File: rfc3416.html

package info (click to toggle)
doc-rfc 20201128-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 1,307,124 kB
file content (1733 lines) | stat: -rw-r--r-- 85,365 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
<pre>Network Working Group                            Editor of this version:
Request for Comments: 3416                                    R. Presuhn
STD: 62                                               BMC Software, Inc.
Obsoletes: <a href="./rfc1905">1905</a>                             Authors of previous version:
Category: Standards Track                                        J. Case
                                                     SNMP Research, Inc.
                                                           K. McCloghrie
                                                     Cisco Systems, Inc.
                                                                 M. Rose
                                            Dover Beach Consulting, Inc.
                                                           S. Waldbusser
                                          International Network Services
                                                           December 2002


                <span class="h1">Version 2 of the Protocol Operations for</span>
             <span class="h1">the Simple Network Management Protocol (SNMP)</span>

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

   This document defines version 2 of the protocol operations for the
   Simple Network Management Protocol (SNMP).  It defines the syntax and
   elements of procedure for sending, receiving, and processing SNMP
   PDUs.  This document obsoletes <a href="./rfc1905">RFC 1905</a>.















<span class="grey">Presuhn, et al.             Standards Track                     [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


Table of Contents

   <a href="#section-1">1</a>. Introduction ................................................    <a href="#page-3">3</a>
   <a href="#section-2">2</a>. Overview ....................................................    <a href="#page-4">4</a>
   <a href="#section-2.1">2.1</a>. Management Information ....................................    <a href="#page-4">4</a>
   <a href="#section-2.2">2.2</a>. Retransmission of Requests ................................    <a href="#page-4">4</a>
   <a href="#section-2.3">2.3</a>. Message Sizes .............................................    <a href="#page-4">4</a>
   <a href="#section-2.4">2.4</a>. Transport Mappings ........................................    <a href="#page-5">5</a>
   <a href="#section-2.5">2.5</a>. SMIv2 Data Type Mappings ..................................    <a href="#page-6">6</a>
   <a href="#section-3">3</a>. Definitions .................................................    <a href="#page-6">6</a>
   <a href="#section-4">4</a>. Protocol Specification ......................................    <a href="#page-9">9</a>
   <a href="#section-4.1">4.1</a>. Common Constructs .........................................    <a href="#page-9">9</a>
   <a href="#section-4.2">4.2</a>. PDU Processing ............................................   <a href="#page-10">10</a>
   <a href="#section-4.2.1">4.2.1</a>. The GetRequest-PDU ......................................   <a href="#page-10">10</a>
   <a href="#section-4.2.2">4.2.2</a>. The GetNextRequest-PDU ..................................   <a href="#page-11">11</a>
   <a href="#section-4.2.2.1">4.2.2.1</a>. Example of Table Traversal ............................   <a href="#page-12">12</a>
   <a href="#section-4.2.3">4.2.3</a>. The GetBulkRequest-PDU ..................................   <a href="#page-14">14</a>
   <a href="#section-4.2.3.1">4.2.3.1</a>. Another Example of Table Traversal ....................   <a href="#page-17">17</a>
   <a href="#section-4.2.4">4.2.4</a>. The Response-PDU ........................................   <a href="#page-18">18</a>
   <a href="#section-4.2.5">4.2.5</a>. The SetRequest-PDU ......................................   <a href="#page-19">19</a>
   <a href="#section-4.2.6">4.2.6</a>. The SNMPv2-Trap-PDU .....................................   <a href="#page-22">22</a>
   <a href="#section-4.2.7">4.2.7</a>. The InformRequest-PDU ...................................   <a href="#page-23">23</a>
   <a href="#section-5">5</a>. Notice on Intellectual Property .............................   <a href="#page-24">24</a>
   <a href="#section-6">6</a>. Acknowledgments .............................................   <a href="#page-24">24</a>
   <a href="#section-7">7</a>. Security Considerations .....................................   <a href="#page-26">26</a>
   <a href="#section-8">8</a>. References ..................................................   <a href="#page-26">26</a>
   <a href="#section-8.1">8.1</a>. Normative References ......................................   <a href="#page-26">26</a>
   <a href="#section-8.2">8.2</a>. Informative References ....................................   <a href="#page-27">27</a>
   <a href="#section-9">9</a>. Changes from <a href="./rfc1905">RFC 1905</a> .......................................   <a href="#page-28">28</a>
   <a href="#section-10">10</a>. Editor's Address ...........................................   <a href="#page-30">30</a>
   <a href="#section-11">11</a>. Full Copyright Statement ...................................   <a href="#page-31">31</a>




















<span class="grey">Presuhn, et al.             Standards Track                     [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>

   The SNMP Management Framework at the time of this writing consists of
   five major components:

      -  An overall architecture, described in STD 62, <a href="./rfc3411">RFC 3411</a>
         [<a href="./rfc3411" title="&quot;An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks&quot;">RFC3411</a>].

      -  Mechanisms for describing and naming objects and events for the
         purpose of management.  The first version of this Structure of
         Management Information (SMI) is called SMIv1 and described in
         STD 16, <a href="./rfc1155">RFC 1155</a> [<a href="./rfc1155" title="&quot;Structure and Identification of Management Information for TCP/IP-based Internets&quot;">RFC1155</a>], STD 16, <a href="./rfc1212">RFC 1212</a> [<a href="./rfc1212" title="&quot;Concise MIB Definitions&quot;">RFC1212</a>] and <a href="./rfc1215">RFC</a>
         <a href="./rfc1215">1215</a> [<a href="./rfc1215" title="&quot;A Convention for Defining Traps for use with the SNMP&quot;">RFC1215</a>].  The second version, called SMIv2, is described
         in STD 58, <a href="./rfc2578">RFC 2578</a> [<a href="./rfc2578" title="&quot;Structure of Management Information Version 2 (SMIv2)&quot;">RFC2578</a>], STD 58, <a href="./rfc2579">RFC 2579</a> [<a href="./rfc2579" title="&quot;Textual Conventions for SMIv2&quot;">RFC2579</a>] and
         STD 58, <a href="./rfc2580">RFC 2580</a> [<a href="./rfc2580" title="&quot;Conformance Statements for SMIv2&quot;">RFC2580</a>].

      -  Message protocols for transferring management information.  The
         first version of the SNMP message protocol is called SNMPv1 and
         described in STD 15, <a href="./rfc1157">RFC 1157</a> [<a href="./rfc1157" title="&quot;Simple Network Management Protocol&quot;">RFC1157</a>].  A second version of
         the SNMP message protocol, which is not an Internet standards
         track protocol, is called SNMPv2c and described in <a href="./rfc1901">RFC 1901</a>
         [<a href="./rfc1901" title="&quot;Introduction to Community-based SNMPv2&quot;">RFC1901</a>] and STD 62, <a href="./rfc3417">RFC 3417</a> [<a href="./rfc3417" title="&quot;Transport Mappings for the Simple Network Management Protocol&quot;">RFC3417</a>].  The third version of
         the message protocol is called SNMPv3 and described in STD 62,
         <a href="./rfc3417">RFC 3417</a> [<a href="./rfc3417" title="&quot;Transport Mappings for the Simple Network Management Protocol&quot;">RFC3417</a>], <a href="./rfc3412">RFC 3412</a> [<a href="./rfc3412" title="&quot;Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)&quot;">RFC3412</a>] and <a href="./rfc3414">RFC 3414</a> [<a href="./rfc3414" title="&quot;The User-Based Security Model (USM) for Version 3 of the Simple Network Management Protocol (SNMPv3)&quot;">RFC3414</a>].

      -  Protocol operations for accessing management information.  The
         first set of protocol operations and associated PDU formats is
         described in STD 15, <a href="./rfc1157">RFC 1157</a> [<a href="./rfc1157" title="&quot;Simple Network Management Protocol&quot;">RFC1157</a>].  A second set of
         protocol operations and associated PDU formats is described in
         this document.

