapped>
Tranceiver MIB issue
.aMulticastFramesReceived IF-MIB - ifInMulticastPkts
.aMulticastFramesTransmitted IF-MIB - ifOutMulticastPkts
.aMulticastReceiveStatus IF-MIB - ifRcvAddressTable
.aNormalPriorityFramesReceived dot12InNormPriorityFrames
.aNormalPriorityOctetsReceived dot12InNormPriorityOctets or
dot12InHCNormPriorityOctets
.aNullAddressedFramesReceived dot12InNullAddressedFrames
.aOctetsTransmitted IF-MIB - ifOutOctets or
ifHCOutOctets
.aOversizeFramesReceived dot12InOversizeFrameErrors
.aReadableFramesReceived IF-MIB - ifInUcastPkts +
ifInMulticastPkts +
ifInBroadcastPkts
.aReadableOctetsReceived IF-MIB - ifInOctets or
ifHCInOctets
.aReadMulticastList IF-MIB - ifRcvAddressTable
.aReadWriteMACAddress IF-MIB - ifPhysAddress
.aTransitionsIntoTraining dot12TransitionIntoTrainings
.acAddGroupAddress IF-MIB - ifRcvAddressTable
.acClose dot12Commands: 'close'
.acDeleteGroupAddress IF-MIB - ifRcvAddressTable
.acExecuteSelftest IF-MIB - ifAdminStatus
.acInitializeMAC dot12Commands: 'reset'
.acOpen dot12Commands: 'open'
<span class="grey">Flick Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Definitions</span>
DOT12-IF-MIB DEFINITIONS ::= BEGIN
IMPORTS
transmission, Counter32, Counter64, OBJECT-TYPE,
MODULE-IDENTITY
FROM SNMPv2-SMI
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
ifIndex
FROM IF-MIB;
dot12MIB MODULE-IDENTITY
LAST-UPDATED "9602220452Z" -- February 22, 1996
ORGANIZATION "IETF 100VG-AnyLAN MIB Working Group"
CONTACT-INFO
" John Flick
Postal: Hewlett Packard Company
8000 Foothills Blvd. M/S 5556
Roseville, CA 95747-5556
Tel: +1 916 785 4018
Fax: +1 916 785 3583
E-mail: johnf@hprnd.rose.hp.com"
DESCRIPTION
"This MIB module describes objects for
managing IEEE 802.12 interfaces."
::= { transmission 45 }
dot12MIBObjects OBJECT IDENTIFIER ::= { dot12MIB 1 }
dot12ConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot12ConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Configuration information for a collection of
802.12 interfaces attached to a particular
system."
::= { dot12MIBObjects 1 }
dot12ConfigEntry OBJECT-TYPE
SYNTAX Dot12ConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
<span class="grey">Flick Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
"Configuration for a particular interface to an
802.12 medium."
INDEX { ifIndex }
::= { dot12ConfigTable 1 }
Dot12ConfigEntry ::=
SEQUENCE {
dot12CurrentFramingType INTEGER,
dot12DesiredFramingType INTEGER,
dot12FramingCapability INTEGER,
dot12DesiredPromiscStatus INTEGER,
dot12TrainingVersion INTEGER,
dot12LastTrainingConfig OCTET STRING,
dot12Commands INTEGER,
dot12Status INTEGER,
dot12ControlMode INTEGER
}
dot12CurrentFramingType OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2),
frameTypeUnknown(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"When dot12DesiredFramingType is one of
'frameType88023' or 'frameType88025', this is the
type of framing asserted by the interface.
When dot12DesiredFramingType is 'frameTypeEither',
dot12CurrentFramingType shall be one of
'frameType88023' or 'frameType88025' when the
dot12Status is 'opened'. When the dot12Status is
anything other than 'opened',
dot12CurrentFramingType shall take the value of
'frameTypeUnknown'."
