File: rfc4905.html

package info (click to toggle)
doc-rfc 20201128-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 1,307,124 kB
file content (1117 lines) | stat: -rw-r--r-- 50,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
<pre>Network Working Group                                    L. Martini, Ed.
Request for Comments: 4905                                 E. Rosen, Ed.
Category: Historic                                   Cisco Systems, Inc.
                                                        N. El-Aawar, Ed.
                                             Level 3 Communications, LLC
                                                               June 2007

                <span class="h1">Encapsulation Methods for Transport of</span>
                   <span class="h1">Layer 2 Frames over MPLS Networks</span>

Status of This Memo

   This memo defines a Historic Document for the Internet community.  It
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Abstract

   This document describes methods for encapsulating the Protocol Data
   Units (PDUs) of layer 2 protocols such as Frame Relay, Asynchronous
   Transfer Mode (ATM), or Ethernet for transport across an MPLS
   network.  This document describes the so-called "<a href="./draft-martini">draft-martini</a>"
   protocol, which has since been superseded by the Pseudowire Emulation
   Edge to Edge Working Group specifications described in <a href="./rfc4447">RFC 4447</a> and
   related documents.






















<span class="grey">Martini, et al.                 Historic                        [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


Table of Contents

   <a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
   <a href="#section-2">2</a>. Specification of Requirements ...................................<a href="#page-3">3</a>
   <a href="#section-3">3</a>. Special Note ....................................................<a href="#page-4">4</a>
   <a href="#section-4">4</a>. General Encapsulation Method ....................................<a href="#page-4">4</a>
      <a href="#section-4.1">4.1</a>. The Control Word ...........................................<a href="#page-4">4</a>
           <a href="#section-4.1.1">4.1.1</a>. Setting the Sequence Number .........................<a href="#page-5">5</a>
           <a href="#section-4.1.2">4.1.2</a>. Processing the Sequence Number ......................<a href="#page-6">6</a>
      <a href="#section-4.2">4.2</a>. MTU Requirements ...........................................<a href="#page-6">6</a>
   <a href="#section-5">5</a>. Protocol-Specific Details .......................................<a href="#page-7">7</a>
      <a href="#section-5.1">5.1</a>. Frame Relay ................................................<a href="#page-7">7</a>
      <a href="#section-5.2">5.2</a>. ATM ........................................................<a href="#page-8">8</a>
           <a href="#section-5.2.1">5.2.1</a>. ATM AAL5 CPCS-SDU Mode ..............................<a href="#page-9">9</a>
           <a href="#section-5.2.2">5.2.2</a>. ATM Cell Mode ......................................<a href="#page-10">10</a>
           <a href="#section-5.2.3">5.2.3</a>. OAM Cell Support ...................................<a href="#page-12">12</a>
           <a href="#section-5.2.4">5.2.4</a>. CLP bit to Quality of Service Mapping ..............<a href="#page-12">12</a>
      <a href="#section-5.3">5.3</a>. Ethernet VLAN .............................................<a href="#page-12">12</a>
      <a href="#section-5.4">5.4</a>. Ethernet ..................................................<a href="#page-12">12</a>
      <a href="#section-5.5">5.5</a>. High-Level Data Link Control (HDLC) .......................<a href="#page-13">13</a>
      <a href="#section-5.6">5.6</a>. PPP .......................................................<a href="#page-13">13</a>
   <a href="#section-6">6</a>. Using an MPLS Label as the Demultiplexer Field .................<a href="#page-13">13</a>
      <a href="#section-6.1">6.1</a>. MPLS Shim EXP Bit Values ..................................<a href="#page-14">14</a>
      <a href="#section-6.2">6.2</a>. MPLS Shim S Bit Value .....................................<a href="#page-14">14</a>
      <a href="#section-6.3">6.3</a>. MPLS Shim TTL Values ......................................<a href="#page-14">14</a>
   <a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-14">14</a>
   <a href="#section-8">8</a>. Normative References ...........................................<a href="#page-14">14</a>
   <a href="#section-9">9</a>. Informative References .........................................<a href="#page-16">16</a>
   <a href="#section-10">10</a>. Co-Authors ....................................................<a href="#page-16">16</a>






















<span class="grey">Martini, et al.                 Historic                        [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>

   In an MPLS network, it is possible to use control protocols such as
   those specified in [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>] to set up "emulated virtual circuits"
   that carry the Protocol Data Units of layer 2 protocols across the
   network.  A number of these emulated virtual circuits (VCs) may be
   carried in a single tunnel.  This requires, of course, that the layer
   2 PDUs be encapsulated.  We can distinguish three layers of this
   encapsulation:

      - the "tunnel header", which contains the information needed to
        transport the PDU across the MPLS network; this header belongs
        to the tunneling protocol, e.g., MPLS, Generic Routing
        Encapsulation (GRE), and Layer 2 Tunneling Protocol (L2TP).