      -  A set of fundamental applications described in STD 62, <a href="./rfc3413">RFC 3413</a>
         [<a href="./rfc3413" title="&quot;Simple Network Management Protocol (SNMP) Applications&quot;">RFC3413</a>] and the view-based access control mechanism described
         in STD 62, <a href="./rfc3415">RFC 3415</a> [<a href="./rfc3415" title="&quot;View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)&quot;">RFC3415</a>].

   A more detailed introduction to the SNMP Management Framework at the
   time of this writing can be found in <a href="./rfc3410">RFC 3410</a> [<a href="./rfc3410" title="&quot;Introduction and Applicability Statements for Internet- Standard Management Framework&quot;">RFC3410</a>].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the mechanisms defined in the SMI.

   This document, Version 2 of the Protocol Operations for the Simple
   Network Management Protocol, defines the operations of the protocol
   with respect to the sending and receiving of PDUs to be carried by
   the message protocol.





<span class="grey">Presuhn, et al.             Standards Track                     [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Overview</span>

   SNMP entities supporting command generator or notification receiver
   applications (traditionally called "managers") communicate with SNMP
   entities supporting command responder or notification originator
   applications (traditionally called "agents").  The purpose of this
   protocol is the transport of management information and operations.

<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  Management Information</span>

   The term "variable" refers to an instance of a non-aggregate object
   type defined according to the conventions set forth in the SMI
   [<a href="./rfc2578" title="&quot;Structure of Management Information Version 2 (SMIv2)&quot;">RFC2578</a>] or the textual conventions based on the SMI [<a href="./rfc2579" title="&quot;Textual Conventions for SMIv2&quot;">RFC2579</a>].  The
   term "variable binding" normally refers to the pairing of the name of
   a variable and its associated value.  However, if certain kinds of
   exceptional conditions occur during processing of a retrieval
   request, a variable binding will pair a name and an indication of
   that exception.

   A variable-binding list is a simple list of variable bindings.

   The name of a variable is an OBJECT IDENTIFIER which is the
   concatenation of the OBJECT IDENTIFIER of the corresponding object-
   type together with an OBJECT IDENTIFIER fragment identifying the
   instance.  The OBJECT IDENTIFIER of the corresponding object-type is
   called the OBJECT IDENTIFIER prefix of the variable.

<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  Retransmission of Requests</span>

   For all types of request in this protocol, the receiver is required
   under normal circumstances, to generate and transmit a response to
   the originator of the request.  Whether or not a request should be
   retransmitted if no corresponding response is received in an
   appropriate time interval, is at the discretion of the application
   originating the request.  This will normally depend on the urgency of
   the request.  However, such an application needs to act responsibly
   in respect to the frequency and duration of re-transmissions.  See
   <a href="https://www.rfc-editor.org/bcp/bcp41">BCP 41</a> [<a href="./rfc2914" title="&quot;Congestion Control Principles&quot;">RFC2914</a>] for discussion of relevant congestion control
   principles.

<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>.  Message Sizes</span>

   The maximum size of an SNMP message is limited to the minimum of:

   (1)   the maximum message size which the destination SNMP entity can
         accept; and,





<span class="grey">Presuhn, et al.             Standards Track                     [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   (2)   the maximum message size which the source SNMP entity can
         generate.

   The former may be known on a per-recipient basis; and in the absence
   of such knowledge, is indicated by transport domain used when sending
   the message.  The latter is imposed by implementation-specific local
   constraints.

   Each transport mapping for the SNMP indicates the minimum message
   size which a SNMP implementation must be able to produce or consume.
   Although implementations are encouraged to support larger values
   whenever possible, a conformant implementation must never generate
   messages larger than allowed by the receiving SNMP entity.

   One of the aims of the GetBulkRequest-PDU, specified in this
   protocol, is to minimize the number of protocol exchanges required to
   retrieve a large amount of management information.  As such, this PDU
   type allows an SNMP entity supporting command generator applications
   to request that the response be as large as possible given the
   constraints on message sizes.  These constraints include the limits
   on the size of messages which the SNMP entity supporting command
   responder applications can generate, and the SNMP entity supporting
   command generator applications can receive.

   However, it is possible that such maximum sized messages may be
   larger than the Path MTU of the path across the network traversed by
   the messages.  In this situation, such messages are subject to
   fragmentation.  Fragmentation is generally considered to be harmful
   [<a href="#ref-FRAG" title="&quot;Fragmentation Considered Harmful,&quot;">FRAG</a>], since among other problems, it leads to a decrease in the
   reliability of the transfer of the messages.  Thus, an SNMP entity
   which sends a GetBulkRequest-PDU must take care to set its parameters
   accordingly, so as to reduce the risk of fragmentation.  In
   particular, under conditions of network stress, only small values
   should be used for max-repetitions.

<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>.  Transport Mappings</span>

   It is important to note that the exchange of SNMP messages requires
   only an unreliable datagram service, with every message being
   entirely and independently contained in a single transport datagram.
   Specific transport mappings and encoding rules are specified
   elsewhere [<a href="./rfc3417" title="&quot;Transport Mappings for the Simple Network Management Protocol&quot;">RFC3417</a>].  However, the preferred mapping is the use of
   the User Datagram Protocol [<a href="./rfc768" title="&quot;User Datagram Protocol&quot;">RFC768</a>].








<span class="grey">Presuhn, et al.             Standards Track                     [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>.  SMIv2 Data Type Mappings</span>

   The SMIv2 [<a href="./rfc2578" title="&quot;Structure of Management Information Version 2 (SMIv2)&quot;">RFC2578</a>] defines 11 base types (INTEGER, OCTET STRING,
   OBJECT IDENTIFIER, Integer32, IpAddress, Counter32, Gauge32,
   Unsigned32, TimeTicks, Opaque, Counter64) and the BITS construct.
   The SMIv2 base types are mapped to the corresponding selection type
   in the SimpleSyntax and ApplicationSyntax choices of the ASN.1 SNMP
   protocol definition.  Note that the INTEGER and Integer32 SMIv2 base
   types are mapped to the integer-value selection type of the
   SimpleSyntax choice.  Similarly, the Gauge32 and Unsigned32 SMIv2
   base types are mapped to the unsigned-integer-value selection type of
   the ApplicationSyntax choice.

   The SMIv2 BITS construct is mapped to the string-value selection type
   of the SimpleSyntax choice.  A BITS value is encoded as an OCTET
   STRING, in which all the named bits in (the definition of) the
   bitstring, commencing with the first bit and proceeding to the last
   bit, are placed in bits 8 (high order bit) to 1 (low order bit) of
   the first octet, followed by bits 8 to 1 of each subsequent octet in
   turn, followed by as many bits as are needed of the final subsequent
   octet, commencing with bit 8.  Remaining bits, if any, of the final
   octet are set to zero on generation and ignored on receipt.

<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Definitions</span>

   The PDU syntax is defined using ASN.1 notation [<a href="#ref-ASN1" title="International Organization for Standardization. International Standard 8824">ASN1</a>].