::= { dot12ConfigEntry 1 }
dot12DesiredFramingType OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2),
frameTypeEither(3)
}
MAX-ACCESS read-write
STATUS current
<span class="grey">Flick Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
DESCRIPTION
"The type of framing which will be requested by
the interface during the next interface MAC
initialization or open action.
In master mode, this is the framing mode which
will be granted by the interface. Note that
for a master mode interface, this object must be
equal to 'frameType88023' or 'frameType88025',
since a master mode interface cannot grant
'frameTypeEither'."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aDesiredFramingType."
::= { dot12ConfigEntry 2 }
dot12FramingCapability OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2),
frameTypeEither(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of framing this interface is capable of
supporting."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aFramingCapability."
::= { dot12ConfigEntry 3 }
dot12DesiredPromiscStatus OBJECT-TYPE
SYNTAX INTEGER {
singleAddressMode(1),
promiscuousMode(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is used to select the promiscuous
mode that this interface will request in the next
training packet issued on this interface.
Whether the repeater grants the requested mode
must be verified by examining the state of the PP
bits in the corresponding instance of
dot12LastTrainingConfig.
<span class="grey">Flick Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
In master mode, this object controls whether or
not promiscuous mode will be granted by the
interface when requested by the lower level
device.
Note that this object indicates the desired mode
for the next time the interface trains. The
currently active mode will be reflected in
dot12LastTrainingConfig and in ifPromiscuousMode."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aDesiredPromiscuousStatus."
::= { dot12ConfigEntry 4 }
dot12TrainingVersion OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value that will be used in the version bits
(vvv bits) in training frames on this interface.
This is the highest version number supported by
this MAC."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aMACVersion."
::= { dot12ConfigEntry 5 }
dot12LastTrainingConfig OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(2))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This 16 bit field contains the configuration
bits from the most recent error-free training
frame received during training on this interface.
Training request frames are received when in
master mode, while training response frames are
received in slave mode. On master mode interfaces,
this object contains the contents of the
requested configuration field of the most recent
training request frame. On slave mode interfaces,
this object contains the contents of the allowed
configuration field of the most recent training
response frame. The format of the current version
of this field is described in <a href="#section-3.8">section 3.8</a>. Please
refer to the most recent version of the IEEE
802.12 standard for the most up-to-date definition
<span class="grey">Flick Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
of the format of this object."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aLastTrainingConfig."
::= { dot12ConfigEntry 6 }
dot12Commands OBJECT-TYPE
SYNTAX INTEGER {
noOp(1),
open(2),
reset(3),
close(4)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"If the current value of dot12Status is 'closed',
setting the value of this object to 'open' will
change the corresponding instance of MIB-II's
ifAdminStatus to 'up', cause this interface to
enter the 'opening' state, and will cause training
to be initiated on this interface. The progress
and success of the open is given by the values of
the dot12Status object. Setting this object to
'open' when dot12Status has a value other than
'closed' has no effect.
Setting the corresponding instance of ifAdminStatus
to 'up' when the current value of dot12Status is
'closed' will have the same effect as setting this
object to 'open'. Setting ifAdminStatus to 'up'
when dot12Status has a value other than 'closed'
has no effect.
Setting the value of this object to 'close' will
move this interface into the 'closed' state and
cause all transmit and receive actions to stop.
This object will then have to be set to 'open' in
order to reinitiate training.
Setting the corresponding instance of ifAdminStatus
to 'down' will have the same effect as setting this
object to 'close'.
Setting the value of this object to 'reset' when
the current value of dot12Status has a value other
than 'closed' will reset the interface. On a
reset, all MIB counters should retain their values.
<span class="grey">Flick Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
This will cause the MAC to initiate an
acInitializeMAC action as specified in IEEE 802.12.
This will cause training to be reinitiated on this
interface. Setting this object to 'reset' when
dot12Status has a value of 'closed' has no effect.
Setting this object to 'reset' has no effect on the
corresponding instance of ifAdminStatus.
Setting the value of this object to 'noOp' has no
effect.
When read, this object will always have a value
of 'noOp'."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.2,
acOpen, acClose, acInitializeMAC.