      - the "demultiplexer field", which is used to distinguish
        individual emulated virtual circuits within a single tunnel;
        this field must be understood by the tunneling protocol as well;
        it may be, e.g., an MPLS label or a GRE key field.

      - the "emulated VC encapsulation", which contains the information
        about the enclosed layer 2 PDU that is necessary in order to
        properly emulate the corresponding layer 2 protocol.

   This document specifies the emulated VC encapsulation for a number of
   layer 2 protocols.  Although different layer 2 protocols require
   different information to be carried in this encapsulation, an attempt
   has been made to make the encapsulation as common as possible for all
   layer 2 protocols.

   This document also specifies the way in which the demultiplexer field
   is added to the emulated VC encapsulation when an MPLS label is used
   as the demultiplexer field.

   Quality of service (QoS)-related issues are not discussed in this
   document.

   For the purpose of this document, R1 will be defined as the ingress
   router, and R2 as the egress router.  A layer 2 PDU will be received
   at R1, encapsulated at R1, transported, decapsulated at R2, and
   transmitted out of R2.

<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Specification of Requirements</span>

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [<a href="./rfc2119" title="&quot;Key words for use in RFCs to Indicate Requirement Levels&quot;">RFC2119</a>].




<span class="grey">Martini, et al.                 Historic                        [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Special Note</span>

   This document describes the so called "<a href="./draft-martini">draft-martini</a>" protocol, which
   is used in many deployed implementations.  This document and its
   contents have since been superseded by the Pseudowire Emulation Edge
   to Edge Working Group specifications: [<a href="./rfc4447" title="&quot;Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)&quot;">RFC4447</a>], [<a href="./rfc4385" title="&quot;Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN&quot;">RFC4385</a>],
   [<a href="./rfc4448" title="&quot;Encapsulation Methods for Transport of Ethernet over MPLS Networks&quot;">RFC4448</a>], [<a href="./rfc4717" title="&quot;Encapsulation Methods for Transport of Asynchronous Transfer Mode (ATM) over MPLS Networks&quot;">RFC4717</a>], [<a href="./rfc4618" title="&quot;Encapsulation Methods for Transport of PPP/High-Level Data Link Control (HDLC) over MPLS Networks&quot;">RFC4618</a>], [<a href="./rfc4619" title="&quot;Encapsulation Methods for Transport of Frame Relay over Multiprotocol Label Switching (MPLS) Networks&quot;">RFC4619</a>], [<a href="./rfc4553" title="&quot;Structure- Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)&quot;">RFC4553</a>], [<a href="./rfc4842" title="&quot;Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Circuit Emulation over Packet (CEP)&quot;">RFC4842</a>], and
   related documents.  This document serves as documentation of current
   implementations, and MUST NOT be used for new implementations.  The
   PWE3 Label Distribution Protocol control protocol document [<a href="./rfc4447" title="&quot;Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)&quot;">RFC4447</a>],
   which is backward compatible with this document, MUST be used for all
   new implementations of this protocol.

<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  General Encapsulation Method</span>

   In most cases, it is not necessary to transport the layer 2
   encapsulation across the network; rather, the layer 2 header can be
   stripped at R1 and reproduced at R2.  This is done using information
   carried in the control word (see below), as well as information that
   may already have been signaled from R1 to R2.

<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>.  The Control Word</span>

   There are three requirements that may need to be satisfied when
   transporting layer 2 protocols over an MPLS backbone:

     -i. Sequentiality may need to be preserved.

    -ii. Small packets may need to be padded in order to be transmitted
         on a medium where the minimum transport unit is larger than the
         actual packet size.

   -iii. Control bits carried in the header of the layer 2 frame may
         need to be transported.

   The control word defined here addresses all three of these
   requirements.  For some protocols, this word is REQUIRED, and for
   others OPTIONAL.  For protocols where the control word is OPTIONAL,
   implementations MUST support sending no control word, and MAY support
   sending a control word.

   In all cases, the egress router must be aware of whether the ingress
   router will send a control word over a specific virtual circuit.
   This may be achieved by configuration of the routers or by signaling,
   for example, as defined in [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>].






<span class="grey">Martini, et al.                 Historic                        [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   The control word is defined as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Rsvd  | Flags |0 0|   Length  |     Sequence Number           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In the above diagram, the first 4 bits are reserved for future use.
   They MUST be set to 0 when transmitting, and MUST be ignored upon
   receipt.