   SNMPv2-PDU DEFINITIONS ::= BEGIN

   ObjectName ::= OBJECT IDENTIFIER

   ObjectSyntax ::= CHOICE {
         simple           SimpleSyntax,
         application-wide ApplicationSyntax }

   SimpleSyntax ::= CHOICE {
         integer-value   INTEGER (-2147483648..2147483647),
         string-value    OCTET STRING (SIZE (0..65535)),
         objectID-value  OBJECT IDENTIFIER }

   ApplicationSyntax ::= CHOICE {
         ipAddress-value        IpAddress,
         counter-value          Counter32,
         timeticks-value        TimeTicks,
         arbitrary-value        Opaque,
         big-counter-value      Counter64,
         unsigned-integer-value Unsigned32 }




<span class="grey">Presuhn, et al.             Standards Track                     [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   IpAddress ::= [APPLICATION 0] IMPLICIT OCTET STRING (SIZE (4))

   Counter32 ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)

   Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

   Gauge32 ::= Unsigned32

   TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)

   Opaque ::= [APPLICATION 4] IMPLICIT OCTET STRING

   Counter64 ::= [APPLICATION 6]
                 IMPLICIT INTEGER (0..18446744073709551615)

   -- protocol data units

   PDUs ::= CHOICE {
        get-request      GetRequest-PDU,
        get-next-request GetNextRequest-PDU,
        get-bulk-request GetBulkRequest-PDU,
        response         Response-PDU,
        set-request      SetRequest-PDU,
        inform-request   InformRequest-PDU,
        snmpV2-trap      SNMPv2-Trap-PDU,
        report           Report-PDU }

   -- PDUs

   GetRequest-PDU ::= [0] IMPLICIT PDU

   GetNextRequest-PDU ::= [1] IMPLICIT PDU

   Response-PDU ::= [2] IMPLICIT PDU

   SetRequest-PDU ::= [3] IMPLICIT PDU

   -- [4] is obsolete

   GetBulkRequest-PDU ::= [5] IMPLICIT BulkPDU

   InformRequest-PDU ::= [6] IMPLICIT PDU

   SNMPv2-Trap-PDU ::= [7] IMPLICIT PDU

   --   Usage and precise semantics of Report-PDU are not defined
   --   in this document.  Any SNMP administrative framework making
   --   use of this PDU must define its usage and semantics.



<span class="grey">Presuhn, et al.             Standards Track                     [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   Report-PDU ::= [8] IMPLICIT PDU

   max-bindings INTEGER ::= 2147483647

   PDU ::= SEQUENCE {
           request-id INTEGER (-214783648..214783647),

           error-status                -- sometimes ignored
               INTEGER {
                   noError(0),
                   tooBig(1),
                   noSuchName(2),      -- for proxy compatibility
                   badValue(3),        -- for proxy compatibility
                   readOnly(4),        -- for proxy compatibility
                   genErr(5),
                   noAccess(6),
                   wrongType(7),
                   wrongLength(8),
                   wrongEncoding(9),
                   wrongValue(10),
                   noCreation(11),
                   inconsistentValue(12),
                   resourceUnavailable(13),
                   commitFailed(14),
                   undoFailed(15),
                   authorizationError(16),
                   notWritable(17),
                   inconsistentName(18)
               },

           error-index                 -- sometimes ignored
               INTEGER (0..max-bindings),

           variable-bindings           -- values are sometimes ignored
               VarBindList
       }

   BulkPDU ::=                         -- must be identical in
       SEQUENCE {                      -- structure to PDU
           request-id      INTEGER (-214783648..214783647),
           non-repeaters   INTEGER (0..max-bindings),
           max-repetitions INTEGER (0..max-bindings),

           variable-bindings           -- values are ignored
               VarBindList
       }

   -- variable binding



<span class="grey">Presuhn, et al.             Standards Track                     [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   VarBind ::= SEQUENCE {
           name ObjectName,

           CHOICE {
               value          ObjectSyntax,
               unSpecified    NULL,    -- in retrieval requests

                                       -- exceptions in responses
               noSuchObject   [0] IMPLICIT NULL,
               noSuchInstance [1] IMPLICIT NULL,
               endOfMibView   [2] IMPLICIT NULL
           }
       }

   -- variable-binding list

   VarBindList ::= SEQUENCE (SIZE (0..max-bindings)) OF VarBind

   END

<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  Protocol Specification</span>

<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>.  Common Constructs</span>

   The value of the request-id field in a Response-PDU takes the value
   of the request-id field in the request PDU to which it is a response.
   By use of the request-id value, an application can distinguish the
   (potentially multiple) outstanding requests, and thereby correlate
   incoming responses with outstanding requests.  In cases where an
   unreliable datagram service is used, the request-id also provides a
   simple means of identifying messages duplicated by the network.  Use
   of the same request-id on a retransmission of a request allows the
   response to either the original transmission or the retransmission to
   satisfy the request.  However, in order to calculate the round trip
   time for transmission and processing of a request-response
   transaction, the application needs to use a different request-id
   value on a retransmitted request.  The latter strategy is recommended
   for use in the majority of situations.

   A non-zero value of the error-status field in a Response-PDU is used
   to indicate that an error occurred to prevent the processing of the
   request.  In these cases, a non-zero value of the Response-PDU's
   error-index field provides additional information by identifying
   which variable binding in the list caused the error.  A variable
   binding is identified by its index value.  The first variable binding
   in a variable-binding list is index one, the second is index two,
   etc.




<span class="grey">Presuhn, et al.             Standards Track                     [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   SNMP limits OBJECT IDENTIFIER values to a maximum of 128 sub-
   identifiers, where each sub-identifier has a maximum value of
   2**32-1.

<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>.  PDU Processing</span>

   In the elements of procedure below, any field of a PDU which is not
   referenced by the relevant procedure is ignored by the receiving SNMP
   entity.  However, all components of a PDU, including those whose
   values are ignored by the receiving SNMP entity, must have valid
   ASN.1 syntax and encoding.  For example, some PDUs (e.g., the
   GetRequest-PDU) are concerned only with the name of a variable and
   not its value.  In this case, the value portion of the variable
   binding is ignored by the receiving SNMP entity.  The unSpecified
   value is defined for use as the value portion of such bindings.

   On generating a management communication, the message "wrapper" to
   encapsulate the PDU is generated according to the "Elements of
   Procedure" of the administrative framework in use.  The definition of
   "max-bindings" imposes an upper bound on the number of variable
   bindings.  In practice, the size of a message is also limited by
   constraints on the maximum message size.  A compliant implementation
   must support as many variable bindings in a PDU or BulkPDU as fit
   into the overall maximum message size limit of the SNMP engine, but
   no more than 2147483647 variable bindings.

   On receiving a management communication, the "Elements of Procedure"
   of the administrative framework in use is followed, and if those
   procedures indicate that the operation contained within the message
   is to be performed locally, then those procedures also indicate the
   MIB view which is visible to the operation.

<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>.  The GetRequest-PDU</span>

   A GetRequest-PDU is generated and transmitted at the request of an
   application.

   Upon receipt of a GetRequest-PDU, the receiving SNMP entity processes
   each variable binding in the variable-binding list to produce a
   Response-PDU.  All fields of the Response-PDU have the same values as
   the corresponding fields of the received request except as indicated
   below.  Each variable binding is processed as follows:

   (1)   If the variable binding's name exactly matches the name of a
         variable accessible by this request, then the variable
         binding's value field is set to the value of the named
         variable.




<span class="grey">Presuhn, et al.             Standards Track                    [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   (2)   Otherwise, if the variable binding's name does not have an
         OBJECT IDENTIFIER prefix which exactly matches the OBJECT
         IDENTIFIER prefix of any (potential) variable accessible by
         this request, then its value field is set to "noSuchObject".

   (3)   Otherwise, the variable binding's value field is set to
         "noSuchInstance".

   If the processing of any variable binding fails for a reason other
   than listed above, then the Response-PDU is re-formatted with the
   same values in its request-id and variable-bindings fields as the
   received GetRequest-PDU, with the value of its error-status field set
   to "genErr", and the value of its error-index field is set to the
   index of the failed variable binding.

   Otherwise, the value of the Response-PDU's error-status field is set
   to "noError", and the value of its error-index field is zero.