Also, <a href="./rfc1231">RFC1231</a> IEEE802.5 Token Ring MIB,
dot5Commands."
::= { dot12ConfigEntry 7 }
dot12Status OBJECT-TYPE
SYNTAX INTEGER {
opened(1),
closed(2),
opening(3),
openFailure(5),
linkFailure(6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current interface status with respect to
training. One of the following values:
opened - Training has completed
successfully.
closed - MAC has been disabled by
setting dot12Commands to
'close'.
opening - MAC is in training. Training
signals have been received.
openFailure - Passed 24 error-free packets,
but there is a problem, noted
in the training configuration
bits (dot12LastTrainingConfig).
linkFailure - Training signals not received,
or could not pass 24 error-free
packets.
<span class="grey">Flick Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
Whenever the dot12Commands object is set to
'close' or ifAdminStatus is set to 'down', the MAC
will go silent, dot12Status will be 'closed', and
ifOperStatus will be 'down'.
When the value of this object is equal to 'closed'
and the dot12Commands object is set to 'open' or
the ifAdminStatus object is set to 'up', training
will be initiated on this interface. When the
value of this object is not equal to 'closed' and
the dot12Commands object is set to 'reset',
training will be reinitiated on this interface.
Note that sets of some other objects (e.g.
dot12ControlMode) or external events (e.g. MAC
protocol violations) may also cause training to be
reinitiated on this interface.
When training is initiated or reinitiated on an
interface, the end node will send Training_Up to
the master and initially go to the 'linkFailure'
state and ifOperStatus will go to 'down'.
When the master sends back Training_Down,
dot12Status will change to the 'opening' state,
and training packets will be transferred.
After all of the training packets have been
passed, dot12Status will change to 'linkFailure'
if 24 consecutive error-free packets were not
passed, 'opened' if 24 consecutive error-free
packets were passed and the training
configuration bits were OK, or 'openFailure' if
there were 24 consecutive error-free packets, but
there was a problem with the training
configuration bits.
When in the 'openFailure' state, the
dot12LastTrainingConfig object will contain the
configuration bits from the last training
packet which can be examined to determine the
exact reason for the training configuration
failure.
If training did not succeed (dot12Status is
'linkFailure' or 'openFailure), the entire
process will be restarted after
MAC_Retraining_Delay_Timer seconds.
If training does succeed (dot12Status changes to
<span class="grey">Flick Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
'opened'), ifOperStatus will change to 'up'. If
training does not succeed (dot12Status changes to
'linkFailure' or 'openFailure'), ifOperStatus will
remain 'down'."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aMACStatus."
::= { dot12ConfigEntry 8 }
dot12ControlMode OBJECT-TYPE
SYNTAX INTEGER {
masterMode(1),
slaveMode(2),
learn(3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is used to configure and report
whether or not this interface is operating in
master mode. In a Demand Priority network, end
node interfaces typically operate in slave mode,
while switch interfaces may control the Demand
Priority protocol and operate in master mode.
This object may be implemented as a read-only
object by those agents and interfaces that do not
implement software control of master mode. In
particular, interfaces that cannot operate in
master mode, and interfaces on which master mode
is controlled by a pushbutton on the device,
should implement this object read-only.
Some interfaces do not require network management
configuration of this feature and can autosense
whether to use master mode or slave mode. The
value 'learn' is used for that purpose. While
autosense is taking place, the value 'learn' is
returned.
A network management operation which modifies the
value of dot12ControlMode causes the interface
to retrain."
::= { dot12ConfigEntry 9 }
dot12StatTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot12StatEntry
MAX-ACCESS not-accessible
<span class="grey">Flick Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
STATUS current
DESCRIPTION
"Statistics for a collection of 802.12 interfaces
attached to a particular system."