   The next 4 bits provide space for carrying protocol-specific flags.
   These are defined in the protocol-specific details below.

   The next 2 bits MUST be set to 0 when transmitting.

   The next 6 bits provide a length field, which is used as follows: If
   the packet's length (defined as the length of the layer 2 payload
   plus the length of the control word) is less than 64 bytes, the
   length field MUST be set to the packet's length.  Otherwise, the
   length field MUST be set to 0.  The value of the length field, if
   non-zero, can be used to remove any padding.  When the packet reaches
   the service provider's egress router, it may be desirable to remove
   the padding before forwarding the packet.

   The next 16 bits provide a sequence number that can be used to
   guarantee ordered packet delivery.  The processing of the sequence
   number field is OPTIONAL.

   The sequence number space is a 16-bit, unsigned circular space.  The
   sequence number value 0 is used to indicate an unsequenced packet.

<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>.  Setting the Sequence Number</span>

   For a given emulated VC, and a pair of routers R1 and R2, if R1
   supports packet sequencing, then the following procedures should be
   used:

      - The initial packet transmitted on the emulated VC MUST use
        sequence number 1.

      - Subsequent packets MUST increment the sequence number by 1 for
        each packet.

      - When the transmit sequence number reaches the maximum 16 bit
        value (65535), the sequence number MUST wrap to 1.




<span class="grey">Martini, et al.                 Historic                        [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   If the transmitting router R1 does not support sequence number
   processing, then the sequence number field in the control word MUST
   be set to 0.

<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>.  Processing the Sequence Number</span>

   If a router R2 supports receive sequence number processing, then the
   following procedures should be used:

   When an emulated VC is initially set up, the "expected sequence
   number" associated with it MUST be initialized to 1.

   When a packet is received on that emulated VC, the sequence number
   should be processed as follows:

      - If the sequence number on the packet is 0, then the packet
        passes the sequence number check.

      - Else if the packet sequence number &gt;= the expected sequence
        number and the packet sequence number - the expected sequence
        number &lt; 32768, then the packet is in order.

      - Else if the packet sequence number &lt; the expected sequence
        number and the expected sequence number - the packet sequence
        number &gt;= 32768, then the packet is in order.

      - Otherwise, the packet is out of order.

   If a packet passes the sequence number check or is in order, then it
   can be delivered immediately.  If the packet is in order, then the
   expected sequence number should be set using the algorithm:

   expected_sequence_number := packet_sequence_number + 1 mod 2**16
   if (expected_sequence_number = 0) then expected_sequence_number := 1;

   Packets that are received out of order MAY be dropped or reordered at
   the discretion of the receiver.

   If a router R2 does not support receive sequence number processing,
   then the sequence number field MAY be ignored.

<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>.  MTU Requirements</span>

   The network MUST be configured with an MTU that is sufficient to
   transport the largest encapsulation frames.  If MPLS is used as the
   tunneling protocol, for example, this is likely to be 12 or more
   bytes greater than the largest frame size.  Other tunneling protocols
   may have longer headers and require larger MTUs.  If the ingress



<span class="grey">Martini, et al.                 Historic                        [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   router determines that an encapsulated layer 2 PDU exceeds the MTU of
   the tunnel through which it must be sent, the PDU MUST be dropped.
   If an egress router receives an encapsulated layer 2 PDU whose
   payload length (i.e., the length of the PDU itself without any of the
   encapsulation headers) exceeds the MTU of the destination layer 2
   interface, the PDU MUST be dropped.

<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Protocol-Specific Details</span>

<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>.  Frame Relay</span>

   A Frame Relay PDU is transported without the Frame Relay header or
   the Frame Check Sequence (FCS).  The control word is REQUIRED;
   however, its use is optional, although desirable.  Use of the control
   word means that the ingress and egress Label Switching Routers (LSRs)
   follow the procedures below.  If an ingress LSR chooses not to use
   the control word, it MUST set the flags in the control word to 0; if
   an egress LSR chooses to ignore the control word, it MUST set the
   Frame Relay control bits to 0.

   The BECN (Backward Explicit Congestion Notification), FECN (Forward
   Explicit Congestion Notification), DE (Discard Eligibility), and C/R
   (Command/Response) bits are carried across the network in the control
   word.  The edge routers that implement this document MAY, when either
   adding or removing the encapsulation described herein, change the
   BECN and/or FECN bits from 0 to 1 in order to reflect congestion in
   the network that is known to the edge routers, and the D/E bit from 0
   to 1 to reflect marking from edge policing of the Frame Relay
   Committed Information Rate.  The BECN, FECN, and D/E bits SHOULD NOT
   be changed from 1 to 0.