   The generated Response-PDU is then encapsulated into a message.  If
   the size of the resultant message is less than or equal to both a
   local constraint and the maximum message size of the originator, it
   is transmitted to the originator of the GetRequest-PDU.

   Otherwise, an alternate Response-PDU is generated.  This alternate
   Response-PDU is formatted with the same value in its request-id field
   as the received GetRequest-PDU, with the value of its error-status
   field set to "tooBig", the value of its error-index field set to
   zero, and an empty variable-bindings field.  This alternate
   Response-PDU is then encapsulated into a message.  If the size of the
   resultant message is less than or equal to both a local constraint
   and the maximum message size of the originator, it is transmitted to
   the originator of the GetRequest-PDU.  Otherwise, the snmpSilentDrops
   [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] counter is incremented and the resultant message is
   discarded.

<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>.  The GetNextRequest-PDU</span>

   A GetNextRequest-PDU is generated and transmitted at the request of
   an application.

   Upon receipt of a GetNextRequest-PDU, the receiving SNMP entity
   processes each variable binding in the variable-binding list to
   produce a Response-PDU.  All fields of the Response-PDU have the same
   values as the corresponding fields of the received request except as
   indicated below.  Each variable binding is processed as follows:

      (1)   The variable is located which is in the lexicographically
            ordered list of the names of all variables which are



<span class="grey">Presuhn, et al.             Standards Track                    [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


            accessible by this request and whose name is the first
            lexicographic successor of the variable binding's name in
            the incoming GetNextRequest-PDU.  The corresponding variable
            binding's name and value fields in the Response-PDU are set
            to the name and value of the located variable.

      (2)   If the requested variable binding's name does not
            lexicographically precede the name of any variable
            accessible by this request, i.e., there is no lexicographic
            successor, then the corresponding variable binding produced
            in the Response-PDU has its value field set to
            "endOfMibView", and its name field set to the variable
            binding's name in the request.

   If the processing of any variable binding fails for a reason other
   than listed above, then the Response-PDU is re-formatted with the
   same values in its request-id and variable-bindings fields as the
   received GetNextRequest-PDU, with the value of its error-status field
   set to "genErr", and the value of its error-index field is set to the
   index of the failed variable binding.

   Otherwise, the value of the Response-PDU's error-status field is set
   to "noError", and the value of its error-index field is zero.

   The generated Response-PDU is then encapsulated into a message.  If
   the size of the resultant message is less than or equal to both a
   local constraint and the maximum message size of the originator, it
   is transmitted to the originator of the GetNextRequest-PDU.

   Otherwise, an alternate Response-PDU is generated.  This alternate
   Response-PDU is formatted with the same values in its request-id
   field as the received GetNextRequest-PDU, with the value of its
   error-status field set to "tooBig", the value of its error-index
   field set to zero, and an empty variable-bindings field.  This
   alternate Response-PDU is then encapsulated into a message.  If the
   size of the resultant message is less than or equal to both a local
   constraint and the maximum message size of the originator, it is
   transmitted to the originator of the GetNextRequest-PDU.  Otherwise,
   the snmpSilentDrops [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] counter is incremented and the
   resultant message is discarded.

<span class="h5"><a class="selflink" id="section-4.2.2.1" href="#section-4.2.2.1">4.2.2.1</a>.  Example of Table Traversal</span>

   An important use of the GetNextRequest-PDU is the traversal of
   conceptual tables of information within a MIB.  The semantics of this
   type of request, together with the method of identifying individual
   instances of objects in the MIB, provides access to related objects
   in the MIB as if they enjoyed a tabular organization.



<span class="grey">Presuhn, et al.             Standards Track                    [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   In the protocol exchange sketched below, an application retrieves the
   media-dependent physical address and the address-mapping type for
   each entry in the IP net-to-media Address Translation Table [<a href="./rfc1213" title="&quot;Management Information Base for Network Management of TCP/IP-based internets: MIB-II&quot;">RFC1213</a>]
   of a particular network element.  It also retrieves the value of
   sysUpTime [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>], at which the mappings existed.  Suppose that the
   command responder's IP net-to-media table has three entries:

   Interface-Number  Network-Address  Physical-Address  Type

      1            10.0.0.51     00:00:10:01:23:45  static
      1             9.2.3.4      00:00:10:54:32:10  dynamic
      2            10.0.0.15     00:00:10:98:76:54  dynamic

   The SNMP entity supporting a command generator application begins by
   sending a GetNextRequest-PDU containing the indicated OBJECT
   IDENTIFIER values as the requested variable names:

    GetNextRequest ( sysUpTime,
                   ipNetToMediaPhysAddress,
                   ipNetToMediaType )

   The SNMP entity supporting a command responder application responds
   with a Response-PDU:

    Response (( sysUpTime.0 =  "123456" ),
               ( ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210" ),
            ( ipNetToMediaType.1.9.2.3.4 =  "dynamic" ))

   The SNMP entity supporting the command generator application
   continues with:

    GetNextRequest ( sysUpTime,
                   ipNetToMediaPhysAddress.1.9.2.3.4,
                   ipNetToMediaType.1.9.2.3.4 )

   The SNMP entity supporting the command responder application responds
   with:

    Response (( sysUpTime.0 =  "123461" ),
               ( ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345" ),
            ( ipNetToMediaType.1.10.0.0.51 =  "static" ))

   The SNMP entity supporting the command generator application
   continues with:

    GetNextRequest ( sysUpTime,
                   ipNetToMediaPhysAddress.1.10.0.0.51,
                   ipNetToMediaType.1.10.0.0.51 )



<span class="grey">Presuhn, et al.             Standards Track                    [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   The SNMP entity supporting the command responder application responds
   with:

    Response (( sysUpTime.0 =  "123466" ),
               ( ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654" ),
            ( ipNetToMediaType.2.10.0.0.15 =  "dynamic" ))

   The SNMP entity supporting the command generator application
   continues with:

    GetNextRequest ( sysUpTime,
                   ipNetToMediaPhysAddress.2.10.0.0.15,
                   ipNetToMediaType.2.10.0.0.15 )

   As there are no further entries in the table, the SNMP entity
   supporting the command responder application responds with the
   variables that are next in the lexicographical ordering of the
   accessible object names, for example:

    Response (( sysUpTime.0 =  "123471" ),
               ( ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4" ),
            ( ipRoutingDiscards.0 =  "2" ))

   Note how, having reached the end of the column for
   ipNetToMediaPhysAddress, the second variable binding from the command
   responder application has now "wrapped" to the first row in the next
   column.  Furthermore, note how, having reached the end of the
   ipNetToMediaTable for the third variable binding, the command
   responder application has responded with the next available object,
   which is outside that table.  This response signals the end of the
   table to the command generator application.

<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>.  The GetBulkRequest-PDU</span>

   A GetBulkRequest-PDU is generated and transmitted at the request of
   an application.  The purpose of the GetBulkRequest-PDU is to request
   the transfer of a potentially large amount of data, including, but
   not limited to, the efficient and rapid retrieval of large tables.

   Upon receipt of a GetBulkRequest-PDU, the receiving SNMP entity
   processes each variable binding in the variable-binding list to
   produce a Response-PDU with its request-id field having the same
   value as in the request.

   For the GetBulkRequest-PDU type, the successful processing of each
   variable binding in the request generates zero or more variable
   bindings in the Response-PDU.  That is, the one-to-one mapping
   between the variable bindings of the GetRequest-PDU, GetNextRequest-



<span class="grey">Presuhn, et al.             Standards Track                    [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   PDU, and SetRequest-PDU types and the resultant Response-PDUs does
   not apply for the mapping between the variable bindings of a
   GetBulkRequest-PDU and the resultant Response-PDU.