::= { dot12MIBObjects 2 }
dot12StatEntry OBJECT-TYPE
SYNTAX Dot12StatEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Statistics for a particular interface to an
802.12 medium. The receive statistics in this
table apply only to packets received by this
station (i.e., packets whose destination address
is either the local station address, the
broadcast address, or a multicast address that
this station is receiving, unless the station is
in promiscuous mode)."
INDEX { ifIndex }
::= { dot12StatTable 1 }
Dot12StatEntry ::=
SEQUENCE {
dot12InHighPriorityFrames Counter32,
dot12InHighPriorityOctets Counter32,
dot12InNormPriorityFrames Counter32,
dot12InNormPriorityOctets Counter32,
dot12InIPMErrors Counter32,
dot12InOversizeFrameErrors Counter32,
dot12InDataErrors Counter32,
dot12InNullAddressedFrames Counter32,
dot12OutHighPriorityFrames Counter32,
dot12OutHighPriorityOctets Counter32,
dot12TransitionIntoTrainings Counter32,
dot12HCInHighPriorityOctets Counter64,
dot12HCInNormPriorityOctets Counter64,
dot12HCOutHighPriorityOctets Counter64
}
dot12InHighPriorityFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of high priority frames
that have been received on this interface.
Includes both good and bad high priority frames,
<span class="grey">Flick Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
as well as high priority training frames. Does
not include normal priority frames which were
priority promoted."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityFramesReceived."
::= { dot12StatEntry 1 }
dot12InHighPriorityOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in high priority frames that have been
received on this interface. This counter is
incremented by OctetCount for each frame received
on this interface which is counted by
dot12InHighPriorityFrames.
Note that this counter will roll over very
quickly. It is provided for backward
compatibility for Network Management protocols
that do not support 64 bit counters (e.g. SNMP
version 1)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityOctetsReceived."
::= { dot12StatEntry 2 }
dot12InNormPriorityFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of normal priority frames
that have been received on this interface.
Includes both good and bad normal priority
frames, as well as normal priority training
frames and normal priority frames which were
priority promoted."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aNormalPriorityFramesReceived."
::= { dot12StatEntry 3 }
dot12InNormPriorityOctets OBJECT-TYPE
SYNTAX Counter32
<span class="grey">Flick Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in normal priority frames that have
been received on this interface. This counter is
incremented by OctetCount for each frame received
on this interface which is counted by
dot12InNormPriorityFrames.
Note that this counter will roll over very
quickly. It is provided for backward
compatibility for Network Management protocols
that do not support 64 bit counters (e.g. SNMP
version 1)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aNormalPriorityOctetsReceived."
::= { dot12StatEntry 4 }
dot12InIPMErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of frames
that have been received on this interface with an
invalid packet marker and no PMI errors. A
repeater will write an invalid packet marker to
the end of a frame containing errors as it is
forwarded through the repeater to the other
ports. This counter is incremented by one for
each frame received on this interface which has
had an invalid packet marker added to the end of
the frame."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aIPMFramesReceived."
::= { dot12StatEntry 5 }
dot12InOversizeFrameErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of oversize frames
received on this interface. This counter is
incremented by one for each frame received on
<span class="grey">Flick Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
this interface whose OctetCount is larger than
the maximum legal frame size. The frame size
which causes this counter to increment is
dependent on the current framing type."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aOversizeFramesReceived."
::= { dot12StatEntry 6 }
dot12InDataErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of errored frames
received on this interface. This counter is
incremented by one for each frame received on
this interface with any of the following errors:
bad FCS (with no IPM), PMI errors (excluding
frames with an IPM as the only PMI error),
undersize, bad start of frame delimiter, or bad
end of packet marker. Does not include frames
counted by dot12InIPMErrors,
dot12InNullAddressedFrames, or
dot12InOversizeFrameErrors.
This counter indicates problems with the cable
directly attached to this interface, while
dot12InIPMErrors indicates problems with remote
cables."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aDataErrorFramesReceived."
::= { dot12StatEntry 7 }
dot12InNullAddressedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of null addressed frames
received on this interface. This counter is
incremented by one for each frame received on
this interface with a destination MAC address
consisting of all zero bits. Both void and
training frames are included in this counter.