   The following is an example of a Frame Relay packet:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Rsvd  |B|F|D|C|    Length     |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Frame Relay PDU                          |
   |                             "                                 |
   |                             "                                 |
   |                             "                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








<span class="grey">Martini, et al.                 Historic                        [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


      * B ( BECN ) Bit

        The ingress router, R1, SHOULD copy the BECN field from the
        incoming Frame Relay header into this field.  The egress router,
        R2, MUST generate a new BECN field based on the value of the B
        bit.

      * F ( FECN ) Bit

        The ingress router, R1, SHOULD copy the FECN field from the
        incoming Frame Relay header into this field.  The egress router,
        R2, MUST generate a new FECN field based on the value of the F
        bit.

      * D ( DE ) Bit

        The ingress router, R1, SHOULD copy the DE field from the
        incoming Frame Relay header into this field.  The egress router,
        R2, MUST generate a new DE field based on the value of the D
        bit.

        If the tunneling protocol provides a field that can be set to
        specify a Quality of Service, the ingress router, R1, MAY
        consider the DE bit of the Frame Relay header when determining
        the value of that field.  The egress router MAY then consider
        the value of this field when queuing the layer 2 PDU for egress.
        Note however that frames from the same VC MUST NOT be reordered.

      * C ( C/R ) Bit

        The ingress router, R1, SHOULD copy the C/R bit from the
        received Frame Relay PDU to the C bit of the control word.  The
        egress router, R2, MUST copy the C bit into the output frame.

<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>.  ATM</span>

   Two encapsulations are supported for ATM transport: one for ATM
   Adaption Layer 5 (AAL5) and another for ATM cells.

   The AAL5 Common Part Convergence Sublayer - Service Data Unit
   (CPCS-SDU) encapsulation consists of the REQUIRED control word and
   the AAL5 CPCS-SDU.  The ATM cell encapsulation consists of an
   OPTIONAL control word, a 4-byte ATM cell header, and the ATM cell
   payload.







<span class="grey">Martini, et al.                 Historic                        [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>.  ATM AAL5 CPCS-SDU Mode</span>

   In ATM AAL5 mode, the ingress router is required to reassemble AAL5
   CPCS-SDUs from the incoming VC and transport each CPCS-SDU as a
   single packet.  No AAL5 trailer is transported.  The control word is
   REQUIRED; its use, however, is optional, although desirable.  Use of
   the control word means that the ingress and egress LSRs follow the
   procedures below.  If an ingress LSR chooses not to use the control
   word, it MUST set the flags in the control word to 0; if an egress
   LSR chooses to ignore the control word, it MUST set the ATM control
   bits to 0.

   The EFCI (Explicit Forward Congestion Indication) and CLP (Cell Loss
   Priority) bits are carried across the network in the control word.
   The edge routers that implement this document MAY, when either adding
   or removing the encapsulation described herein, change the EFCI bit
   from 0 to 1 in order to reflect congestion in the network that is
   known to the edge routers, and the CLP bit from 0 to 1 to reflect
   marking from edge policing of the ATM Sustained Cell Rate.  The EFCI
   and CLP bits MUST NOT be changed from 1 to 0.

   The AAL5 CPCS-SDU is prepended by the following header:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Rsvd  |T|E|L|C|    Length     |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ATM  AAL5 CPCS-SDU                        |
   |                             "                                 |
   |                             "                                 |
   |                             "                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      * T (transport type) bit

        Bit (T) of the control word indicates whether the packet
        contains an ATM cell or an AAL5 CPCS-SDU.  If set, the packet
        contains an ATM cell, encapsulated according to the ATM cell
        mode section below; otherwise, it contains an AAL5 CPCS-SDU.
        The ability to transport an ATM cell in the AAL5 mode is
        intended to provide a means of enabling Operations and
        Management (OAM) functionality over the AAL5 VC.








<span class="grey">Martini, et al.                 Historic                        [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


      * E ( EFCI ) Bit

        The ingress router, R1, SHOULD set this bit to 1 if the EFCI bit
        of the final cell of those that transported the AAL5 CPCS-SDU is
        set to 1, or if the EFCI bit of the single ATM cell to be
        transported in the packet is set to 1.  Otherwise, this bit
        SHOULD be set to 0.  The egress router, R2, SHOULD set the EFCI
        bit of all cells that transport the AAL5 CPCS-SDU to the value
        contained in this field.