   The values of the non-repeaters and max-repetitions fields in the
   request specify the processing requested.  One variable binding in
   the Response-PDU is requested for the first N variable bindings in
   the request and M variable bindings are requested for each of the R
   remaining variable bindings in the request.  Consequently, the total
   number of requested variable bindings communicated by the request is
   given by N + (M * R), where N is the minimum of:  a) the value of the
   non-repeaters field in the request, and b) the number of variable
   bindings in the request; M is the value of the max-repetitions field
   in the request; and R is the maximum of:  a) number of variable
   bindings in the request - N, and b)  zero.

   The receiving SNMP entity produces a Response-PDU with up to the
   total number of requested variable bindings communicated by the
   request.  The request-id shall have the same value as the received
   GetBulkRequest-PDU.

   If N is greater than zero, the first through the (N)-th variable
   bindings of the Response-PDU are each produced as follows:

   (1)   The variable is located which is in the lexicographically
         ordered list of the names of all variables which are accessible
         by this request and whose name is the first lexicographic
         successor of the variable binding's name in the incoming
         GetBulkRequest-PDU.  The corresponding variable binding's name
         and value fields in the Response-PDU are set to the name and
         value of the located variable.

   (2)   If the requested variable binding's name does not
         lexicographically precede the name of any variable accessible
         by this request, i.e., there is no lexicographic successor,
         then the corresponding variable binding produced in the
         Response-PDU has its value field set to "endOfMibView", and its
         name field set to the variable binding's name in the request.

   If M and R are non-zero, the (N + 1)-th and subsequent variable
   bindings of the Response-PDU are each produced in a similar manner.
   For each iteration i, such that i is greater than zero and less than
   or equal to M, and for each repeated variable, r, such that r is
   greater than zero and less than or equal to R, the (N + ( (i-1) * R )
   + r)-th variable binding of the Response-PDU is produced as follows:






<span class="grey">Presuhn, et al.             Standards Track                    [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   (1)   The variable which is in the lexicographically ordered list of
         the names of all variables which are accessible by this request
         and whose name is the (i)-th lexicographic successor of the (N
         + r)-th variable binding's name in the incoming
         GetBulkRequest-PDU is located and the variable binding's name
         and value fields are set to the name and value of the located
         variable.

   (2)   If there is no (i)-th lexicographic successor, then the
         corresponding variable binding produced in the Response-PDU has
         its value field set to "endOfMibView", and its name field set
         to either the last lexicographic successor, or if there are no
         lexicographic successors, to the (N + r)-th variable binding's
         name in the request.

   While the maximum number of variable bindings in the Response-PDU is
   bounded by N + (M * R), the response may be generated with a lesser
   number of variable bindings (possibly zero) for either of three
   reasons.

   (1)   If the size of the message encapsulating the Response-PDU
         containing the requested number of variable bindings would be
         greater than either a local constraint or the maximum message
         size of the originator, then the response is generated with a
         lesser number of variable bindings.  This lesser number is the
         ordered set of variable bindings with some of the variable
         bindings at the end of the set removed, such that the size of
         the message encapsulating the Response-PDU is approximately
         equal to but no greater than either a local constraint or the
         maximum message size of the originator.  Note that the number
         of variable bindings removed has no relationship to the values
         of N, M, or R.

   (2)   The response may also be generated with a lesser number of
         variable bindings if for some value of iteration i, such that i
         is greater than zero and less than or equal to M, that all of
         the generated variable bindings have the value field set to
         "endOfMibView".  In this case, the variable bindings may be
         truncated after the (N + (i * R))-th variable binding.

   (3)   In the event that the processing of a request with many
         repetitions requires a significantly greater amount of
         processing time than a normal request, then a command responder
         application may terminate the request with less than the full
         number of repetitions, providing at least one repetition is
         completed.





<span class="grey">Presuhn, et al.             Standards Track                    [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   If the processing of any variable binding fails for a reason other
   than listed above, then the Response-PDU is re-formatted with the
   same values in its request-id and variable-bindings fields as the
   received GetBulkRequest-PDU, with the value of its error-status field
   set to "genErr", and the value of its error-index field is set to the
   index of the variable binding in the original request which
   corresponds to the failed variable binding.

   Otherwise, the value of the Response-PDU's error-status field is set
   to "noError", and the value of its error-index field to zero.

   The generated Response-PDU (possibly with an empty variable-bindings
   field) is then encapsulated into a message.  If the size of the
   resultant message is less than or equal to both a local constraint
   and the maximum message size of the originator, it is transmitted to
   the originator of the GetBulkRequest-PDU.  Otherwise, the
   snmpSilentDrops [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] counter is incremented and the resultant
   message is discarded.

<span class="h5"><a class="selflink" id="section-4.2.3.1" href="#section-4.2.3.1">4.2.3.1</a>.  Another Example of Table Traversal</span>

   This example demonstrates how the GetBulkRequest-PDU can be used as
   an alternative to the GetNextRequest-PDU.  The same traversal of the
   IP net-to-media table as shown in <a href="#section-4.2.2.1">Section 4.2.2.1</a> is achieved with
   fewer exchanges.

   The SNMP entity supporting the command generator application begins
   by sending a GetBulkRequest-PDU with the modest max-repetitions value
   of 2, and containing the indicated OBJECT IDENTIFIER values as the
   requested variable names:

    GetBulkRequest [ non-repeaters = 1, max-repetitions = 2 ]
                  ( sysUpTime,
                    ipNetToMediaPhysAddress,
                    ipNetToMediaType )

   The SNMP entity supporting the command responder application responds
   with a Response-PDU:

    Response (( sysUpTime.0 =  "123456" ),
               ( ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210" ),
            ( ipNetToMediaType.1.9.2.3.4 =  "dynamic" ),
               ( ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345" ),
            ( ipNetToMediaType.1.10.0.0.51 =  "static" ))







<span class="grey">Presuhn, et al.             Standards Track                    [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   The SNMP entity supporting the command generator application
   continues with:

     GetBulkRequest [ non-repeaters = 1, max-repetitions = 2 ]
                     ( sysUpTime,
                       ipNetToMediaPhysAddress.1.10.0.0.51,
                       ipNetToMediaType.1.10.0.0.51 )

   The SNMP entity supporting the command responder application responds
   with:

    Response (( sysUpTime.0 =  "123466" ),
               ( ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654" ),
               ( ipNetToMediaType.2.10.0.0.15 = "dynamic" ),
               ( ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4" ),
            ( ipRoutingDiscards.0 =  "2" ))

   Note how, as in the first example, the variable bindings in the
   response indicate that the end of the table has been reached.  The
   fourth variable binding does so by returning information from the
   next available column; the fifth variable binding does so by
   returning information from the first available object
   lexicographically following the table.  This response signals the end
   of the table to the command generator application.

<span class="h4"><a class="selflink" id="section-4.2.4" href="#section-4.2.4">4.2.4</a>.  The Response-PDU</span>

   The Response-PDU is generated by an SNMP entity only upon receipt of
   a GetRequest-PDU, GetNextRequest-PDU, GetBulkRequest-PDU,
   SetRequest-PDU, or InformRequest-PDU, as described elsewhere in this
   document.

   If the error-status field of the Response-PDU is non-zero, the value
   fields of the variable bindings in the variable binding list are
   ignored.

   If both the error-status field and the error-index field of the
   Response-PDU are non-zero, then the value of the error-index field is
   the index of the variable binding (in the variable-binding list of
   the corresponding request) for which the request failed.  The first
   variable binding in a request's variable-binding list is index one,
   the second is index two, etc.

   A compliant SNMP entity supporting a command generator application
   must be able to properly receive and handle a Response-PDU with an
   error-status field equal to "noSuchName", "badValue", or "readOnly".
   (See sections <a href="#section-1.3">1.3</a> and <a href="#section-4.3">4.3</a> of [<a href="./rfc2576" title="&quot;Coexistence between Version 1, Version 2, and Version 3 of the Internet-Standard Network Management Framework&quot;">RFC2576</a>].)