Note that since this station would normally not
<span class="grey">Flick Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
receive null addressed frames, this counter is
only incremented when this station is operating
in promiscuous mode or in training."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aNullAddressedFramesReceived."
::= { dot12StatEntry 8 }
dot12OutHighPriorityFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by one for each high
priority frame successfully transmitted out this
interface."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityFramesTransmitted."
::= { dot12StatEntry 9 }
dot12OutHighPriorityOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by OctetCount for
each frame counted by dot12OutHighPriorityFrames.
Note that this counter will roll over very
quickly. It is provided for backward
compatibility for Network Management protocols
that do not support 64 bit counters (e.g. SNMP
version 1)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityOctetsTransmitted."
::= { dot12StatEntry 10 }
dot12TransitionIntoTrainings OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of times
this interface has entered the training state.
This counter is incremented by one each time
dot12Status transitions to 'linkFailure' from any
<span class="grey">Flick Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
state other than 'opening' or 'openFailure'."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aTransitionsIntoTraining."
::= { dot12StatEntry 11 }
dot12HCInHighPriorityOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in high priority frames that have been
received on this interface. This counter is
incremented by OctetCount for each frame received
on this interface which is counted by
dot12InHighPriorityFrames.
This counter is a 64 bit version of
dot12InHighPriorityOctets. It should be used by
Network Management protocols which support 64 bit
counters (e.g. SNMPv2)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityOctetsReceived."
::= { dot12StatEntry 12 }
dot12HCInNormPriorityOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in normal priority frames that have
been received on this interface. This counter is
incremented by OctetCount for each frame received
on this interface which is counted by
dot12InNormPriorityFrames.
This counter is a 64 bit version of
dot12InNormPriorityOctets. It should be used by
Network Management protocols which support 64 bit
counters (e.g. SNMPv2)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aNormalPriorityOctetsReceived."
::= { dot12StatEntry 13 }
<span class="grey">Flick Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
dot12HCOutHighPriorityOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by OctetCount for
each frame counted by dot12OutHighPriorityFrames.
This counter is a 64 bit version of
dot12OutHighPriorityOctets. It should be used by
Network Management protocols which support 64 bit
counters (e.g. SNMPv2)."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.5.2.1,
aHighPriorityOctetsTransmitted."
::= { dot12StatEntry 14 }
-- conformance information
dot12Conformance OBJECT IDENTIFIER ::= { dot12MIB 2 }
dot12Compliances OBJECT IDENTIFIER ::= { dot12Conformance 1 }
dot12Groups OBJECT IDENTIFIER ::= { dot12Conformance 2 }
-- compliance statements
dot12Compliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for managed network
entities that have 802.12 interfaces."
MODULE -- this module
MANDATORY-GROUPS { dot12ConfigGroup, dot12StatsGroup }
OBJECT dot12DesiredFramingType
MIN-ACCESS read-only
DESCRIPTION
"Write access to this object is not required."
OBJECT dot12DesiredPromiscStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access to this object is not required."
OBJECT dot12Commands
MIN-ACCESS read-only
DESCRIPTION
<span class="grey">Flick Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
"Write access to this object is not required."
OBJECT dot12ControlMode
MIN-ACCESS read-only
DESCRIPTION
"Write access to this object is not required."
::= { dot12Compliances 1 }
-- units of conformance
dot12ConfigGroup OBJECT-GROUP
OBJECTS { dot12DesiredFramingType,
dot12FramingCapability,
dot12DesiredPromiscStatus,
dot12TrainingVersion,
dot12LastTrainingConfig,
dot12Commands, dot12Status,
dot12CurrentFramingType,
dot12ControlMode }
STATUS current
DESCRIPTION
"A collection of objects for managing the status
and configuration of IEEE 802.12 interfaces."