      * L ( CLP ) Bit

        The ingress router, R1, SHOULD set this bit to 1 if the CLP bit
        of any of the ATM cells that transported the AAL5 CPCS-SDU is
        set to 1, or if the CLP bit of the single ATM cell to be
        transported in the packet is set to 1.  Otherwise, this bit
        SHOULD be set to 0.  The egress router, R2, SHOULD set the CLP
        bit of all cells that transport the AAL5 CPCS-SDU to the value
        contained in this field.

      * C ( Command / Response Field ) Bit

        When FRF.8.1 Frame Relay / ATM PVC Service Interworking
        [<a href="#ref-FRF.8.1" title="&quot;Frame Relay / ATM PVC Service Interworking Implementation Agreement&quot;">FRF.8.1</a>] traffic is being transported, the CPCS-UU Least
        Significant Bit (LSB) of the AAL5 CPCS-SDU may contain the Frame
        Relay C/R bit.  The ingress router, R1, SHOULD copy this bit to
        the C bit of the control word.  The egress router, R2, SHOULD
        copy the C bit to the CPCS-UU Least Significant Bit (LSB) of the
        AAL5 CPCS PDU.

<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>.  ATM Cell Mode</span>

   In this encapsulation mode, ATM cells are transported individually
   without a Segmentation and Reassembly (SAR) process.  The ATM cell
   encapsulation consists of an OPTIONAL control word, and one or more
   ATM cells - each consisting of a 4-byte ATM cell header and the 48-
   byte ATM cell payload.  This ATM cell header is defined in the FAST
   encapsulation [<a href="#ref-FAST" title="&quot;Frame Based ATM over SONET/SDH Transport (FAST)&quot;">FAST</a>] <a href="#section-3.1.1">section 3.1.1</a>, but without the trailer byte.
   The length of each frame, without the encapsulation headers, is a
   multiple of 52 bytes long.  The maximum number of ATM cells that can
   be fitted in a frame, in this fashion, is limited only by the network
   MTU and by the ability of the egress router to process them.  The
   ingress router MUST NOT send more cells than the egress router is
   willing to receive.  The number of cells that the egress router is
   willing to receive may either be configured in the ingress router or
   may be signaled, for example, using the methods described in
   [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>].  The number of cells encapsulated in a particular frame
   can be inferred by the frame length.  The control word is OPTIONAL.



<span class="grey">Martini, et al.                 Historic                       [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   If the control word is used, then the flag bits in the control word
   are not used, and MUST be set to 0 when transmitting, and MUST be
   ignored upon receipt.

   The EFCI and CLP bits are carried across the network in the ATM cell
   header.  The edge routers that implement this document MAY, when
   either adding or removing the encapsulation described herein, change
   the EFCI bit from 0 to 1 in order to reflect congestion in the
   network that is known to the edge router, and the CLP bit from 0 to 1
   to reflect marking from edge policing of the ATM Sustained Cell Rate.
   The EFCI and CLP bits SHOULD NOT be changed from 1 to 0.

   This diagram illustrates an encapsulation of two ATM cells:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Control word ( Optional )                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          VPI          |              VCI              | PTI |C|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  ATM Payload ( 48 bytes )                     |
   |                          "                                    |
   |                          "                                    |
   |                          "                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          VPI          |              VCI              | PTI |C|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  ATM Payload ( 48 bytes )                     |
   |                          "                                    |
   |                          "                                    |
   |                          "                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      * VPI (Virtual Path Identifier)

        The ingress router MUST copy the VPI field from the incoming
        cell into this field.  For particular emulated VCs, the egress
        router MAY generate a new VPI and ignore the VPI contained in
        this field.

      * VCI (Virtual Circuit Identifier)

        The ingress router MUST copy the VCI field from the incoming ATM
        cell header into this field.  For particular emulated VCs, the
        egress router MAY generate a new VCI.





<span class="grey">Martini, et al.                 Historic                       [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


      * PTI (Payload Type Identifier) &amp; CLP ( C bit )

        The PTI and CLP fields are the PTI and CLP fields of the
        incoming ATM cells.  The cell headers of the cells within the
        packet are the ATM headers (without HEC) of the incoming cell.

<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>.  OAM Cell Support</span>

   OAM cells MAY be transported on the VC LSP.  An egress router that
   does not support transport of OAM cells MUST discard frames that
   contain an ATM cell with the high-order bit of the PTI field set to
   1.  A router that supports transport of OAM cells MUST follow the
   procedures outlined in [<a href="#ref-FAST" title="&quot;Frame Based ATM over SONET/SDH Transport (FAST)&quot;">FAST</a>] <a href="#section-8">section 8</a> for mode 0 only, in addition
   to the applicable procedures specified in [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>].