<span class="grey">Presuhn, et al.             Standards Track                    [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   Upon receipt of a Response-PDU, the receiving SNMP entity presents
   its contents to the application which generated the request with the
   same request-id value.  For more details, see [<a href="./rfc3412" title="&quot;Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)&quot;">RFC3412</a>].

<span class="h4"><a class="selflink" id="section-4.2.5" href="#section-4.2.5">4.2.5</a>.  The SetRequest-PDU</span>

   A SetRequest-PDU is generated and transmitted at the request of an
   application.

   Upon receipt of a SetRequest-PDU, the receiving SNMP entity
   determines the size of a message encapsulating a Response-PDU having
   the same values in its request-id and variable-bindings fields as the
   received SetRequest-PDU, and the largest possible sizes of the
   error-status and error-index fields.  If the determined message size
   is greater than either a local constraint or the maximum message size
   of the originator, then an alternate Response-PDU is generated,
   transmitted to the originator of the SetRequest-PDU, and processing
   of the SetRequest-PDU terminates immediately thereafter.  This
   alternate Response-PDU is formatted with the same values in its
   request-id field as the received SetRequest-PDU, with the value of
   its error-status field set to "tooBig", the value of its error-index
   field set to zero, and an empty variable-bindings field.  This
   alternate Response-PDU is then encapsulated into a message.  If the
   size of the resultant message is less than or equal to both a local
   constraint and the maximum message size of the originator, it is
   transmitted to the originator of the SetRequest-PDU.  Otherwise, the
   snmpSilentDrops [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] counter is incremented and the resultant
   message is discarded.  Regardless, processing of the SetRequest-PDU
   terminates.

   Otherwise, the receiving SNMP entity processes each variable binding
   in the variable-binding list to produce a Response-PDU.  All fields
   of the Response-PDU have the same values as the corresponding fields
   of the received request except as indicated below.

   The variable bindings are conceptually processed as a two phase
   operation.  In the first phase, each variable binding is validated;
   if all validations are successful, then each variable is altered in
   the second phase.  Of course, implementors are at liberty to
   implement either the first, or second, or both, of these conceptual
   phases as multiple implementation phases.  Indeed, such multiple
   implementation phases may be necessary in some cases to ensure
   consistency.








<span class="grey">Presuhn, et al.             Standards Track                    [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   The following validations are performed in the first phase on each
   variable binding until they are all successful, or until one fails:

   (1)   If the variable binding's name specifies an existing or non-
         existent variable to which this request is/would be denied
         access because it is/would not be in the appropriate MIB view,
         then the value of the Response-PDU's error-status field is set
         to "noAccess", and the value of its error-index field is set to
         the index of the failed variable binding.

   (2)   Otherwise, if there are no variables which share the same
         OBJECT IDENTIFIER prefix as the variable binding's name, and
         which are able to be created or modified no matter what new
         value is specified, then the value of the Response-PDU's
         error-status field is set to "notWritable", and the value of
         its error-index field is set to the index of the failed
         variable binding.

   (3)   Otherwise, if the variable binding's value field specifies,
         according to the ASN.1 language, a type which is inconsistent
         with that required for all variables which share the same
         OBJECT IDENTIFIER prefix as the variable binding's name, then
         the value of the Response-PDU's error-status field is set to
         "wrongType", and the value of its error-index field is set to
         the index of the failed variable binding.

   (4)   Otherwise, if the variable binding's value field specifies,
         according to the ASN.1 language, a length which is inconsistent
         with that required for all variables which share the same
         OBJECT IDENTIFIER prefix as the variable binding's name, then
         the value of the Response-PDU's error-status field is set to
         "wrongLength", and the value of its error-index field is set to
         the index of the failed variable binding.

   (5)   Otherwise, if the variable binding's value field contains an
         ASN.1 encoding which is inconsistent with that field's ASN.1
         tag, then the value of the Response-PDU's error-status field is
         set to "wrongEncoding", and the value of its error-index field
         is set to the index of the failed variable binding.  (Note that
         not all implementation strategies will generate this error.)

   (6)   Otherwise, if the variable binding's value field specifies a
         value which could under no circumstances be assigned to the
         variable, then the value of the Response-PDU's error-status
         field is set to "wrongValue", and the value of its error-index
         field is set to the index of the failed variable binding.





<span class="grey">Presuhn, et al.             Standards Track                    [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   (7)   Otherwise, if the variable binding's name specifies a variable
         which does not exist and could not ever be created (even though
         some variables sharing the same OBJECT IDENTIFIER prefix might
         under some circumstances be able to be created), then the value
         of the Response-PDU's error-status field is set to
         "noCreation", and the value of its error-index field is set to
         the index of the failed variable binding.

   (8)   Otherwise, if the variable binding's name specifies a variable
         which does not exist but can not be created under the present
         circumstances (even though it could be created under other
         circumstances), then the value of the Response-PDU's error-
         status field is set to "inconsistentName", and the value of its
         error-index field is set to the index of the failed variable
         binding.

   (9)   Otherwise, if the variable binding's name specifies a variable
         which exists but can not be modified no matter what new value
         is specified, then the value of the Response-PDU's error-status
         field is set to "notWritable", and the value of its error-index
         field is set to the index of the failed variable binding.

   (10)  Otherwise, if the variable binding's value field specifies a
         value that could under other circumstances be held by the
         variable, but is presently inconsistent or otherwise unable to
         be assigned to the variable, then the value of the Response-
         PDU's error-status field is set to "inconsistentValue", and the
         value of its error-index field is set to the index of the
         failed variable binding.

   (11)  When, during the above steps, the assignment of the value
         specified by the variable binding's value field to the
         specified variable requires the allocation of a resource which
         is presently unavailable, then the value of the Response-PDU's
         error-status field is set to "resourceUnavailable", and the
         value of its error-index field is set to the index of the
         failed variable binding.

   (12)  If the processing of the variable binding fails for a reason
         other than listed above, then the value of the Response-PDU's
         error-status field is set to "genErr", and the value of its
         error-index field is set to the index of the failed variable
         binding.

   (13)  Otherwise, the validation of the variable binding succeeds.






<span class="grey">Presuhn, et al.             Standards Track                    [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   At the end of the first phase, if the validation of all variable
   bindings succeeded, then the value of the Response-PDU's error-status
   field is set to "noError" and the value of its error-index field is
   zero, and processing continues as follows.

   For each variable binding in the request, the named variable is
   created if necessary, and the specified value is assigned to it.
   Each of these variable assignments occurs as if simultaneously with
   respect to all other assignments specified in the same request.
   However, if the same variable is named more than once in a single
   request, with different associated values, then the actual assignment
   made to that variable is implementation-specific.

   If any of these assignments fail (even after all the previous
   validations), then all other assignments are undone, and the
   Response-PDU is modified to have the value of its error-status field
   set to "commitFailed", and the value of its error-index field set to
   the index of the failed variable binding.

   If and only if it is not possible to undo all the assignments, then
   the Response-PDU is modified to have the value of its error-status
   field set to "undoFailed", and the value of its error-index field is
   set to zero.  Note that implementations are strongly encouraged to
   take all possible measures to avoid use of either "commitFailed" or
   "undoFailed" - these two error-status codes are not to be taken as
   license to take the easy way out in an implementation.

   Finally, the generated Response-PDU is encapsulated into a message,
   and transmitted to the originator of the SetRequest-PDU.

<span class="h4"><a class="selflink" id="section-4.2.6" href="#section-4.2.6">4.2.6</a>.  The SNMPv2-Trap-PDU</span>

   An SNMPv2-Trap-PDU is generated and transmitted by an SNMP entity on
   behalf of a notification originator application.  The SNMPv2-Trap-PDU
   is often used to notify a notification receiver application at a
   logically remote SNMP entity that an event has occurred or that a
   condition is present.  There is no confirmation associated with this
   notification delivery mechanism.