::= { dot12Groups 1 }
dot12StatsGroup OBJECT-GROUP
OBJECTS { dot12InHighPriorityFrames,
dot12InHighPriorityOctets,
dot12InNormPriorityFrames,
dot12InNormPriorityOctets,
dot12InIPMErrors,
dot12InOversizeFrameErrors,
dot12InDataErrors,
dot12InNullAddressedFrames,
dot12OutHighPriorityFrames,
dot12OutHighPriorityOctets,
dot12TransitionIntoTrainings,
dot12HCInHighPriorityOctets,
dot12HCInNormPriorityOctets,
dot12HCOutHighPriorityOctets }
STATUS current
DESCRIPTION
"A collection of objects providing statistics for
IEEE 802.12 interfaces."
::= { dot12Groups 2 }
END
<span class="grey">Flick Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Acknowledgements</span>
This document was produced by the IETF 100VG-AnyLAN Working Group.
It is based on the work of IEEE 802.12.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
[<a id="ref-1">1</a>] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization. International
Standard 8824 (December, 1987).
[<a id="ref-2">2</a>] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Structure of Management Information for Version
2 of the Simple Network Management Protocol (SNMPv2)", <a href="./rfc1902">RFC 1902</a>,
SNMP Research, Inc., Cisco Systems, Inc., Dover Beach
Consulting, Inc., International Network Services, January 1996.
[<a id="ref-3">3</a>] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Textual Conventions for Version 2 of the Simple
Network Management Protocol (SNMPv2)", <a href="./rfc1903">RFC 1903</a>, SNMP Research,
Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc.,
International Network Services, January 1996.
[<a id="ref-4">4</a>] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Conformance Statements for Version 2 of the
Simple Network Management Protocol (SNMPv2)", <a href="./rfc1904">RFC 1904</a>, SNMP
Research, Inc., Cisco Systems, Inc., Dover Beach Consulting,
Inc., International Network Services, January 1996.
[<a id="ref-5">5</a>] McCloghrie, K., and M. Rose, "Management Information Base for
Network Management of TCP/IP-based internets - MIB-II", STD 17,
<a href="./rfc1213">RFC 1213</a>, Hughes LAN Systems, Performance Systems International,
March 1991.
[<a id="ref-6">6</a>] IEEE, "Demand Priority Access Method, Physical Layer and
Repeater Specifications for 100 Mb/s Operation", IEEE Standard
802.12-1995"
[<a id="ref-7">7</a>] McCloghrie, K., and Kastenholz, F., "Evolution of the Interfaces
Group of MIB-II", <a href="./rfc1573">RFC 1573</a>, Hughes LAN Systems, FTP Software,
January 1994.
[<a id="ref-8">8</a>] Kastenholz, F., "Definitions of Managed Objects for the
Ethernet-like Interface Types", STD 50, <a href="./rfc1643">RFC 1643</a>, FTP Software,
Inc., July, 1994.
<span class="grey">Flick Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc2020">RFC 2020</a> IEEE 802.12 Interface MIB October 1996</span>
[<a id="ref-9">9</a>] Kastenholz, F., "Definitions of Managed Objects for the
Ethernet-like Interface Types using SMIv2", <a href="./rfc1650">RFC 1650</a>, FTP
Software, Inc., August, 1994.
[<a id="ref-10">10</a>] McCloghrie, K., and Decker, E., "IEEE 802.5 MIB using SMIv2",
<a href="./rfc1748">RFC 1748</a>, Cisco Systems, Inc., December, 1994.
[<a id="ref-11">11</a>] McCloghrie, K., Baker, F., and Decker, E., "IEEE 802.5 Station
Source Routing MIB using SMIv2", <a href="./rfc1749">RFC 1749</a>, Cisco Systems, Inc.,
December, 1994.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Security issues are not discussed in this memo.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Author's Address</span>
John Flick
Hewlett Packard Company
8000 Foothills Blvd. M/S 5556
Roseville, CA 95747-5556
Phone: +1 916 785 4018
Email: johnf@hprnd.rose.hp.com
Flick Standards Track [Page 31]
</pre>
|