<span class="h4"><a class="selflink" id="section-5.2.4" href="#section-5.2.4">5.2.4</a>.  CLP bit to Quality of Service Mapping</span>

   The ingress router MAY consider the CLP bit when determining the
   value to be placed in the Quality of Service fields (e.g., the EXP
   fields of the MPLS label stack) of the encapsulating protocol.  This
   gives the network visibility of the CLP bit.  Note however that cells
   from the same VC MUST NOT be reordered.

<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>.  Ethernet VLAN</span>

   For an Ethernet 802.1q VLAN, the entire Ethernet frame without the
   preamble or FCS is transported as a single packet.  The control word
   is OPTIONAL.  If the control word is used, then the flag bits in the
   control word are not used, and MUST be set to 0 when transmitting,
   and MUST be ignored upon receipt.  The 4-byte VLAN tag is transported
   as is, and MAY be overwritten by the egress router.

   The ingress router MAY consider the user priority field [<a href="#ref-IEEE802.3ac" title="&quot;Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 3: Carrier sense multiple access with collision detection (CSMA/CD) frame extensions for Virtual Bridged Local Area Networks (VLAN) tagging on 802.3 networks&quot;">IEEE802.3ac</a>]
   of the VLAN tag header when determining the value to be placed in the
   Quality of Service field of the encapsulating protocol (e.g., the EXP
   fields of the MPLS label stack).  In a similar way, the egress router
   MAY consider the Quality of Service field of the encapsulating
   protocol when queuing the packet for egress.  Ethernet packets
   containing hardware-level Cyclic Redundancy Check (CRC) errors,
   framing errors, or runt packets MUST be discarded on input.

<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>.  Ethernet</span>

   For simple Ethernet port to port transport, the entire Ethernet frame
   without the preamble or FCS is transported as a single packet.  The
   control word is OPTIONAL.  If the control word is used, then the flag
   bits in the control word are not used, and MUST be set to 0 when
   transmitting, and MUST be ignored upon receipt.  As in the Ethernet



<span class="grey">Martini, et al.                 Historic                       [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   VLAN case, Ethernet packets with hardware-level CRC errors, framing
   errors, and runt packets MUST be discarded on input.

<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>.  High-Level Data Link Control (HDLC)</span>

   HDLC mode provides port to port transport of HDLC-encapsulated
   traffic.  The HDLC PDU is transported in its entirety, including the
   HDLC address, control, and protocol fields, but excluding HDLC flags
   and the FCS.  Bit/byte stuffing is undone.  The control word is
   OPTIONAL.  If the control word is used, then the flag bits in the
   control word are not used, and MUST be set to 0 when transmitting,
   and MUST be ignored upon receipt.

   The HDLC mode is suitable for port to port transport of Frame Relay
   User-Network Interface (UNI) or Network-Network Interface (NNI)
   traffic.  It must be noted, however, that this mode is transparent to
   the FECN, BECN, and DE bits.

<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>.  PPP</span>

   PPP mode provides point to point transport of PPP-encapsulated
   traffic, as specified in [<a href="./rfc1661" title="&quot;The Point-to-Point Protocol (PPP)&quot;">RFC1661</a>].  The PPP PDU is transported in
   its entirety, including the protocol field (whether compressed using
   PFC or not), but excluding any media-specific framing information,
   such as HDLC address and control fields or FCS.  Since media-specific
   framing is not carried, the following options will not operate
   correctly if the PPP peers attempt to negotiate them:

      - Frame Check Sequence (FCS) Alternatives
      - Address-and-Control-Field-Compression (ACFC)
      - Asynchronous-Control-Character-Map (ACCM)

   Note also that VC LSP Interface MTU negotiation as specified in
   [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>] is not affected by PPP Maximum Receive Unit (MRU)
   advertisement.  Thus, if a PPP peer sends a PDU with a length in
   excess of that negotiated for the VC LSP, that PDU will be discarded
   by the ingress router.

   The control word is OPTIONAL.  If the control word is used, then the
   flag bits in the control word are not used, and MUST be set to 0 when
   transmitting, and MUST be ignored upon receipt.