   The destination(s) to which an SNMPv2-Trap-PDU is sent is determined
   in an implementation-dependent fashion by the SNMP entity.  The first
   two variable bindings in the variable binding list of an SNMPv2-
   Trap-PDU are sysUpTime.0 [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] and snmpTrapOID.0 [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>]
   respectively.  If the OBJECTS clause is present in the invocation of
   the corresponding NOTIFICATION-TYPE macro, then each corresponding
   variable, as instantiated by this notification, is copied, in order,





<span class="grey">Presuhn, et al.             Standards Track                    [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   to the variable-bindings field.  If any additional variables are
   being included (at the option of the generating SNMP entity), then
   each is copied to the variable-bindings field.

<span class="h4"><a class="selflink" id="section-4.2.7" href="#section-4.2.7">4.2.7</a>.  The InformRequest-PDU</span>

   An InformRequest-PDU is generated and transmitted by an SNMP entity
   on behalf of a notification originator application.  The
   InformRequest-PDU is often used to notify a notification receiver
   application that an event has occurred or that a condition is
   present.  This is a confirmed notification delivery mechanism,
   although there is, of course, no guarantee of delivery.

   The destination(s) to which an InformRequest-PDU is sent is specified
   by the notification originator application.  The first two variable
   bindings in the variable binding list of an InformRequest-PDU are
   sysUpTime.0 [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] and snmpTrapOID.0 [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] respectively.  If
   the OBJECTS clause is present in the invocation of the corresponding
   NOTIFICATION-TYPE macro, then each corresponding variable, as
   instantiated by this notification, is copied, in order, to the
   variable-bindings field.  If any additional variables are being
   included (at the option of the generating SNMP entity), then each is
   copied to the variable-bindings field.

   Upon receipt of an InformRequest-PDU, the receiving SNMP entity
   determines the size of a message encapsulating a Response-PDU with
   the same values in its request-id, error-status, error-index and
   variable-bindings fields as the received InformRequest-PDU.  If the
   determined message size is greater than either a local constraint or
   the maximum message size of the originator, then an alternate
   Response-PDU is generated, transmitted to the originator of the
   InformRequest-PDU, and processing of the InformRequest-PDU terminates
   immediately thereafter.  This alternate Response-PDU is formatted
   with the same values in its request-id field as the received
   InformRequest-PDU, with the value of its error-status field set to
   "tooBig", the value of its error-index field set to zero, and an
   empty variable-bindings field.  This alternate Response-PDU is then
   encapsulated into a message.  If the size of the resultant message is
   less than or equal to both a local constraint and the maximum message
   size of the originator, it is transmitted to the originator of the
   InformRequest-PDU.  Otherwise, the snmpSilentDrops [<a href="./rfc3418" title="&quot;Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)&quot;">RFC3418</a>] counter
   is incremented and the resultant message is discarded.  Regardless,
   processing of the InformRequest-PDU terminates.

   Otherwise, the receiving SNMP entity:

   (1)   presents its contents to the appropriate application;




<span class="grey">Presuhn, et al.             Standards Track                    [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   (2)   generates a Response-PDU with the same values in its request-id
         and variable-bindings fields as the received InformRequest-PDU,
         with the value of its error-status field set to "noError" and
         the value of its error-index field set to zero; and

   (3)   transmits the generated Response-PDU to the originator of the
         InformRequest-PDU.

<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Notice on Intellectual Property</span>

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in <a href="https://www.rfc-editor.org/bcp/bcp11">BCP-11</a>.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.

<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Acknowledgments</span>

   This document is the product of the SNMPv3 Working Group.  Some
   special thanks are in order to the following Working Group members:

      Randy Bush
      Jeffrey D. Case
      Mike Daniele
      Rob Frye
      Lauren Heintz
      Keith McCloghrie
      Russ Mundy
      David T. Perkins
      Randy Presuhn
      Aleksey Romanov
      Juergen Schoenwaelder
      Bert Wijnen




<span class="grey">Presuhn, et al.             Standards Track                    [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   This version of the document, edited by Randy Presuhn, was initially
   based on the work of a design team whose members were:

      Jeffrey D. Case
      Keith McCloghrie
      David T. Perkins
      Randy Presuhn
      Juergen Schoenwaelder

   The previous versions of this document, edited by Keith McCloghrie,
   was the result of significant work by four major contributors:

      Jeffrey D. Case
      Keith McCloghrie
      Marshall T. Rose
      Steven Waldbusser

   Additionally, the contributions of the SNMPv2 Working Group to the
   previous versions are also acknowledged.  In particular, a special
   thanks is extended for the contributions of:

      Alexander I. Alten
      Dave Arneson
      Uri Blumenthal
      Doug Book
      Kim Curran
      Jim Galvin
      Maria Greene
      Iain Hanson
      Dave Harrington
      Nguyen Hien
      Jeff Johnson
      Michael Kornegay
      Deirdre Kostick
      David Levi
      Daniel Mahoney
      Bob Natale
      Brian O'Keefe
      Andrew Pearson
      Dave Perkins
      Randy Presuhn
      Aleksey Romanov
      Shawn Routhier
      Jon Saperia
      Juergen Schoenwaelder
      Bob Stewart





<span class="grey">Presuhn, et al.             Standards Track                    [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


      Kaj Tesink
      Glenn Waters
      Bert Wijnen

<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Security Considerations</span>

   The protocol defined in this document by itself does not provide a
   secure environment.  Even if the network itself is secure (for
   example by using IPSec), there is no control as to who on the secure
   network is allowed access to management information.

   It is recommended that the implementors consider the security
   features as provided by the SNMPv3 framework.  Specifically, the use
   of the User-based Security Model STD 62, <a href="./rfc3414">RFC 3414</a> [<a href="./rfc3414" title="&quot;The User-Based Security Model (USM) for Version 3 of the Simple Network Management Protocol (SNMPv3)&quot;">RFC3414</a>] and the
   View-based Access Control Model STD 62, <a href="./rfc3415">RFC 3415</a> [<a href="./rfc3415" title="&quot;View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)&quot;">RFC3415</a>] is
   recommended.

   It is then a customer/user responsibility to ensure that the SNMP
   entity is properly configured so that:

      -  only those principals (users) having legitimate rights can
         access or modify the values of any MIB objects supported by
         that entity;

      -  the occurrence of particular events on the entity will be
         communicated appropriately;

      -  the entity responds appropriately and with due credence to
         events and information that have been communicated to it.

<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  References</span>

<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>.  Normative References</span>

   [<a id="ref-RFC768">RFC768</a>]    Postel, J., "User Datagram Protocol", STD 6, <a href="./rfc768">RFC 768</a>,
               August 1980.

   [<a id="ref-RFC2578">RFC2578</a>]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Structure of Management
               Information Version 2 (SMIv2)", STD 58, <a href="./rfc2578">RFC 2578</a>, April
               1999.

   [<a id="ref-RFC2579">RFC2579</a>]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Textual Conventions for
               SMIv2", STD 58, <a href="./rfc2579">RFC 2579</a>, April 1999.






<span class="grey">Presuhn, et al.             Standards Track                    [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   [<a id="ref-RFC2580">RFC2580</a>]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Conformance Statements for
               SMIv2", STD 58, <a href="./rfc2580">RFC 2580</a>, April 1999.

   [<a id="ref-RFC3411">RFC3411</a>]   Harrington, D., Presuhn, R. and B. Wijnen, "An
               Architecture for Describing Simple Network Management
               Protocol (SNMP) Management Frameworks", STD 62, <a href="./rfc3411">RFC 3411</a>,
               December 2002.

   [<a id="ref-RFC3412">RFC3412</a>]   Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
               "Message Processing and Dispatching for the Simple
               Network Management Protocol (SNMP)", STD 62, <a href="./rfc3412">RFC 3412</a>,
               December 2002.

   [<a id="ref-RFC3413">RFC3413</a>]   Levi, D., Meyer, P. and B. Stewart, "Simple Network
               Management Protocol (SNMP) Applications", STD 62, <a href="./rfc3413">RFC</a>
               <a href="./rfc3413">3413</a>, December 2002.

   [<a id="ref-RFC3414">RFC3414</a>]   Blumenthal, U. and B. Wijnen, "The User-Based Security
               Model (USM) for Version 3 of the Simple Network
               Management Protocol (SNMPv3)", STD 62, <a href="./rfc3414">RFC 3414</a>, December
               2002.

   [<a id="ref-RFC3415">RFC3415</a>]   Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
               Access Control Model (VACM) for the Simple Network
               Management Protocol (SNMP)", STD 62, <a href="./rfc3415">RFC 3415</a>, December
               2002.

   [<a id="ref-RFC3417">RFC3417</a>]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
               Waldbusser, "Transport Mappings for the Simple Network
               Management Protocol", STD 62, <a href="./rfc3417">RFC 3417</a>, December 2002.

   [<a id="ref-RFC3418">RFC3418</a>]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
               Waldbusser, "Management Information Base (MIB) for the
               Simple Network Management Protocol (SNMP)", STD 62, <a href="./rfc3418">RFC</a>
               <a href="./rfc3418">3418</a>, December 2002.

   [<a id="ref-ASN1">ASN1</a>]      Information processing systems - Open Systems
               Interconnection - Specification of Abstract Syntax
               Notation One (ASN.1), International Organization for
               Standardization.  International Standard 8824, December
               1987.

<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>.  Informative References</span>

   [<a id="ref-FRAG">FRAG</a>]      Kent, C. and J. Mogul, "Fragmentation Considered
               Harmful," Proceedings, ACM SIGCOMM '87, Stowe, VT, August
               1987.



<span class="grey">Presuhn, et al.             Standards Track                    [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


   [<a id="ref-RFC1155">RFC1155</a>]   Rose, M. and K. McCloghrie, "Structure and Identification
               of Management Information for TCP/IP-based Internets",
               STD 16, <a href="./rfc1155">RFC 1155</a>, May 1990.

   [<a id="ref-RFC1157">RFC1157</a>]   Case, J., Fedor, M., Schoffstall, M. and J. Davin,
               "Simple Network Management Protocol", STD 15, <a href="./rfc1157">RFC 1157</a>,
               May 1990.

   [<a id="ref-RFC1212">RFC1212</a>]   Rose, M. and K. McCloghrie, "Concise MIB Definitions",
               STD 16, <a href="./rfc1212">RFC 1212</a>, March 1991.

   [<a id="ref-RFC1213">RFC1213</a>]   McCloghrie, K. and M. Rose, Editors, "Management
               Information Base for Network Management of TCP/IP-based
               internets: MIB-II", STD 17, <a href="./rfc1213">RFC 1213</a>, March 1991.

   [<a id="ref-RFC1215">RFC1215</a>]   Rose, M., "A Convention for Defining Traps for use with
               the SNMP", <a href="./rfc1215">RFC 1215</a>, March 1991.

   [<a id="ref-RFC1901">RFC1901</a>]   Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
               "Introduction to Community-based SNMPv2", <a href="./rfc1901">RFC 1901</a>,
               January 1996.

   [<a id="ref-RFC2576">RFC2576</a>]   Frye, R., Levi, D., Routhier, S. and B. Wijnen,
               "Coexistence between Version 1, Version 2, and Version 3
               of the Internet-Standard Network Management Framework",
               <a href="./rfc2576">RFC 2576</a>, March 2000.

   [<a id="ref-RFC2863">RFC2863</a>]   McCloghrie, K. and F. Kastenholz, "The Interfaces Group
               MIB", <a href="./rfc2863">RFC 2863</a>, June 2000.

   [<a id="ref-RFC2914">RFC2914</a>]   Floyd, S., "Congestion Control Principles", <a href="https://www.rfc-editor.org/bcp/bcp41">BCP 41</a>, <a href="./rfc2914">RFC</a>
               <a href="./rfc2914">2914</a>, September 2000.

   [<a id="ref-RFC3410">RFC3410</a>]   Case, J., Mundy, R., Partain, D. and B. Stewart,
               "Introduction and Applicability Statements for Internet-
               Standard Management Framework", <a href="./rfc3410">RFC 3410</a>, December 2002.

<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  Changes from <a href="./rfc1905">RFC 1905</a></span>

   These are the changes from <a href="./rfc1905">RFC 1905</a>:

      -  Corrected spelling error in copyright statement;

      -  Updated copyright date;

      -  Updated with new editor's name and contact information;

      -  Added notice on intellectual property;



<span class="grey">Presuhn, et al.             Standards Track                    [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


      -  Cosmetic fixes to layout and typography;

      -  Added table of contents;

      -  Title changed;

      -  Updated document headers and footers;

      -  Deleted the old clause 2.3, entitled "Access to Management
         Information";

      -  Changed the way in which request-id was defined, though with
         the same ultimate syntax and semantics, to avoid coupling with
         SMI.  This does not affect the protocol in any way;

      -  Replaced the word "exception" with the word "error" in the old
         clause 4.1.  This does not affect the protocol in any way;

      -  Deleted the first two paragraphs of the old clause 4.2;

      -  Clarified the maximum number of variable bindings that an
         implementation must support in a PDU.  This does not affect the
         protocol in any way;

      -  Replaced occurrences of "SNMPv2 application" with
         "application";

      -  Deleted three sentences in old clause 4.2.3 describing the
         handling of an impossible situation.  This does not affect the
         protocol in any way;

      -  Clarified the use of the SNMPv2-Trap-Pdu in the old clause
         4.2.6.  This does not affect the protocol in any way;

      -  Aligned description of the use of the InformRequest-Pdu in old
         clause 4.2.7 with the architecture.  This does not affect the
         protocol in any way;

      -  Updated references;

      -  Re-wrote introduction clause;

      -  Replaced manager/agent/SNMPv2 entity terminology with
         terminology from <a href="./rfc2571">RFC 2571</a>.  This does not affect the protocol
         in any way;

      -  Eliminated IMPORTS from the SMI, replaced with equivalent in-
         line ASN.1.  This does not affect the protocol in any way;



<span class="grey">Presuhn, et al.             Standards Track                    [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


      -  Added notes calling attention to two different manifestations
         of reaching the end of a table in the table walk examples;

      -  Added content to security considerations clause;

      -  Updated ASN.1 comment on use of Report-PDU.  This does not
         affect the protocol in any way;

      -  Updated acknowledgments section;

      -  Included information on handling of BITS;

      -  Deleted spurious comma in ASN.1 definition of PDUs;

      -  Added abstract;

      -  Made handling of additional variable bindings in informs
         consistent with that for traps.  This was a correction of an
         editorial oversight, and reflects implementation practice;

      -  Added reference to <a href="./rfc2914">RFC 2914</a>.

<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>.  Editor's Address</span>

   Randy Presuhn
   BMC Software, Inc.
   2141 North First Street
   San Jose, CA  95131
   USA

   Phone: +1 408 546 1006
   EMail: randy_presuhn@bmc.com



















<span class="grey">Presuhn, et al.             Standards Track                    [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3416">RFC 3416</a>              Protocol Operations for SNMP         December 2002</span>


<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>.  Full Copyright Statement</span>

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Presuhn, et al.             Standards Track                    [Page 31]
</pre>