<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Using an MPLS Label as the Demultiplexer Field</span>

   To use an MPLS label as the demultiplexer field, a 32-bit label stack
   entry [<a href="./rfc3032" title="&quot;MPLS Label Stack Encoding&quot;">RFC3032</a>] is simply prepended to the emulated VC encapsulation,
   and hence will appear as the bottom label of an MPLS label stack.
   This label may be called the "VC label".  The particular emulated VC



<span class="grey">Martini, et al.                 Historic                       [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   identified by a particular label value must be agreed by the ingress
   and egress LSRs, either by signaling (e.g., via the methods of
   [<a href="./rfc4906" title="&quot;Transport of Layer 2 Frames Over MPLS&quot;">RFC4906</a>]) or by configuration.  Other fields of the label stack
   entry are set as follows.

<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>.  MPLS Shim EXP Bit Values</span>

   If it is desired to carry Quality of Service information, the Quality
   of Service information SHOULD be represented in the EXP field of the
   VC label.  If more than one MPLS label is imposed by the ingress LSR,
   the EXP field of any labels higher in the stack SHOULD also carry the
   same value.

<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>.  MPLS Shim S Bit Value</span>

   The ingress LSR, R1, MUST set the S bit of the VC label to a value of
   1 to denote that the VC label is at the bottom of the stack.

<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>.  MPLS Shim TTL Values</span>

   The ingress LSR, R1, SHOULD set the TTL field of the VC label to a
   value of 2.

<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Security Considerations</span>

   This document specifies only encapsulations, and not the protocols,
   used to carry the encapsulated packets across the network.  Each such
   protocol may have its own set of security issues, but those issues
   are not affected by the encapsulations specified herein.  More
   detailed security considerations are also described in <a href="./rfc4447#section-8">Section&nbsp;8 of
   [RFC4447]</a>.

<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  Normative References</span>

   [<a id="ref-RFC2119">RFC2119</a>]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.

   [<a id="ref-RFC4447">RFC4447</a>]     Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T.,
                 and G. Heron, "Pseudowire Setup and Maintenance Using
                 the Label Distribution Protocol (LDP)", <a href="./rfc4447">RFC 4447</a>, April
                 2006.

   [<a id="ref-RFC4385">RFC4385</a>]     Bryant, S., Swallow, G., Martini, L., and D. McPherson,
                 "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
                 for Use over an MPLS PSN", <a href="./rfc4385">RFC 4385</a>, February 2006.






<span class="grey">Martini, et al.                 Historic                       [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   [<a id="ref-RFC4842">RFC4842</a>]     Malis, A., Pate, P., Cohen, R., Ed., and D. Zelig,
                 "Synchronous Optical Network/Synchronous Digital
                 Hierarchy (SONET/SDH) Circuit Emulation over Packet
                 (CEP)", <a href="./rfc4842">RFC 4842</a>, April 2007.

   [<a id="ref-RFC4553">RFC4553</a>]     Vainshtein, A., Ed., and YJ. Stein, Ed., "Structure-
                 Agnostic Time Division Multiplexing (TDM) over Packet
                 (SAToP)", <a href="./rfc4553">RFC 4553</a>, June 2006.

   [<a id="ref-RFC4619">RFC4619</a>]     Martini, L., Ed., Kawa, C., Ed., and A. Malis, Ed.,
                 "Encapsulation Methods for Transport of Frame Relay
                 over Multiprotocol Label Switching (MPLS) Networks",
                 <a href="./rfc4619">RFC 4619</a>, September 2006.

   [<a id="ref-RFC4717">RFC4717</a>]     Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N.,
                 Brayley, J., and G. Koleyni, "Encapsulation Methods for
                 Transport of Asynchronous Transfer Mode (ATM) over MPLS
                 Networks", <a href="./rfc4717">RFC 4717</a>, December 2006.

   [<a id="ref-RFC4618">RFC4618</a>]     Martini, L., Rosen, E., Heron, G., and A. Malis,
                 "Encapsulation Methods for Transport of PPP/High-Level
                 Data Link Control (HDLC) over MPLS Networks", <a href="./rfc4618">RFC 4618</a>,
                 September 2006.

   [<a id="ref-RFC4448">RFC4448</a>]     Martini, L., Ed., Rosen, E., El-Aawar, N., and G.
                 Heron, "Encapsulation Methods for Transport of Ethernet
                 over MPLS Networks", <a href="./rfc4448">RFC 4448</a>, April 2006.

   [<a id="ref-RFC4906">RFC4906</a>]     Martini, L., Ed., Rosen, E., Ed., and N. El-Aawar, Ed.,
                 "Transport of Layer 2 Frames Over MPLS", <a href="./rfc4906">RFC 4906</a>, June
                 2007.

   [<a id="ref-RFC3032">RFC3032</a>]     Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
                 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
                 Encoding", <a href="./rfc3032">RFC 3032</a>, January 2001.

   [<a id="ref-FRF.8.1">FRF.8.1</a>]     Frame Relay Forum, "Frame Relay / ATM PVC Service
                 Interworking Implementation Agreement", February 2000.

   [<a id="ref-FAST">FAST</a>]        ATM Forum, "Frame Based ATM over SONET/SDH Transport
                 (FAST)", af-fbatm-0151.000, July 2000.










<span class="grey">Martini, et al.                 Historic                       [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   [<a id="ref-IEEE802.3ac">IEEE802.3ac</a>] IEEE 802.3ac-1998, "Information technology -
                 Telecommunications and information exchange between
                 systems - Local and metropolitan area networks -
                 Specific requirements Part 3: Carrier sense multiple
                 access with collision detection (CSMA/CD) frame
                 extensions for Virtual Bridged Local Area Networks
                 (VLAN) tagging on 802.3 networks".

<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  Informative References</span>

   [<a id="ref-RFC1661">RFC1661</a>]     Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
                 STD 51, <a href="./rfc1661">RFC 1661</a>, July 1994.

<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>.  Co-Authors</span>

   Giles Heron
   Tellabs
   Abbey Place
   24-28 Easton Street
   High Wycombe
   Bucks
   HP11 1NT
   UK
   EMail: giles.heron@tellabs.com


   Dimitri Stratton Vlachos
   Mazu Networks, Inc.
   125 Cambridgepark Drive
   Cambridge, MA 02140
   EMail: d@mazunetworks.com


   Dan Tappan
   Cisco Systems, Inc.
   1414 Massachusetts Avenue
   Boxborough, MA 01719
   EMail: tappan@cisco.com


   Jayakumar Jayakumar
   Cisco Systems Inc.
   225, E.Tasman, MS-SJ3/3,
   San Jose, CA 95134
   EMail: jjayakum@cisco.com






<span class="grey">Martini, et al.                 Historic                       [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   Alex Hamilton
   Cisco Systems Inc.
   285 W. Tasman, MS-SJCI/3/4,
   San Jose, CA 95134
   EMail: tahamilt@cisco.com


   Steve Vogelsang
   Laurel Networks, Inc.
   Omega Corporate Center
   1300 Omega Drive
   Pittsburgh, PA 15205
   EMail: sjv@laurelnetworks.com


   John Shirron
   Laurel Networks, Inc.
   Omega Corporate Center
   1300 Omega Drive
   Pittsburgh, PA 15205
   EMail: jshirron@laurelnetworks.com


   Toby Smith
   Network Appliance, Inc.
   800 Cranberry Woods Drive
   Suite 300
   Cranberry Township, PA 16066
   EMail: tob@netapp.com


   Andrew G. Malis
   Tellabs
   90 Rio Robles Dr.
   San Jose, CA 95134
   EMail: Andy.Malis@tellabs.com


   Vinai Sirkay
   Redback Networks
   300 Holger Way
   San Jose, CA 95134
   EMail: vsirkay@redback.com








<span class="grey">Martini, et al.                 Historic                       [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


   Vasile Radoaca
   Nortel Networks
   600  Technology Park
   Billerica MA 01821
   EMail: vasile@nortelnetworks.com


   Chris Liljenstolpe
   Alcatel
   11600 Sallie Mae Dr.
   9th Floor
   Reston, VA 20193
   EMail: chris.liljenstolpe@alcatel.com


   Dave Cooper
   Global Crossing
   960 Hamlin Court
   Sunnyvale, CA 94089
   EMail: dcooper@gblx.net


   Kireeti Kompella
   Juniper Networks
   1194 N. Mathilda Ave
   Sunnyvale, CA 94089
   EMail: kireeti@juniper.net
























<span class="grey">Martini, et al.                 Historic                       [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


Authors' Addresses

   Luca Martini
   Cisco Systems, Inc.
   9155 East Nichols Avenue, Suite 400
   Englewood, CO 80112
   EMail: lmartini@cisco.com


   Nasser El-Aawar
   Level 3 Communications, LLC.
   1025 Eldorado Blvd.
   Broomfield, CO 80021
   EMail: nna@level3.net


   Eric Rosen
   Cisco Systems, Inc.
   1414 Massachusetts Avenue
   Boxborough, MA 01719
   EMail: erosen@cisco.com






























<span class="grey">Martini, et al.                 Historic                       [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4905">RFC 4905</a>         Encapsulation for L2 Frames over MPLS         June 2007</span>


Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   <a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.







Martini, et al.                 Historic                       [Page 20]
</pre>